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Abstract—In this paper we present a novel method, Random 

Partition based SVM (RPSVM), for speeding up SVM training. 

Instead of clustering the training data prior to training, 

RPSVM randomly partitions the training data into several 

clusters and then uses the centers of the clusters to train an 

initial SVM. This trained SVM is used to find critical clusters 

which are located on the decision boundary. The same 

procedure is applied repeatedly to each of the critical clusters, 

resulting in a refined SVM which consists of the supporting 

vectors in the initial round of training and those in the repeated 

round. This procedure is repeated recursively until no critical 

cluster exists, resulting in the final SVM. Our experiments on 

synthetic and real data sets have shown that RPSVM is indeed 

scalable to large data sets while the high performance is 

retained. 

 
Index Terms—Support vector machine, SVM training, 

classification, supervised learning. 

 

I. INTRODUCTION 

Support Vector Machine [1], [2] is a concept, deeply 

rooted in statistics, that represents
 

a set of methods for 

classification and regression analysis. In its original form, a 

support vector machine aims to find a set of support vectors 

of a hyper band separating two classes of data that has a 

maximal margin. The hyper band is then used to classify new 

data instances. Since its inception, support vector machine 

has quickly become popular and has been widely used in 

research and practice, and has spawned many variants.  

There are two kinds of main SVM training schemes to 

reduce training time on large data sets. One  is the 

optimization oriented training scheme which focuses on 

reducing time spent on the optimization process of a SVM 

training algorithm; the other is and the data oriented training 

scheme which focuses on reducing time spent on exploring 

the data by way of sampling or clustering. These two 

schemes can even be combined since they focus on different 

phases of the training process. The sampling based approach 

utilizes the strategy of random sampling to train SVM. The 

main problem is that if less support vectors existed in the 

training data, the probability that they are randomly sampled 

becomes quite lower. This would result directly in the loss of 

important information for data classification. The 

clustering-based SVM training approach would partition the 

original data set into smaller clusters using clustering 
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algorithms such as k-means and BIRCH, etc. which 

represents the original data set by the centers or their 

centroids  along with  statistical information, and then apply 

the SVM algorithm on the reduced (much smaller) data set.  

However, clustering itself is a costly operation and 

sampling may suffer from important information loss [3], [4], 

therefore there is a good reason for exploring new and better 

SVM training schemes in order to reduce the total training 

time on large data sets. In this paper we present a novel SVM 

training scheme, Random Partition based SVM (RPSVM), 

which partitions the data set randomly rather than through 

clustering. It first of all partitions the positive and negative 

data separately into d clusters each, and then uses the centers 

of the clusters as a training data set and trains an initial SVM. 

After that, it partitions the critical clusters (those that contain 

both positive and negative data instances) into d sub-clusters 

to get a finer partition of the data set and train SVM with 

centers of these sub-clusters. This process is repeated until 

there is no critical cluster, resulting in the final SVM. 

RPSVM is a hierarchical training scheme based on data 

partitioning. It can be viewed as clustering based SVM 

training approach, but quite different to the traditional ones 

which usually use a costly clustering algorithm. Therefore it 

can be expected to be much faster than the traditional 

approaches and at the same time retain the outstanding 

performance of the original SVM and the clustering based 

SVM. Therefore, we compare RPSVM with two well known 

SVM training schemes (to deal with larger dataset problem) 

-- RSSVM (Random Sampling SVM) and CBSVM 

(Clustering Based SVM).  We here use the standard SVM as 

the baseline.  

The rest of the paper is organized as follows. In Section II, 

we review related works on SVM training for dealing with 

large data sets. In Section III, we present our training scheme 

RPSVM in details. In Section IV, we present experimental 

results on synthetic data sets and real data sets along with 

discussion and analysis. Section V concludes the paper and 

discusses future work.  

 

II. RELATED WORKS 

To speed up the optimization process of SVM training, 

Joachims [5] proposed the Chunking algorithm, which is 

based the decomposition strategy [6] and addresses the 

problem of selecting the variables for the training data set in 

an effective and efficient way. SMO, proposed by Platt [7], is 

another algorithm that trains SVM efficiently which 

decomposes the overall QP problem into sub-problems and 

chooses to solve the smallest possible optimization problem 

at every step. Joachims [8] presented a Cutting Plane 

Accelerating the Training Process of Support Vector 

Machines by Random Partition 

Hongzhi Xu, Chunping Li, Li Li, and Hongyu Shi 

International Journal of Computer Theory and Engineering, Vol. 7, No. 1, February 2015

29DOI: 10.7763/IJCTE.2015.V7.925



  

algorithm which is used to train Linear SVM in a linear time 

for classification task. In [9] a fast algorithm for solving 

linear SVMs with loss function toward data mining tasks for 

large data sets was developed.  In [10] an iterative algorithm 

to solve the SVM optimization problem by alternating 

between stochastic gradient descent and projection was 

proposed.  

Parallel to the training schemes focusing on optimization 

as discussed above, it is also possible to speed up SVM 

training by applying the training algorithm on a transformed 

version of the original data set rather than on the original one. 

This scheme exploits the fact that a trained SVM centers 

around a set of support vectors defining the decision 

boundary and these vectors can be found without having to 

trawl through the complete data set. The optimization 

oriented training scheme and the data oriented training 

scheme focus on different phases of the training process so 

they can be combined one way or another, resulting in 

different training schemes. A data oriented training scheme 

can be based on sampling or clustering. Random Sampling 

[11] is perhaps the best known one of the sampling based 

approach. It works by sampling a small proportion of data to 

approximately reflect the distribution of the entire data set. 

Experiments have shown that this scheme efficiently works 

well but sometimes has poor performance because it may lose 

important information while sampling [3], [4]. Active 

learning [9] is developed to reduce the costly labeling work 

by selecting “important” data instances in the data set, and 

only requiring user to consider these important data instances 

for further labeling. Interestingly, active learning can also be 

used to accelerate the training process of SVM [12], [13]. A 

clustering-based training scheme needs a clustering 

algorithm to preprocess the training set, and a well known 

algorithm is k-means [14]. Boley et al. [15] proposed a 

scheme to accelerate SVM training using a clustering 

algorithm. Those clusters that contain only support vectors 

are retained and those that do not contain any support vector 

are ignored. Those clusters that contain both support vectors 

and non support vectors are partitioned into smaller clusters, 

which are considered recursively. The best known clustering 

based SVM training scheme is CBSVM [4], which is based 

on the clustering algorithm BIRCH [16]. It works by first 

building two hierarchical cluster feature (CF) trees for 

positive and negative classes respectively and then working 

through the two trees to find the support vectors. 

 

III. RANDOM PARTITION BASED SVM  

A. Motivation 

Support Vector Machine (SVM) is a powerful classifier 

and is widely used for various classification tasks. However, 

its training algorithm has relatively high time complexity thus 

making it difficult to use the classifier for large data sets. To 

overcome this limitation, various SVM training schemes 

have been proposed, some being optimization oriented and 

some data oriented as discussed in Section II. In data oriented 

schemes, a data set is either sampled or clustered to create 

representatives which are then used as data to train the SVM. 

This process is repeated until it cannot go anywhere or some 

condition is satisfied. The sampling based scheme may suffer 

from information loss at times while the clustering based 

scheme spends much time on clustering making the scheme 

less efficient, therefore there is a need to search for 

alternative training scheme that does not have the above 

undesirable features. 

A SVM model is represented by a set of support vectors, 

which are determined by the data near the boundary of the 

classes. We thus may hypothesize that clustering the training 

set, in order to find the support vectors, is not necessary. For 

instance, CBSVM uses BIRCH to cluster the training set to 

build CF trees, but in practice many nodes of the trees are not 

used at all during the training process. If we can 

identify/discard those data instances that are too far away 

from the support vectors, we may end up with a more 

efficient training scheme while retaining SVM’s outstanding 

performance. This section will present such a scheme called 

RPSVM or Random Partition based SVM. 

RPSVM uses a SVM training algorithm (such as SMO or 

Chunking) to find critical clusters which is crossed by margin 

and contain data instances that have a high probability to be 

the support vectors. The critical clusters are further split into 

smaller ones, and their centers are added to the training set to 

train SVM again. Since it would split the critical clusters, the 

support vectors near the boundary are likely to be found after 

several iterations. Gradually, it will converge to the optimal 

solution equivalent to that found on the entire data set. 

B. Algorithm Description 

Let D be a (large) data set with two classes, with CP being 

the class of positive instances and CN being the class of 

negative instances. RPSVM first selects d samples randomly 

from CP, and uses these d samples as seeds to partition CP 

into d subsets (or clusters) by the nearest-neighbor method. 

For each data instance p, RPSVM calculates the similarity 

between p and the center of each of the d clusters, and then 

assigns p to the cluster that has the largest similarity with p. 

The same process is repeated on CN. We denote a cluster C 

as a triple (cc, iL, r), where cc is the center of the cluster; iL is 

a list of indexes for the data instances that belong to the 

cluster; and r is the radius of the cluster. The cluster center 

and radius, cc and r, are defined as follows: 
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where |C| is the number of instances in cluster C. Critical 

clusters are support clusters, i.e. those that are crossed by the 

margin. Generally, a cluster is critical if it satisfies the 

following condition.  

sii drd                               (1)  

where di is the distance between the center of cluster Ci and 

the decision boundary, ds is the distance between the center 
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of support cluster Cs and the boundary.  

Let’s denote the decision function as bxwxf  *)( . 

Then the above condition (1) is the same as the following 

one.  

*1)( wrxfy iii                    (2) 

where {1, -1}∈iy  is the label of Ci. The proof of (2) is a 

simple geometrical problem, so we don’t state it here. The 

centers of 2 × d clusters of CP and CN are used as the initial 

training set to train an initial SVM. The critical clusters {Ci} 

are identified. 

After RPSVM finds the critical clusters, it will partition 

them into d sub-clusters respectively. In other words, 

RPSVM only uses the centers of the critical sub-clusters as 

the new training set rather than all the sub-clusters. All the 

new clusters will be maintained in a the ’CheckList’. For 

example, cluster Ci is partitioned into d sub 

clusters{Ci,1,Ci,2, ..., Ci ,d}, and only k of them{Ci,1,Ci,2, 

..., Ci, k} are critical, so the centers of the k sub-clusters are 

added to the new training set, and the (d−k) 

sub-clusters{Ci,k+1,Ci,k+2, ..., d}are not added to the new 

training set. It is just maintained in the CheckList and will be 

checked in the next iteration. Finally, RAPSVM trains SVM 

with the new training set and get a new solution. Algorithm 1 

describes the main algorithm of RAPSVM and its 

corresponding definition of functions is shown in Algorithm 

2 and Algorithm 3.  

Algorithm 1: Main Algorithm of RAPSVM 

Input: Training Set P and N; Degree d. 

Output: Decision Function f. 

Notation: 

partition(C): partition the cluster C randomly into d 

sub-clusters. 

getNewSet(model): get new training set by splitting the 

critical clusters. 

CheckList: a list to maintain all the clusters. 

Algorithm: 

CP = partition(P); CN = partition(N); 

NP CCC   

Add all clusters in C to CheckList; 

Do Loop 

model = train a new SVM with C; 

C = getNewSet(model); 

Until C is null 

Algorithm 2: Algorithm of Getting New Training Set 

in Each Iteration 

Reference: CheckList 

Function getNewSet(h) 

CNew = null; 

For each ci in CheckList 

If ci is a critical cluster then 

C’ = partition(ci); 

Delete ci from CheckList; 

Add all clusters in C’ to CheckList; 

For each c’i in C’ 

If c’i is a critical cluster then 

iNewNew cCC '  

End If 

End For 

End If 

End For 

Return CNew; 

End Function 

Algorithm 3: Algorithm of Random Partition 

Function partition(C) 

ci = null; i = 1,…, d. 

Random select d data from C as center i, i = 1,…,d. 

For each di in C 

Find j, such that di is nearest to center j; 

ijj dcc   

End For 

Return {ci}; 

End Function 

 

IV. EXPERIMENTS 

A. Environment 

In this section, we provide experimental evidence for our 

analysis for RPSVM using synthetic and real data sets. Then 

we will discuss the experimental results and give an 

explanation for them. All of our experiments are done on a 

computer with Xeon 2.66GHZ CPU and 2.0GB memory. 

Since we mentioned that the algorithms that deal with the 

optimization problem are of different level to the clustering 

based algorithms, and the two methodologies can be com-

bined, here, we mainly compare four different algorithms: 

standard SVM, RSSVM, CBSVM and RPSVM.  

The standard SVM is referred to LibSVM [17] here. The 

algorithms RSSVM, RPSVM and CBSVM are implemented 

based on it. We mainly use the default parameters of 

LibSVM. Since determined by the character of BIRCH that a 

fixed order of data will generate the same CF trees, we give 

CBSVM a random input order of the training data to evaluate 

the stability of performance of CBSVM. Also, in our 

experiments, we neglect the time cost by CBSVM for tuning 

the parameter t(rebuilding the trees) automatically, and just 

give a fixed value as suggested in [4]. All the experiments in 

this section give the average value of ten running results and 

also the overall accuracy.  

B. Datasets 

Synthetic Data Sets: We use a data generator to generate 

2-dimension data(x, y) for some visual comparison and 

analysis. Without losing generalization, we first fix the 

decision function to be y = x. The generator has 5 parameters: 

cn, N, δmax, δmin, margin. cn is the total number of cluster 

that will be generated, and all the data in one cluster are 

generated by a non-standard Gaussian distribution, with the 

cluster center as the expectation and δ as the standard 

variance. In our experiments all the data values are in the 

interval (0.0, 1.0), i.e. 0 <x< 1 and 0 <y< 1. N is sample size. 

δmax is maximal value of δ, and δmin is minimal value of δ. 

The value of δ is randomly chosen from (δmin, δmax). 

margin is the nearest distance from the data point in positive 

and negative classes to the decision hyper-plane, e.g. y = x. 
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The generation is involved two main steps as follows. The 

first step is to generate cluster centers, and the second step is 

to generate data points around these cluster centers.  

The generator first randomly selects cn points as the 

cluster centers, if the distance between the center and y = x is 

less than margin, the generator will regenerate a new point as 

the new cluster center. Then it assigns a random δ to each 

cluster respectively. If the cluster center point (xi,yi) is 

beyond the y = x, that is yi >xi, the cluster will be labeled as 

positive, and if yi <xi, the cluster will be labeled as negative.  

Then, the generator begins to generate N data points. It 

first randomly selects one center ci from the cn clusters, and 

then generates a new data point through a non-standard 

Gaussian distribution with expectation ci and standard 

variance δi, finally the data is labeled the same as ci. The 

process repeats until all of N data are generated.  

We use this data generator to generate a data set of size 

400000 and a test set of size 10000, denoted by data set 

’SYN-1’ and generate a data set of size 5000000 and a test set 

of size 10000, denoted by data set ’SYN-3’. Similarly, we 

change the decision function to be y = sin(x) to generate 

nonlinear separable data sets. We use this generator to 

produce a data set of size 400000, and a test set of size 10000, 

denoted by data set ’SYN-2’ and a larger nonlinear data set of 

size 5000000 and a test set of size 10000, denoted by 

’SYN-4’.. 
Real Data Sets Besides synthetic data sets, we also use a 

large real data set, the UCI Archive used by KDD Cup 1999 

(http://kdd.ics.uci.edu/databases/kddcup99.html). This data 

set consists of about five millions of training data and three 

hundred thousands of testing data. Each data object consists 

of 41 features. We normalized the continuous feature values 

into between zero and one as follows. 

ValVal

Valval
Valnorm

minmax

min




  

where Valnorm is the normalized value; val is the original 

value; maxVal is the maximum value of the attribute in the 

data set and minVal is the minimum value of the attribute in 

the data set. In order to fit the all training set in memory we 

only randomly select 50% of the its original training set, 

which consists of about 2449215 data, test set of 311029 

data. We denote this data set by ’NWI’.  

C. Experiment and Results 

We conduct an experiment on SYN-1 and SYN-2, two 

relatively small data sets, to compare the performance of 

standard SVM, CBSVM and RPSVM in terms of running 

time and accuracy. We set d =4 for RPSVM, and d = 100 and 

t =0.01 for CBSVM on SYN-1 and set 4 referential data to 

generate artificial data for all nonlinear experiments and use 

RBF kernel on SYN-2. The experimental result is shown in 

Table I, where Sampl is the sampling time and here the 

clustering time for CBSVM and the partition time for 

RPSVM; Train is the training time and Total is the sum of 

Sampl and Train. Accu is the accuracy. We can see that, 

RPSVM and CBSVM are both faster than standard SVM, 

while RPSVM is much faster. All the algorithms get a high 

accuracy, though CBSVM shows a slight difference. This is 

mainly because of that the data set is almost evenly 

distributed in the input space and it is easy to separate. Our 

principal purpose is to compare the running time of different 

algorithms, however, the result also show that RPSVM can 

guarantee the accuracy while significantly reducing the 

running time.  

 
TABLE I: EXPERIMENTAL RESULTS ON SYN-1 AND SYN-2 

DATASET ALGORITHM SAMPL. TRAIN. TOTAL ACCU. 

 SVM  48.156 48.156 0.9953 

SYN-1 CBSVM 16.554 0.056 16.610 0.9932 

   RAPSVM 1.378 0.320 1.698 0.9953 

 SVM  38.578 38.578 0.9999 

SYN-2 CBSVM 17.987 0.056 18.043 0.9996 

 RAPSVM 2.367 0.251 2.618 0.9999 

 

Fig. 1 and Fig. 2 display the data used in the whole training 

process of RSSVM, CBSVM and RPSVM. Fig. 1 is on the 

data set SYN-1 and Fig. 2 is on the data set SYN-2. We could 

see that RSSVM loses important data near the bound of each 

class, while CBSVM and RPSVM both have a bias to select 

more data near the decision boundary. 

 

 
Fig. 1. The display of the data used in the training process on SYN-1. 

 

 
Fig. 2. The display of the data used in the training process on SYN-2. 

 
TABLE II: EXPERIMENTAL RESULTS ON SYNTHETIC DATA SET SYN-3 AND 

REAL DATA SET NWI WITH LINEAR KERNEL 

DateSet Algorithm Sampl. Train. Total. Accu. 

 RSSVM(0.5%) 0.032 1.990 2.023 0.9991 

 RSSVM(1.0%) 0.129 18.181 18.310 0.9992 

SYN-3 RSSVM(5.0%) 0.237 45.923 46.160 0.9992 

 CBSVM 142.771 0.062 142.834 0.9991 

 RPSVM 13.375 0.380 13.755 0.9990 

 RSSVM(0.5%) 0.018 1.125 1.143 0.9121 

 RSSVM(1.0%) 0.028 3.562 3.590 0.9190 

NWI RSSVM(5.0%) 0.059 58.200 58.259 0.9198 

 CBSVM 529.715 17.006 546.721 0.8413 

 RPSVM 24.253 77.653 101.906 0.9192 

 

We do our second experiments to mainly evaluate the 

linear algorithm that we proposed and compare it to RSSVM, 

CBSVM on SYN-3 and NWI. We didn’t consider the 

standard SVM here, because the time and space complexity 

of standard SVM has made it impossible to run on a very 

large data set. We tried to run standard SVM on 40% of 

SYN-3 data set and it had run out of our available memory. In 

this experiment, we have sample 0.5%, 1% and 5% for 

RSSVM on both data sets, and here we have selected best 

results in several random sampling trials respectively. The 
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experimental result is shown in Table II. We can see that 

RPSVM is always faster than CBSVM and sometimes faster 

than RSSVM. All the algorithms get high precision, except 

that CBSVM perform poor on NWI data set. This is because 

some importance data may have been compressed by 

clustering. RSSVM shows a high accuracy on these two data 

sets, because the sampling data just meets with the 

distribution of the training data set, namely, most support 

vectors are still selected during the sampling.  

Our third experiment is done on SYN-4 and NWI and we 

use RBF kernel to testify our algorithm to deal with nonlinear 

cases. We present the result for RBF kernel shown in Table 

III, and for RSSVM on both data sets, sample is still 

proportional to 0.5%, 1% and 5% respectively. It shows a 

similar result as our second experiment, except that RSSVM 

got a lower precision on NWI data set, which means that 

RSSVM is not a reliable algorithm like shown in [3] and the 

performance of RSSVM depends on the distribution of the 

data set. Similar problem also exists for CBSVM, since it 

doesn’t have a tendency to keep important data near the 

boundary uncompressed during building the CF trees. 

RPSVM partitions the critical clusters until it is a single data 

point, so the importance data near the boundary will not be 

lost.  

 
TABLE III: EXPERIMENTAL RESULTS ON SYNTHETIC DATA SET SYN-4 AND 

REAL DATA SET NWI WITH RBF KERNEL 

DateSet Algorithm Sampl. Train. Total. Accu. 

 RSSVM(0.5%) 0.023 0.700 0.723 0.9995 

 RSSVM(1.0%) 0.039 1.832 1.871 0.9996 

SYN-3 RSSVM(5.0%) 0.125 15.834 15.959 0.9997 

 CBSVM 145.237 0.034 145.271 0.9995 

 RPSVM 15.767 0.185 15.953 0.9999 

 RSSVM(0.5%) 0.012 0.970 0.982 0.8873 

 RSSVM(1.0%) 0.020 2.965 2.985 0.9124 

NWI RSSVM(5.0%) 0.059 48.734 45.793 0.9185 

 CBSVM 550.470 23.455 573.925 0.9202 

 RPSVM 148.462 29.895 178.357 0.9240 

 

V. CONCLUSION 

In this paper we present a novel SVM training scheme, 

RPSVM. It adopts the idea of gradually refining critical 

clusters found in every iteration, and doesn’t use any 

clustering algorithms to preprocess the training set to get 

meaningful clusters for reflecting the original data 

distribution, which degrades the time complexity. We give 

the theoretical analysis which concludes that RPSVM has a 

linear time complexity on a large data set and further validate 

it with experiments. The other advancement is that RPSVM 

avoids important information loss occurred probably in the 

approach of random sampling SVM during data compression 

or reduction and guarantee the classification accuracy.  
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