
  

 

Abstract—Of a multitude of algorithms used for fault 

diagnosis and testing of digital circuits, VICTOR stands out 

because of its multi-step approach to determine the test vectors 

needed for detection of a particular fault. In this paper, we have 

presented the procedure used by VICTOR to determine test 

patterns for a particular fault, first by hand-calculations and 

then with the help of a simulation program developed by us for 

this algorithm. The results of our simulation are consistent with 

those obtained manually which confirms the veracity and 

usefulness of our developed software. 

 
Index Terms—Fault diagnosis, testing, algorithm, digital 

circuit, VICTOR.  

 

I. INTRODUCTION 

Fault diagnosis and testing are important requirements for 

any given digital circuit to be used in engineering 

applications. A given circuit is said to be testable with respect 

to a fault if a well-specified procedure can be utilized to 

detect that fault [1]. Testability has two important 

components, namely controllability and observability [2]. 

How one can control a certain wire of a digital circuit to 

exhibit logic 0 or logic 1 on that wire provides us measure of 

the wire’s controllability. Observability refers to the ease 

with which it is possible to observe logic 0 or logic 1 on that 

particular wire. TMEAS (Testability Measurement) and 

SCOAP (Sandia Controllability Observability Analysis 

Program) are two famous algorithms which determine the 

testability of a digital circuit using controllability and 

observability values of the various wires contained within the 

circuit. Details about these algorithms can be found in 

[2]-[4]. VICTOR (VLSI Identifier of Controllability, 

Testability, Observability, and Redundancy) was a 

FORTRAN program developed at the Electronics Research 

Laboratory in the University of California, Berkeley and is a 

based on a very unique approach to determine the test vectors 

for a given digital circuit [5]. This paper is organized as 

follows: In Section II, we present a summary of VICTOR 

algorithm (as applied to a test circuit) which is followed, in 

Section III, by the output obtained by running this algorithm 

on the same test circuit using our developed software. 

Conclusions are presented in Section IV, followed by 
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II. SUMMARY OF VICTOR ALGORITHM 

VICTOR is a linear algorithm requiring four passes 

through the circuit-under-test: circuit leveling, controllability 

analysis, observability analysis, and test generation [6]. 

A. Circuit Leveling 

VICTOR starts by marking and leveling the circuit. Each 

circuit node is marked with a unique name, where nodes are 

primary inputs, the outputs of every functional block, and all 

fan-out destinations. The circuit is leveled to identify the 

relative processing order of circuit nodes. All primary inputs 

and their fan-out nodes are assigned to level 0. A node other 

than the primary input node takes the level of the functional 

block that drives the node (a fan-out branch is assigned the 

level of its stem). The level of a functional block is defined as 

the level of its highest-level input node plus 1. Consider the 

circuit given in Fig. 1 [6]. It has five levels as follows:  

Level 0: A, B, C, D, G, H;  

Level 1: I, J, K, L;  

Level 2: M;  

Level 3: N;  

Level 4: Z.  

 

 
Fig. 1. Circuit-Under-Test (CUT) with levels identified. 

 

B. Controllability Analysis 

The second pass through the circuit computes the 

set-controllability (also called 1-controllability) and 

reset-controllability (also called 0-controllability) of each 

node. Node set and reset measures consist of triplets of three 

values, named pattern, risk, and size. For a given node V, the 

set and reset triplets are represented as: 

 

VTS = { Vs, risk (Vs), size (Vs)} 

 

VTR = { Vr, risk (Vr), size (Vr)} 

 

Vs and Vr are the set and reset control patterns, a set of 

primary input values that are sufficient to force node V to a 1 

and 0, respectively (or alternatively to provoke a stuck-at-0 

and a stuck-at-1 fault at the node). All patterns in a circuit are 

of the same length, having one symbol for each primary 
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input. VICTOR uses four-valued logic, allowing any of the 

following four symbols in a pattern: 

0 = logical 0 assignment 

1 = logical 1 assignment 

x = don’t care assignment  

# = conflicting 0 and 1 assignment (called clash) 

The values risk (Vs) and risk (Vr) are the set and reset risk, 

and heuristically measure the risk of re-convergence of 

fan-out nodes and, thus, the possibility of redundant faults. 

The values size (Vs) and size (Vr) are estimates of the number 

of primary input patterns that will either set or reset the node. 

The set and reset patterns are the essential control 

information generated by VICTOR. The risk and size 

measures in the triplets are used only to guide the selection of 

patterns. 

Computing these controllability measures begins with the 

primary input nodes (at level 0) and flows forward by level 

until the primary outputs are reached. A primary input set 

(reset) pattern is a 1 (0) for the input itself and an x (don’t 

care) for all other inputs. 

The re-convergence risk value for a primary input with no 

fan-out is set at 1. However, where fan-out exists (as with 

input B in the Fig. 1), the risk value is the product of the 

number of fan-out nodes and the number of levels to the 

farthest primary output. Thus the set and reset risks of node B 

are both 2 × 4 = 8. 

 

TABLE I: CUT SET TRIPLETS 

Node ABCD Risk Size 

A 1xxx 1 1 

B x1xx 8 1 

C xx1x 1 1 

D xxx1 1 1 

G x1xx 8 1 

H x1xx 8 1 

I 10xx 9 1 

J xx1x 7 2 

K xx1x 7 2 

L xx1x 7 2 

M xxx0 1 2 

N 0011 17 9 

Z 0011 24 18 

 

TABLE II: CUT RESET TRIPLETS 

Node ABCD Risk Size 

A 0xxx 1 1 

B x0xx 8 1 

C xx0x 1 1 

D xxx0 1 1 

G x0xx 8 1 

H x0xx 8 1 

I 00xx 9 1 

J x00x 15 1 

K x00x 15 1 

L x00x 15 1 

M xx11 8 2 

N xxx0 1 3 

Z xxx0 1 4 

 

Finally, the set and reset sizes for primary inputs are both 1 

because an input node can be set or reset in only one way. 

Controllability triplets for the primary inputs and all other 

nodes of the example circuit have been derived and are listed 

in Tables I and II. 

The controllability values for fan-out branches take the 

values for their driving node. Hence the set and reset triplets 

for the fan-out nodes G and H in the sample circuit are the 

same as those for node B. 

In the propagation of controllability triplets through the 

circuit, logical elements are handled in level order. Triplets 

on the outputs of blocks are computed using one of two 

operations called pattern selection and pattern intersection. 

Pattern selection defines an output pattern as the 

lowest-risk lowest-level input pattern. The risk of the output 

pattern is the same as the risk of the chosen input pattern. The 

size of the output pattern is the sum of the sizes of all input 

patterns. Pattern intersection defines an output pattern as the 

symbol by symbol intersection of the input patterns. The 

intersection operation is governed by Table III. 

TABLE III: RULES GOVERNING INTERSECTION OPERATION 

Intersection 0 1 x # 

0 0 # 0 # 

1 # 1 1 # 

x 0 1 x # 

# # # # # 

 

The risk of an intersection output pattern is the sum of risks 

of the input patterns, and the size is the product of the input 

sizes. The choice of whether to do selection or intersection is 

governed by the function of the element. Crudely, one can 

think of selection as an OR operation and intersection as an 

AND operation.  

In the circuit of Fig. 1, the order of the logical elements is 

XOR, OR, NAND, NOR, and AND. The first step is to select 

a set and reset pattern for XOR (node I). Node I can be set to 

1 if either A is set and G is reset or vice versa. These two 

choices are both intersection operations, thus 

Is = intersection (As, Gr) or intersection (Ar, Gs) 

Similarly there are two choices for resetting I: 

Ir = intersection (As, Gs) or intersection (Ar, Gr) 

When faced with a choice (either during pattern 

intersection or pattern selection), VICTOR chooses that 

pattern with the lowest risk. In the case of a tie, the 

lowest-level pattern is chosen. If the tie still exists, the choice 

is arbitrary. As stated earlier, the risk of a pattern resulting 

from pattern intersection is the sum of input risks. Let’s 

consider the choices for setting node I. The resulting patterns 

and risks are: 

Is = intersection (As, Gr) = 10xx 

risk (Is) = risk (As) + risk (Gr) = 1 + 8 = 9 

Is = intersection (Ar, Gs) = 01xx 

risk (Is) = risk (Ar) + risk (Gs) = 1 + 8 = 9 

Since both patterns have the same risk and since there is no 

difference in levels, the set pattern 10xx is arbitrarily chosen. 

Similarly, the reset pattern choices have the same risk and 

levels and 00xx is arbitrarily chosen. The size (for both set 

and reset) is the product of the input sizes or size (I) = size (A) 
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x size (G) = 1. Thus, the {pattern, risk, size} triplet for node I 

is: ITS = {10xx, 9, 1} and ITR = {00xx, 9, 1}. 

As another example, let’s take node J, the output of the OR 

gate, is an internal fan-out stem. Whenever a cell output is a 

fan-out stem, its risk is increased by adding to the computed 

risk the product of the fan-out count and the number of levels 

to the furthest primary output. An OR is set if any input is set, 

so that the set equation for Js is select (Hs, Cs). Selection 

chooses the lowest risk input pattern, which in this case is Cs 

so that Js becomes xx1x. The risk for Cs is 1, to which is added 

the product of the fan-out 2 and the distance 3. The size is the 

sum of the sizes of Hs and Cs. Thus JTS = {xx1x, 7, 2}. 

Resetting node J requires both inputs at 0 or Jr = intersect(Hr, 

Cr). The intersection Jr = x00x, risk = 9+6=15, and size =1. 

The controllability triplets for the remaining logic gates are 

computed similarly. 

C. Observability Analysis 

Once the controllability triplets are completed for all 

nodes, VICTOR begins the third pass through the circuit by 

computing the observability of the nodes. The term used in 

VICTOR for observability is ―monitor‖ and these measures 

are computed by starting at the primary outputs and working 

backward through the levelized cell-list. Monitor measures 

are again a triplet of pattern, risk, and size of each node. In 

the example circuit of Fig. 1, monitor analysis starts with 

output Z of the AND gate. An output is observable without 

any primary input contraints, so the appropriate pattern for Z 

is xxxx. An output has no risk and its size is 1. Hence the 

monitor triplet for Z is ZTM = {xxxx, 0, 1}. The rules to derive 

the input monitor triplets from output triplets are called the 

monitor equations, and use the select and intersect concepts 

described earlier. In the sample circuit, the AND gate has 

monitor equations: 

Km = intersect (Ns, Zm) 

Nm = intersect (Ks, Zm) 

which result in 

Km = intersect (0011, xxxx) = 0011 

Nm = intersect (xx1x, xxxx) = xx1x 

Monitor risk and size computation generally follows the 

rules described earlier. Using these rules, the monitor triplets 

for K and N would be KTM = {0011, 17, 9] and NTM = {xx1x, 

7, 2}. However, when a fan-out branch enters a cell, 

VICTOR computes a monitor risk adder that is the product of 

the fan-out and the number of levels from the fan-out stem to 

the cell output. In the example, the AND gate has an input K 

that is a fan-out point from stem node J. Since stem J is at 

level 1 and the AND gate output is at level 4, the risk for input 

K is 2x (4-1) = 6. This risk is added to the computed risk for 

the other cell input, node N. Thus, the monitor triplets for 

nodes K and N are: 

KTM = {0011, 17, 9}  

NTM = {xx1x, 13, 2} 

The next cell is the NOR with monitor equations: 

Im = intersect (Mr, Nm) 

Mm = intersect (Ir, Nm) 

resulting in the triplets 

ITM = {xx11, 21, 4}  

MTM = {001x, 22, 2} 

The NAND gate, processed next, also has a fan-out node 

as one input. The NAND monitor equations are: 

Dm = intersect (Ls, Mm) = intersect (xx1x, 001x) = 001x 

Lm = intersect (Ds, Mm) = intersect (xxx1, 001x) = 0011 

Because L is a fan-out node, the risk adder is the product of 

the fan-out and the level difference between the fan-out node 

J and the cell output M, or 6 + 2 × (2-1) = 8, and is applied to 

the other cell input D. Without the fan-out, the risk at D is risk 

(Ls) +risk (Mm) = 29. With the adder, risk (Dm) becomes 37. 

The risk at L is 23. The size of Dm is 4 and of Lm is 2. Hence 

DTM= {001x, 37, 4} and LTM = {0011, 23, 2}. 

Now, to calculate observability of a fan-out stem, 

VICTOR first computes the set-monitor and the 

reset-monitor intersections for each of its branches and then 

assigns to the stem the triplet of that branch whose 

set-monitor and reset-monitor patterns are both clash-free. In 

the example, nodes K and L are the branches from fan-out 

stem J. The set-monitor and reset-monitor intersections for K 

are: 

Intersect (Ks, Km) = intersect (xx1x, 0011) = 0011 

and 

Intersect (Kr, Km) – intersect (x00x, 0011) = 00#1 

And for L are: 

Intersect (Ls, Lm) = intersect (xx1x, 0011) = 0011 

Intersect (Lr, Lm) = intersect (x00x, 0011) = 00#1 

Note that the reset-monitor intersection for both branches 

produces a clash in the third symbol. When all patterns have 

clashes, VICTOR sets the fan-out stem monitor to {##...#, 

99999, 0}. Hence JTM = {####, 99999, 0}. In a general 

network, however, there may be several clash-free patterns, 

in which case VICTOR takes the pattern that has the most 

don’t cares (x). Observability of the remaining cells is 

computed in a similar fashion and monitor triplets for CUT 

are shown in Table IV. 

TABLE IV: CUT MONITOR TRIPLETS 

Node ABCD Risk Size 

A x111 31 4 

B 1x11 22 4 

C #### 99999 0 

D 001x 37 4 

G 1x11 22 4 

H #### 99999 0 

I xx11 21 4 

J #### 99999 0 

K 0011 17 9 

L 0011 23 2 

M 001x 22 2 

N xx1x 13 2 

Z xxxx 0 1 
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D. Test Generation 

The set and reset patterns are primary input values that are 

sufficient to provoke a stuck-at-0 and a stuck-at-1 fault at the 

node. Similarly, the monitor patterns are sufficient input 

values to propagate a fault from a node to an observable 

output. The intersection of the nodal control and monitor 

patterns, then, can be a test for the node. Two tests are 

required for each node V: 

V/0 test: intersect (Vs, Vm) 

V/1 test: intersect (Vr, Vm) 

The set, reset, and monitor triplets from Tables I, II, and III 

are intersected and, after intersection, produce V/0 and V/1 

test patterns as shown in Table V. 

TABLE V: CUT V/0 AND V/1 TEST PATTERNS 

Node 
V/0 Test V/1 Test 

ABCD ABCD 

A 1111 0111 

B 1111 1011 

C #### #### 

D 0011 0010 

G 1111 1011 

H #### #### 

I 1011 0011 

J #### #### 

K 0011 00#1 

L 0011 00#1 

M 0010 0011 

N 0011 xx10 

Z 0011 xxx0 

 

Note that eight of the node fault tests contain clashes (#) 

and are potential redundancies. Clashes occur in the monitor 

patterns for nodes C, H, and J and carry over to the tests. 

Nodes K and L are clash-free in the control and monitor 

patterns, but clashes appear in the V/1 test. 

V/0 and V/1 patterns in which no clashes occur are valid 

test. From Table V, after test compaction, we find that there 

are five test patterns which will detect 18 of the possible 26 

possible nodal faults: 0010, 0011, 0111, 1011, 1111. 

 

III. SIMULATION RESULTS 

The sample combinational circuit of Fig. 1 was re-labeled 

as shown in Fig. 2 so that it could be described in our 

software as: 1, 5, XOR, 7, 6, 3, OR, 8, 10, 4, NAND, 11, 7, 

11, NOR, 12, 9, 12, AND, 13.  

 

 
Fig. 2. Circuit-Under-Test (CUT) re-labeled for simulation. 

 

The results of simulation obtained from our software are 

shown in Fig. 3 and Fig. 4 which are consistent with the 

manual calculations done for CUT. 

 

 
Fig. 3. VICTOR simulation results output by simulation software. 

 

 
Fig. 4. VICTOR test generation results output by simulation software. 

 

IV. CONCLUSIONS 

In this paper we have presented calculated results and 

simulation results obtained by running VICTOR algorithm 

on a circuit-under-test using a simulation software developed 

at SQU (Oman). The results are consistent and in conformity 

with the calculated values.  

ACKNOWLEDGMENT 

The support for the work presented in this paper was 

provided by Sultan Qaboos University (Oman) through 

internal grant: IG/ENG/ECED/10/01. 

REFERENCES 

[1] Chapter 3 testability measures. (2002). [Online]. Available: 

http://larc.ee.nthu.edu.tw/~cww/n/625/6250/03.pdf 

[2] T. Jamil and I. Mohammed, ―Transcription of algorithms used for 

fault-diagnosis of digital systems into computer programs,‖ in Proc. 

IEEE Southeastcon, 2013, pp. 1-6. 

[3] J. Grason, ―TMEAS—a testability measurement program,‖ in Proc. 

IEEE/ACM Design Automation Conf. (DAC), 1979, pp. 156–161. 

[4] L. H. Goldstein, ―Controllability/observability analysis for digital 

circuits,‖ IEEE Trans. Circuits and Systems, vol. 26, no. 9, pp. 

685–693, Sept. 1979. 

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

106



  

[5] I. M. Ratiu, A. Sangiovanni-Vincentelli, and D. O. Pederson, 

―VICTOR: a fast VLSI testability analysis program,‖ in Proc. Int. Test 

Conf. (ITC), Philadelphia, PA, Nov. 1982, pp. 397–401. 

[6] P. H. Bardell, W. H. McAnney, and J. Savir, Built-in Test for VLSI – 

Pseudorandom Techniques, John Wiley and Sons, New York, 1987. 

 

 

Tariq Jamil has been a faculty member in the 

Department of Electrical and Computer Engineering at 

Sultan Qaboos University (SQU, Oman) since 2000. 

Before joining SQU, he had been a lecturer at the 

University of New South Wales, Sydney (Australia) 

and the University of Tasmania, Launceston 

(Australia). Dr. Jamil holds a B.Sc. (Honors) degree in 

electrical engineering from the NWFP University of Engineering and 

Technology (Pakistan) and M.S. and Ph.D. degrees in computer engineering 

from the Florida Institute of Technology (USA). 

He has authored three books, holds an Australian Innovation Patent on 

Complex Binary Associative Dataflow Processor, and has written about fifty 

research papers in refereed international conferences and journals. He has 

been a recipient of several research grants from the Australian Research 

Council and SQU. His research interests are in computer arithmetic, 

computer architecture, parallel processing, digital systems, and 

cryptography. 

On account of his outstanding academic achievements and for 

contributions to activities related to the computing discipline, Dr. Jamil was 

awarded the IEEE Computer Society (USA)/Upsilon Pi Epsilon Honor 

Society Award for Academic Excellence (1996). He has served as a 

distinguished speaker in the IEEE Computer Society (USA) Distinguished 

Visitors Program (DVP) and his biography has been published in such 

renowned directories as Marquis's Who's Who in the World (USA), Who's 

Who in Science and Engineering (USA), and Dictionary of International 

Biography (UK). He is a senior member of IEEE (USA), member of the IET 

(UK), a Chartered Engineer (UK), and a registered Professional Engineer 

(Pakistan). 

 

 

Iftaquaruddin Mohammed is a software engineer 

with a B.Sc. degree in electronics and M.Sc degree in 

computer science from SMU, India. He also holds the 

postgraduate diploma in computer science from 

Victoria University (Australia) and is a technical staff 

member in the Department of Electrical and Computer 

Engineering at Sultan Qaboos University (Oman). He 

has been involved in conducting digital logic design laboratory for 

undergraduate students for over five years. 

 

 

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

107




