

Abstract—Of a multitude of algorithms used for fault

diagnosis and testing of digital circuits, VICTOR stands out

because of its multi-step approach to determine the test vectors

needed for detection of a particular fault. In this paper, we have

presented the procedure used by VICTOR to determine test

patterns for a particular fault, first by hand-calculations and

then with the help of a simulation program developed by us for

this algorithm. The results of our simulation are consistent with

those obtained manually which confirms the veracity and

usefulness of our developed software.

Index Terms—Fault diagnosis, testing, algorithm, digital

circuit, VICTOR.

I. INTRODUCTION

Fault diagnosis and testing are important requirements for

any given digital circuit to be used in engineering

applications. A given circuit is said to be testable with respect

to a fault if a well-specified procedure can be utilized to

detect that fault [1]. Testability has two important

components, namely controllability and observability [2].

How one can control a certain wire of a digital circuit to

exhibit logic 0 or logic 1 on that wire provides us measure of

the wire’s controllability. Observability refers to the ease

with which it is possible to observe logic 0 or logic 1 on that

particular wire. TMEAS (Testability Measurement) and

SCOAP (Sandia Controllability Observability Analysis

Program) are two famous algorithms which determine the

testability of a digital circuit using controllability and

observability values of the various wires contained within the

circuit. Details about these algorithms can be found in

[2]-[4]. VICTOR (VLSI Identifier of Controllability,

Testability, Observability, and Redundancy) was a

FORTRAN program developed at the Electronics Research

Laboratory in the University of California, Berkeley and is a

based on a very unique approach to determine the test vectors

for a given digital circuit [5]. This paper is organized as

follows: In Section II, we present a summary of VICTOR

algorithm (as applied to a test circuit) which is followed, in

Section III, by the output obtained by running this algorithm

on the same test circuit using our developed software.

Conclusions are presented in Section IV, followed by

Manuscript received March 16, 2014; revised May 5, 2014. This work

was supported in part by Sultan Qaboos University (Oman) through internal

grant: IG/ENG/ECED/10/01.

The authors are with the Department of Electrical and Computer

Engineering at Sultan Qaboos University, Oman (e-mail:

tjamil@squ.edu.om, iftaquar@squ.edu.om).

acknowledgment and references.

II. SUMMARY OF VICTOR ALGORITHM

VICTOR is a linear algorithm requiring four passes

through the circuit-under-test: circuit leveling, controllability

analysis, observability analysis, and test generation [6].

A. Circuit Leveling

VICTOR starts by marking and leveling the circuit. Each

circuit node is marked with a unique name, where nodes are

primary inputs, the outputs of every functional block, and all

fan-out destinations. The circuit is leveled to identify the

relative processing order of circuit nodes. All primary inputs

and their fan-out nodes are assigned to level 0. A node other

than the primary input node takes the level of the functional

block that drives the node (a fan-out branch is assigned the

level of its stem). The level of a functional block is defined as

the level of its highest-level input node plus 1. Consider the

circuit given in Fig. 1 [6]. It has five levels as follows:

Level 0: A, B, C, D, G, H;

Level 1: I, J, K, L;

Level 2: M;

Level 3: N;

Level 4: Z.

Fig. 1. Circuit-Under-Test (CUT) with levels identified.

B. Controllability Analysis

The second pass through the circuit computes the

set-controllability (also called 1-controllability) and

reset-controllability (also called 0-controllability) of each

node. Node set and reset measures consist of triplets of three

values, named pattern, risk, and size. For a given node V, the

set and reset triplets are represented as:

VTS = { Vs, risk (Vs), size (Vs)}

VTR = { Vr, risk (Vr), size (Vr)}

Vs and Vr are the set and reset control patterns, a set of

primary input values that are sufficient to force node V to a 1

and 0, respectively (or alternatively to provoke a stuck-at-0

and a stuck-at-1 fault at the node). All patterns in a circuit are

of the same length, having one symbol for each primary

Simulation of VICTOR Algorithm for Fault-Diagnosis of

Digital Circuits

Tariq Jamil and Iftaquaruddin Mohammed

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

103DOI: 10.7763/IJCTE.2015.V7.939

mailto:tjamil@squ.edu.om

input. VICTOR uses four-valued logic, allowing any of the

following four symbols in a pattern:

0 = logical 0 assignment

1 = logical 1 assignment

x = don’t care assignment

= conflicting 0 and 1 assignment (called clash)

The values risk (Vs) and risk (Vr) are the set and reset risk,

and heuristically measure the risk of re-convergence of

fan-out nodes and, thus, the possibility of redundant faults.

The values size (Vs) and size (Vr) are estimates of the number

of primary input patterns that will either set or reset the node.

The set and reset patterns are the essential control

information generated by VICTOR. The risk and size

measures in the triplets are used only to guide the selection of

patterns.

Computing these controllability measures begins with the

primary input nodes (at level 0) and flows forward by level

until the primary outputs are reached. A primary input set

(reset) pattern is a 1 (0) for the input itself and an x (don’t

care) for all other inputs.

The re-convergence risk value for a primary input with no

fan-out is set at 1. However, where fan-out exists (as with

input B in the Fig. 1), the risk value is the product of the

number of fan-out nodes and the number of levels to the

farthest primary output. Thus the set and reset risks of node B

are both 2 × 4 = 8.

TABLE I: CUT SET TRIPLETS

Node ABCD Risk Size

A 1xxx 1 1

B x1xx 8 1

C xx1x 1 1

D xxx1 1 1

G x1xx 8 1

H x1xx 8 1

I 10xx 9 1

J xx1x 7 2

K xx1x 7 2

L xx1x 7 2

M xxx0 1 2

N 0011 17 9

Z 0011 24 18

TABLE II: CUT RESET TRIPLETS

Node ABCD Risk Size

A 0xxx 1 1

B x0xx 8 1

C xx0x 1 1

D xxx0 1 1

G x0xx 8 1

H x0xx 8 1

I 00xx 9 1

J x00x 15 1

K x00x 15 1

L x00x 15 1

M xx11 8 2

N xxx0 1 3

Z xxx0 1 4

Finally, the set and reset sizes for primary inputs are both 1

because an input node can be set or reset in only one way.

Controllability triplets for the primary inputs and all other

nodes of the example circuit have been derived and are listed

in Tables I and II.

The controllability values for fan-out branches take the

values for their driving node. Hence the set and reset triplets

for the fan-out nodes G and H in the sample circuit are the

same as those for node B.

In the propagation of controllability triplets through the

circuit, logical elements are handled in level order. Triplets

on the outputs of blocks are computed using one of two

operations called pattern selection and pattern intersection.

Pattern selection defines an output pattern as the

lowest-risk lowest-level input pattern. The risk of the output

pattern is the same as the risk of the chosen input pattern. The

size of the output pattern is the sum of the sizes of all input

patterns. Pattern intersection defines an output pattern as the

symbol by symbol intersection of the input patterns. The

intersection operation is governed by Table III.

TABLE III: RULES GOVERNING INTERSECTION OPERATION

Intersection 0 1 x #

0 0 # 0 #

1 # 1 1 #

x 0 1 x #

The risk of an intersection output pattern is the sum of risks

of the input patterns, and the size is the product of the input

sizes. The choice of whether to do selection or intersection is

governed by the function of the element. Crudely, one can

think of selection as an OR operation and intersection as an

AND operation.

In the circuit of Fig. 1, the order of the logical elements is

XOR, OR, NAND, NOR, and AND. The first step is to select

a set and reset pattern for XOR (node I). Node I can be set to

1 if either A is set and G is reset or vice versa. These two

choices are both intersection operations, thus

Is = intersection (As, Gr) or intersection (Ar, Gs)

Similarly there are two choices for resetting I:

Ir = intersection (As, Gs) or intersection (Ar, Gr)

When faced with a choice (either during pattern

intersection or pattern selection), VICTOR chooses that

pattern with the lowest risk. In the case of a tie, the

lowest-level pattern is chosen. If the tie still exists, the choice

is arbitrary. As stated earlier, the risk of a pattern resulting

from pattern intersection is the sum of input risks. Let’s

consider the choices for setting node I. The resulting patterns

and risks are:

Is = intersection (As, Gr) = 10xx

risk (Is) = risk (As) + risk (Gr) = 1 + 8 = 9

Is = intersection (Ar, Gs) = 01xx

risk (Is) = risk (Ar) + risk (Gs) = 1 + 8 = 9

Since both patterns have the same risk and since there is no

difference in levels, the set pattern 10xx is arbitrarily chosen.

Similarly, the reset pattern choices have the same risk and

levels and 00xx is arbitrarily chosen. The size (for both set

and reset) is the product of the input sizes or size (I) = size (A)

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

104

x size (G) = 1. Thus, the {pattern, risk, size} triplet for node I

is: ITS = {10xx, 9, 1} and ITR = {00xx, 9, 1}.

As another example, let’s take node J, the output of the OR

gate, is an internal fan-out stem. Whenever a cell output is a

fan-out stem, its risk is increased by adding to the computed

risk the product of the fan-out count and the number of levels

to the furthest primary output. An OR is set if any input is set,

so that the set equation for Js is select (Hs, Cs). Selection

chooses the lowest risk input pattern, which in this case is Cs

so that Js becomes xx1x. The risk for Cs is 1, to which is added

the product of the fan-out 2 and the distance 3. The size is the

sum of the sizes of Hs and Cs. Thus JTS = {xx1x, 7, 2}.

Resetting node J requires both inputs at 0 or Jr = intersect(Hr,

Cr). The intersection Jr = x00x, risk = 9+6=15, and size =1.

The controllability triplets for the remaining logic gates are

computed similarly.

C. Observability Analysis

Once the controllability triplets are completed for all

nodes, VICTOR begins the third pass through the circuit by

computing the observability of the nodes. The term used in

VICTOR for observability is ―monitor‖ and these measures

are computed by starting at the primary outputs and working

backward through the levelized cell-list. Monitor measures

are again a triplet of pattern, risk, and size of each node. In

the example circuit of Fig. 1, monitor analysis starts with

output Z of the AND gate. An output is observable without

any primary input contraints, so the appropriate pattern for Z

is xxxx. An output has no risk and its size is 1. Hence the

monitor triplet for Z is ZTM = {xxxx, 0, 1}. The rules to derive

the input monitor triplets from output triplets are called the

monitor equations, and use the select and intersect concepts

described earlier. In the sample circuit, the AND gate has

monitor equations:

Km = intersect (Ns, Zm)

Nm = intersect (Ks, Zm)

which result in

Km = intersect (0011, xxxx) = 0011

Nm = intersect (xx1x, xxxx) = xx1x

Monitor risk and size computation generally follows the

rules described earlier. Using these rules, the monitor triplets

for K and N would be KTM = {0011, 17, 9] and NTM = {xx1x,

7, 2}. However, when a fan-out branch enters a cell,

VICTOR computes a monitor risk adder that is the product of

the fan-out and the number of levels from the fan-out stem to

the cell output. In the example, the AND gate has an input K

that is a fan-out point from stem node J. Since stem J is at

level 1 and the AND gate output is at level 4, the risk for input

K is 2x (4-1) = 6. This risk is added to the computed risk for

the other cell input, node N. Thus, the monitor triplets for

nodes K and N are:

KTM = {0011, 17, 9}

NTM = {xx1x, 13, 2}

The next cell is the NOR with monitor equations:

Im = intersect (Mr, Nm)

Mm = intersect (Ir, Nm)

resulting in the triplets

ITM = {xx11, 21, 4}

MTM = {001x, 22, 2}

The NAND gate, processed next, also has a fan-out node

as one input. The NAND monitor equations are:

Dm = intersect (Ls, Mm) = intersect (xx1x, 001x) = 001x

Lm = intersect (Ds, Mm) = intersect (xxx1, 001x) = 0011

Because L is a fan-out node, the risk adder is the product of

the fan-out and the level difference between the fan-out node

J and the cell output M, or 6 + 2 × (2-1) = 8, and is applied to

the other cell input D. Without the fan-out, the risk at D is risk

(Ls) +risk (Mm) = 29. With the adder, risk (Dm) becomes 37.

The risk at L is 23. The size of Dm is 4 and of Lm is 2. Hence

DTM= {001x, 37, 4} and LTM = {0011, 23, 2}.

Now, to calculate observability of a fan-out stem,

VICTOR first computes the set-monitor and the

reset-monitor intersections for each of its branches and then

assigns to the stem the triplet of that branch whose

set-monitor and reset-monitor patterns are both clash-free. In

the example, nodes K and L are the branches from fan-out

stem J. The set-monitor and reset-monitor intersections for K

are:

Intersect (Ks, Km) = intersect (xx1x, 0011) = 0011

and

Intersect (Kr, Km) – intersect (x00x, 0011) = 00#1

And for L are:

Intersect (Ls, Lm) = intersect (xx1x, 0011) = 0011

Intersect (Lr, Lm) = intersect (x00x, 0011) = 00#1

Note that the reset-monitor intersection for both branches

produces a clash in the third symbol. When all patterns have

clashes, VICTOR sets the fan-out stem monitor to {##...#,

99999, 0}. Hence JTM = {####, 99999, 0}. In a general

network, however, there may be several clash-free patterns,

in which case VICTOR takes the pattern that has the most

don’t cares (x). Observability of the remaining cells is

computed in a similar fashion and monitor triplets for CUT

are shown in Table IV.

TABLE IV: CUT MONITOR TRIPLETS

Node ABCD Risk Size

A x111 31 4

B 1x11 22 4

C #### 99999 0

D 001x 37 4

G 1x11 22 4

H #### 99999 0

I xx11 21 4

J #### 99999 0

K 0011 17 9

L 0011 23 2

M 001x 22 2

N xx1x 13 2

Z xxxx 0 1

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

105

D. Test Generation

The set and reset patterns are primary input values that are

sufficient to provoke a stuck-at-0 and a stuck-at-1 fault at the

node. Similarly, the monitor patterns are sufficient input

values to propagate a fault from a node to an observable

output. The intersection of the nodal control and monitor

patterns, then, can be a test for the node. Two tests are

required for each node V:

V/0 test: intersect (Vs, Vm)

V/1 test: intersect (Vr, Vm)

The set, reset, and monitor triplets from Tables I, II, and III

are intersected and, after intersection, produce V/0 and V/1

test patterns as shown in Table V.

TABLE V: CUT V/0 AND V/1 TEST PATTERNS

Node
V/0 Test V/1 Test

ABCD ABCD

A 1111 0111

B 1111 1011

C #### ####

D 0011 0010

G 1111 1011

H #### ####

I 1011 0011

J #### ####

K 0011 00#1

L 0011 00#1

M 0010 0011

N 0011 xx10

Z 0011 xxx0

Note that eight of the node fault tests contain clashes (#)

and are potential redundancies. Clashes occur in the monitor

patterns for nodes C, H, and J and carry over to the tests.

Nodes K and L are clash-free in the control and monitor

patterns, but clashes appear in the V/1 test.

V/0 and V/1 patterns in which no clashes occur are valid

test. From Table V, after test compaction, we find that there

are five test patterns which will detect 18 of the possible 26

possible nodal faults: 0010, 0011, 0111, 1011, 1111.

III. SIMULATION RESULTS

The sample combinational circuit of Fig. 1 was re-labeled

as shown in Fig. 2 so that it could be described in our

software as: 1, 5, XOR, 7, 6, 3, OR, 8, 10, 4, NAND, 11, 7,

11, NOR, 12, 9, 12, AND, 13.

Fig. 2. Circuit-Under-Test (CUT) re-labeled for simulation.

The results of simulation obtained from our software are

shown in Fig. 3 and Fig. 4 which are consistent with the

manual calculations done for CUT.

Fig. 3. VICTOR simulation results output by simulation software.

Fig. 4. VICTOR test generation results output by simulation software.

IV. CONCLUSIONS

In this paper we have presented calculated results and

simulation results obtained by running VICTOR algorithm

on a circuit-under-test using a simulation software developed

at SQU (Oman). The results are consistent and in conformity

with the calculated values.

ACKNOWLEDGMENT

The support for the work presented in this paper was

provided by Sultan Qaboos University (Oman) through

internal grant: IG/ENG/ECED/10/01.

REFERENCES

[1] Chapter 3 testability measures. (2002). [Online]. Available:

http://larc.ee.nthu.edu.tw/~cww/n/625/6250/03.pdf

[2] T. Jamil and I. Mohammed, ―Transcription of algorithms used for

fault-diagnosis of digital systems into computer programs,‖ in Proc.

IEEE Southeastcon, 2013, pp. 1-6.

[3] J. Grason, ―TMEAS—a testability measurement program,‖ in Proc.

IEEE/ACM Design Automation Conf. (DAC), 1979, pp. 156–161.

[4] L. H. Goldstein, ―Controllability/observability analysis for digital

circuits,‖ IEEE Trans. Circuits and Systems, vol. 26, no. 9, pp.

685–693, Sept. 1979.

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

106

[5] I. M. Ratiu, A. Sangiovanni-Vincentelli, and D. O. Pederson,

―VICTOR: a fast VLSI testability analysis program,‖ in Proc. Int. Test

Conf. (ITC), Philadelphia, PA, Nov. 1982, pp. 397–401.

[6] P. H. Bardell, W. H. McAnney, and J. Savir, Built-in Test for VLSI –

Pseudorandom Techniques, John Wiley and Sons, New York, 1987.

Tariq Jamil has been a faculty member in the

Department of Electrical and Computer Engineering at

Sultan Qaboos University (SQU, Oman) since 2000.

Before joining SQU, he had been a lecturer at the

University of New South Wales, Sydney (Australia)

and the University of Tasmania, Launceston

(Australia). Dr. Jamil holds a B.Sc. (Honors) degree in

electrical engineering from the NWFP University of Engineering and

Technology (Pakistan) and M.S. and Ph.D. degrees in computer engineering

from the Florida Institute of Technology (USA).

He has authored three books, holds an Australian Innovation Patent on

Complex Binary Associative Dataflow Processor, and has written about fifty

research papers in refereed international conferences and journals. He has

been a recipient of several research grants from the Australian Research

Council and SQU. His research interests are in computer arithmetic,

computer architecture, parallel processing, digital systems, and

cryptography.

On account of his outstanding academic achievements and for

contributions to activities related to the computing discipline, Dr. Jamil was

awarded the IEEE Computer Society (USA)/Upsilon Pi Epsilon Honor

Society Award for Academic Excellence (1996). He has served as a

distinguished speaker in the IEEE Computer Society (USA) Distinguished

Visitors Program (DVP) and his biography has been published in such

renowned directories as Marquis's Who's Who in the World (USA), Who's

Who in Science and Engineering (USA), and Dictionary of International

Biography (UK). He is a senior member of IEEE (USA), member of the IET

(UK), a Chartered Engineer (UK), and a registered Professional Engineer

(Pakistan).

Iftaquaruddin Mohammed is a software engineer

with a B.Sc. degree in electronics and M.Sc degree in

computer science from SMU, India. He also holds the

postgraduate diploma in computer science from

Victoria University (Australia) and is a technical staff

member in the Department of Electrical and Computer

Engineering at Sultan Qaboos University (Oman). He

has been involved in conducting digital logic design laboratory for

undergraduate students for over five years.

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

107

