



Abstract—In this paper we present a novel method, Random

Partition based SVM (RPSVM), for speeding up SVM training.

Instead of clustering the training data prior to training,

RPSVM randomly partitions the training data into several

clusters and then uses the centers of the clusters to train an

initial SVM. This trained SVM is used to find critical clusters

which are located on the decision boundary. The same

procedure is applied repeatedly to each of the critical clusters,

resulting in a refined SVM which consists of the supporting

vectors in the initial round of training and those in the repeated

round. This procedure is repeated recursively until no critical

cluster exists, resulting in the final SVM. Our experiments on

synthetic and real data sets have shown that RPSVM is indeed

scalable to large data sets while the high performance is

retained.

Index Terms—Support vector machine, SVM training,

classification, supervised learning.

I. INTRODUCTION

Support Vector Machine [1], [2] is a concept, deeply

rooted in statistics, that represents

a set of methods for

classification and regression analysis. In its original form, a

support vector machine aims to find a set of support vectors

of a hyper band separating two classes of data that has a

maximal margin. The hyper band is then used to classify new

data instances. Since its inception, support vector machine

has quickly become popular and has been widely used in

research and practice, and has spawned many variants.

There are two kinds of main SVM training schemes to

reduce training time on large data sets. One is the

optimization oriented training scheme which focuses on

reducing time spent on the optimization process of a SVM

training algorithm; the other is and the data oriented training

scheme which focuses on reducing time spent on exploring

the data by way of sampling or clustering. These two

schemes can even be combined since they focus on different

phases of the training process. The sampling based approach

utilizes the strategy of random sampling to train SVM. The

main problem is that if less support vectors existed in the

training data, the probability that they are randomly sampled

becomes quite lower. This would result directly in the loss of

important information for data classification. The

clustering-based SVM training approach would partition the

original data set into smaller clusters using clustering

Manuscript received January 10, 2014; revised April 18, 2014.

Hongzhi Xu and Chunping Li are with School of Software, Tsinghua

University, Beijing, China (e-mail: cli@ tsinghua.edu.cn).

Li Li and Hongyu Shi are with the Shannon Lab, HUAWEI Technologies

CO.LTD, Beijing, China (e-mail: jollylili.li@huawei.com).

algorithms such as k-means and BIRCH, etc. which

represents the original data set by the centers or their

centroids along with statistical information, and then apply

the SVM algorithm on the reduced (much smaller) data set.

However, clustering itself is a costly operation and

sampling may suffer from important information loss [3], [4],

therefore there is a good reason for exploring new and better

SVM training schemes in order to reduce the total training

time on large data sets. In this paper we present a novel SVM

training scheme, Random Partition based SVM (RPSVM),

which partitions the data set randomly rather than through

clustering. It first of all partitions the positive and negative

data separately into d clusters each, and then uses the centers

of the clusters as a training data set and trains an initial SVM.

After that, it partitions the critical clusters (those that contain

both positive and negative data instances) into d sub-clusters

to get a finer partition of the data set and train SVM with

centers of these sub-clusters. This process is repeated until

there is no critical cluster, resulting in the final SVM.

RPSVM is a hierarchical training scheme based on data

partitioning. It can be viewed as clustering based SVM

training approach, but quite different to the traditional ones

which usually use a costly clustering algorithm. Therefore it

can be expected to be much faster than the traditional

approaches and at the same time retain the outstanding

performance of the original SVM and the clustering based

SVM. Therefore, we compare RPSVM with two well known

SVM training schemes (to deal with larger dataset problem)

-- RSSVM (Random Sampling SVM) and CBSVM

(Clustering Based SVM). We here use the standard SVM as

the baseline.

The rest of the paper is organized as follows. In Section II,

we review related works on SVM training for dealing with

large data sets. In Section III, we present our training scheme

RPSVM in details. In Section IV, we present experimental

results on synthetic data sets and real data sets along with

discussion and analysis. Section V concludes the paper and

discusses future work.

II. RELATED WORKS

To speed up the optimization process of SVM training,

Joachims [5] proposed the Chunking algorithm, which is

based the decomposition strategy [6] and addresses the

problem of selecting the variables for the training data set in

an effective and efficient way. SMO, proposed by Platt [7], is

another algorithm that trains SVM efficiently which

decomposes the overall QP problem into sub-problems and

chooses to solve the smallest possible optimization problem

at every step. Joachims [8] presented a Cutting Plane

Accelerating the Training Process of Support Vector

Machines by Random Partition

Hongzhi Xu, Chunping Li, Li Li, and Hongyu Shi

International Journal of Computer Theory and Engineering, Vol. 7, No. 1, February 2015

29DOI: 10.7763/IJCTE.2015.V7.925

algorithm which is used to train Linear SVM in a linear time

for classification task. In [9] a fast algorithm for solving

linear SVMs with loss function toward data mining tasks for

large data sets was developed. In [10] an iterative algorithm

to solve the SVM optimization problem by alternating

between stochastic gradient descent and projection was

proposed.

Parallel to the training schemes focusing on optimization

as discussed above, it is also possible to speed up SVM

training by applying the training algorithm on a transformed

version of the original data set rather than on the original one.

This scheme exploits the fact that a trained SVM centers

around a set of support vectors defining the decision

boundary and these vectors can be found without having to

trawl through the complete data set. The optimization

oriented training scheme and the data oriented training

scheme focus on different phases of the training process so

they can be combined one way or another, resulting in

different training schemes. A data oriented training scheme

can be based on sampling or clustering. Random Sampling

[11] is perhaps the best known one of the sampling based

approach. It works by sampling a small proportion of data to

approximately reflect the distribution of the entire data set.

Experiments have shown that this scheme efficiently works

well but sometimes has poor performance because it may lose

important information while sampling [3], [4]. Active

learning [9] is developed to reduce the costly labeling work

by selecting “important” data instances in the data set, and

only requiring user to consider these important data instances

for further labeling. Interestingly, active learning can also be

used to accelerate the training process of SVM [12], [13]. A

clustering-based training scheme needs a clustering

algorithm to preprocess the training set, and a well known

algorithm is k-means [14]. Boley et al. [15] proposed a

scheme to accelerate SVM training using a clustering

algorithm. Those clusters that contain only support vectors

are retained and those that do not contain any support vector

are ignored. Those clusters that contain both support vectors

and non support vectors are partitioned into smaller clusters,

which are considered recursively. The best known clustering

based SVM training scheme is CBSVM [4], which is based

on the clustering algorithm BIRCH [16]. It works by first

building two hierarchical cluster feature (CF) trees for

positive and negative classes respectively and then working

through the two trees to find the support vectors.

III. RANDOM PARTITION BASED SVM

A. Motivation

Support Vector Machine (SVM) is a powerful classifier

and is widely used for various classification tasks. However,

its training algorithm has relatively high time complexity thus

making it difficult to use the classifier for large data sets. To

overcome this limitation, various SVM training schemes

have been proposed, some being optimization oriented and

some data oriented as discussed in Section II. In data oriented

schemes, a data set is either sampled or clustered to create

representatives which are then used as data to train the SVM.

This process is repeated until it cannot go anywhere or some

condition is satisfied. The sampling based scheme may suffer

from information loss at times while the clustering based

scheme spends much time on clustering making the scheme

less efficient, therefore there is a need to search for

alternative training scheme that does not have the above

undesirable features.

A SVM model is represented by a set of support vectors,

which are determined by the data near the boundary of the

classes. We thus may hypothesize that clustering the training

set, in order to find the support vectors, is not necessary. For

instance, CBSVM uses BIRCH to cluster the training set to

build CF trees, but in practice many nodes of the trees are not

used at all during the training process. If we can

identify/discard those data instances that are too far away

from the support vectors, we may end up with a more

efficient training scheme while retaining SVM’s outstanding

performance. This section will present such a scheme called

RPSVM or Random Partition based SVM.

RPSVM uses a SVM training algorithm (such as SMO or

Chunking) to find critical clusters which is crossed by margin

and contain data instances that have a high probability to be

the support vectors. The critical clusters are further split into

smaller ones, and their centers are added to the training set to

train SVM again. Since it would split the critical clusters, the

support vectors near the boundary are likely to be found after

several iterations. Gradually, it will converge to the optimal

solution equivalent to that found on the entire data set.

B. Algorithm Description

Let D be a (large) data set with two classes, with CP being

the class of positive instances and CN being the class of

negative instances. RPSVM first selects d samples randomly

from CP, and uses these d samples as seeds to partition CP

into d subsets (or clusters) by the nearest-neighbor method.

For each data instance p, RPSVM calculates the similarity

between p and the center of each of the d clusters, and then

assigns p to the cluster that has the largest similarity with p.

The same process is repeated on CN. We denote a cluster C

as a triple (cc, iL, r), where cc is the center of the cluster; iL is

a list of indexes for the data instances that belong to the

cluster; and r is the radius of the cluster. The cluster center

and radius, cc and r, are defined as follows:

C

x
cc

C

i i  1

2

1
2

1)(
C

ccx
r

C

i i 




where |C| is the number of instances in cluster C. Critical

clusters are support clusters, i.e. those that are crossed by the

margin. Generally, a cluster is critical if it satisfies the

following condition.

sii drd  (1)

where di is the distance between the center of cluster Ci and

the decision boundary, ds is the distance between the center

International Journal of Computer Theory and Engineering, Vol. 7, No. 1, February 2015

30

of support cluster Cs and the boundary.

Let’s denote the decision function as bxwxf  *)(.

Then the above condition (1) is the same as the following

one.

*1)(wrxfy iii  (2)

where {1, -1}∈iy is the label of Ci. The proof of (2) is a

simple geometrical problem, so we don’t state it here. The

centers of 2 × d clusters of CP and CN are used as the initial

training set to train an initial SVM. The critical clusters {Ci}

are identified.

After RPSVM finds the critical clusters, it will partition

them into d sub-clusters respectively. In other words,

RPSVM only uses the centers of the critical sub-clusters as

the new training set rather than all the sub-clusters. All the

new clusters will be maintained in a the ’CheckList’. For

example, cluster Ci is partitioned into d sub

clusters{Ci,1,Ci,2, ..., Ci ,d}, and only k of them{Ci,1,Ci,2,

..., Ci, k} are critical, so the centers of the k sub-clusters are

added to the new training set, and the (d−k)

sub-clusters{Ci,k+1,Ci,k+2, ..., d}are not added to the new

training set. It is just maintained in the CheckList and will be

checked in the next iteration. Finally, RAPSVM trains SVM

with the new training set and get a new solution. Algorithm 1

describes the main algorithm of RAPSVM and its

corresponding definition of functions is shown in Algorithm

2 and Algorithm 3.

Algorithm 1: Main Algorithm of RAPSVM

Input: Training Set P and N; Degree d.

Output: Decision Function f.

Notation:

partition(C): partition the cluster C randomly into d

sub-clusters.

getNewSet(model): get new training set by splitting the

critical clusters.

CheckList: a list to maintain all the clusters.

Algorithm:

CP = partition(P); CN = partition(N);

NP CCC 

Add all clusters in C to CheckList;

Do Loop

model = train a new SVM with C;

C = getNewSet(model);

Until C is null

Algorithm 2: Algorithm of Getting New Training Set

in Each Iteration

Reference: CheckList

Function getNewSet(h)

CNew = null;

For each ci in CheckList

If ci is a critical cluster then

C’ = partition(ci);

Delete ci from CheckList;

Add all clusters in C’ to CheckList;

For each c’i in C’

If c’i is a critical cluster then

iNewNew cCC '

End If

End For

End If

End For

Return CNew;

End Function

Algorithm 3: Algorithm of Random Partition

Function partition(C)

ci = null; i = 1,…, d.

Random select d data from C as center i, i = 1,…,d.

For each di in C

Find j, such that di is nearest to center j;

ijj dcc 

End For

Return {ci};

End Function

IV. EXPERIMENTS

A. Environment

In this section, we provide experimental evidence for our

analysis for RPSVM using synthetic and real data sets. Then

we will discuss the experimental results and give an

explanation for them. All of our experiments are done on a

computer with Xeon 2.66GHZ CPU and 2.0GB memory.

Since we mentioned that the algorithms that deal with the

optimization problem are of different level to the clustering

based algorithms, and the two methodologies can be com-

bined, here, we mainly compare four different algorithms:

standard SVM, RSSVM, CBSVM and RPSVM.

The standard SVM is referred to LibSVM [17] here. The

algorithms RSSVM, RPSVM and CBSVM are implemented

based on it. We mainly use the default parameters of

LibSVM. Since determined by the character of BIRCH that a

fixed order of data will generate the same CF trees, we give

CBSVM a random input order of the training data to evaluate

the stability of performance of CBSVM. Also, in our

experiments, we neglect the time cost by CBSVM for tuning

the parameter t(rebuilding the trees) automatically, and just

give a fixed value as suggested in [4]. All the experiments in

this section give the average value of ten running results and

also the overall accuracy.

B. Datasets

Synthetic Data Sets: We use a data generator to generate

2-dimension data(x, y) for some visual comparison and

analysis. Without losing generalization, we first fix the

decision function to be y = x. The generator has 5 parameters:

cn, N, δmax, δmin, margin. cn is the total number of cluster

that will be generated, and all the data in one cluster are

generated by a non-standard Gaussian distribution, with the

cluster center as the expectation and δ as the standard

variance. In our experiments all the data values are in the

interval (0.0, 1.0), i.e. 0 <x< 1 and 0 <y< 1. N is sample size.

δmax is maximal value of δ, and δmin is minimal value of δ.

The value of δ is randomly chosen from (δmin, δmax).

margin is the nearest distance from the data point in positive

and negative classes to the decision hyper-plane, e.g. y = x.

International Journal of Computer Theory and Engineering, Vol. 7, No. 1, February 2015

31

The generation is involved two main steps as follows. The

first step is to generate cluster centers, and the second step is

to generate data points around these cluster centers.

The generator first randomly selects cn points as the

cluster centers, if the distance between the center and y = x is

less than margin, the generator will regenerate a new point as

the new cluster center. Then it assigns a random δ to each

cluster respectively. If the cluster center point (xi,yi) is

beyond the y = x, that is yi >xi, the cluster will be labeled as

positive, and if yi <xi, the cluster will be labeled as negative.

Then, the generator begins to generate N data points. It

first randomly selects one center ci from the cn clusters, and

then generates a new data point through a non-standard

Gaussian distribution with expectation ci and standard

variance δi, finally the data is labeled the same as ci. The

process repeats until all of N data are generated.

We use this data generator to generate a data set of size

400000 and a test set of size 10000, denoted by data set

’SYN-1’ and generate a data set of size 5000000 and a test set

of size 10000, denoted by data set ’SYN-3’. Similarly, we

change the decision function to be y = sin(x) to generate

nonlinear separable data sets. We use this generator to

produce a data set of size 400000, and a test set of size 10000,

denoted by data set ’SYN-2’ and a larger nonlinear data set of

size 5000000 and a test set of size 10000, denoted by

’SYN-4’..
Real Data Sets Besides synthetic data sets, we also use a

large real data set, the UCI Archive used by KDD Cup 1999

(http://kdd.ics.uci.edu/databases/kddcup99.html). This data

set consists of about five millions of training data and three

hundred thousands of testing data. Each data object consists

of 41 features. We normalized the continuous feature values

into between zero and one as follows.

ValVal

Valval
Valnorm

minmax

min






where Valnorm is the normalized value; val is the original

value; maxVal is the maximum value of the attribute in the

data set and minVal is the minimum value of the attribute in

the data set. In order to fit the all training set in memory we

only randomly select 50% of the its original training set,

which consists of about 2449215 data, test set of 311029

data. We denote this data set by ’NWI’.

C. Experiment and Results

We conduct an experiment on SYN-1 and SYN-2, two

relatively small data sets, to compare the performance of

standard SVM, CBSVM and RPSVM in terms of running

time and accuracy. We set d =4 for RPSVM, and d = 100 and

t =0.01 for CBSVM on SYN-1 and set 4 referential data to

generate artificial data for all nonlinear experiments and use

RBF kernel on SYN-2. The experimental result is shown in

Table I, where Sampl is the sampling time and here the

clustering time for CBSVM and the partition time for

RPSVM; Train is the training time and Total is the sum of

Sampl and Train. Accu is the accuracy. We can see that,

RPSVM and CBSVM are both faster than standard SVM,

while RPSVM is much faster. All the algorithms get a high

accuracy, though CBSVM shows a slight difference. This is

mainly because of that the data set is almost evenly

distributed in the input space and it is easy to separate. Our

principal purpose is to compare the running time of different

algorithms, however, the result also show that RPSVM can

guarantee the accuracy while significantly reducing the

running time.

TABLE I: EXPERIMENTAL RESULTS ON SYN-1 AND SYN-2

DATASET ALGORITHM SAMPL. TRAIN. TOTAL ACCU.

 SVM 48.156 48.156 0.9953

SYN-1 CBSVM 16.554 0.056 16.610 0.9932

 RAPSVM 1.378 0.320 1.698 0.9953

 SVM 38.578 38.578 0.9999

SYN-2 CBSVM 17.987 0.056 18.043 0.9996

 RAPSVM 2.367 0.251 2.618 0.9999

Fig. 1 and Fig. 2 display the data used in the whole training

process of RSSVM, CBSVM and RPSVM. Fig. 1 is on the

data set SYN-1 and Fig. 2 is on the data set SYN-2. We could

see that RSSVM loses important data near the bound of each

class, while CBSVM and RPSVM both have a bias to select

more data near the decision boundary.

Fig. 1. The display of the data used in the training process on SYN-1.

Fig. 2. The display of the data used in the training process on SYN-2.

TABLE II: EXPERIMENTAL RESULTS ON SYNTHETIC DATA SET SYN-3 AND

REAL DATA SET NWI WITH LINEAR KERNEL

DateSet Algorithm Sampl. Train. Total. Accu.

 RSSVM(0.5%) 0.032 1.990 2.023 0.9991

 RSSVM(1.0%) 0.129 18.181 18.310 0.9992

SYN-3 RSSVM(5.0%) 0.237 45.923 46.160 0.9992

 CBSVM 142.771 0.062 142.834 0.9991

 RPSVM 13.375 0.380 13.755 0.9990

 RSSVM(0.5%) 0.018 1.125 1.143 0.9121

 RSSVM(1.0%) 0.028 3.562 3.590 0.9190

NWI RSSVM(5.0%) 0.059 58.200 58.259 0.9198

 CBSVM 529.715 17.006 546.721 0.8413

 RPSVM 24.253 77.653 101.906 0.9192

We do our second experiments to mainly evaluate the

linear algorithm that we proposed and compare it to RSSVM,

CBSVM on SYN-3 and NWI. We didn’t consider the

standard SVM here, because the time and space complexity

of standard SVM has made it impossible to run on a very

large data set. We tried to run standard SVM on 40% of

SYN-3 data set and it had run out of our available memory. In

this experiment, we have sample 0.5%, 1% and 5% for

RSSVM on both data sets, and here we have selected best

results in several random sampling trials respectively. The

International Journal of Computer Theory and Engineering, Vol. 7, No. 1, February 2015

32

experimental result is shown in Table II. We can see that

RPSVM is always faster than CBSVM and sometimes faster

than RSSVM. All the algorithms get high precision, except

that CBSVM perform poor on NWI data set. This is because

some importance data may have been compressed by

clustering. RSSVM shows a high accuracy on these two data

sets, because the sampling data just meets with the

distribution of the training data set, namely, most support

vectors are still selected during the sampling.

Our third experiment is done on SYN-4 and NWI and we

use RBF kernel to testify our algorithm to deal with nonlinear

cases. We present the result for RBF kernel shown in Table

III, and for RSSVM on both data sets, sample is still

proportional to 0.5%, 1% and 5% respectively. It shows a

similar result as our second experiment, except that RSSVM

got a lower precision on NWI data set, which means that

RSSVM is not a reliable algorithm like shown in [3] and the

performance of RSSVM depends on the distribution of the

data set. Similar problem also exists for CBSVM, since it

doesn’t have a tendency to keep important data near the

boundary uncompressed during building the CF trees.

RPSVM partitions the critical clusters until it is a single data

point, so the importance data near the boundary will not be

lost.

TABLE III: EXPERIMENTAL RESULTS ON SYNTHETIC DATA SET SYN-4 AND

REAL DATA SET NWI WITH RBF KERNEL

DateSet Algorithm Sampl. Train. Total. Accu.

 RSSVM(0.5%) 0.023 0.700 0.723 0.9995

 RSSVM(1.0%) 0.039 1.832 1.871 0.9996

SYN-3 RSSVM(5.0%) 0.125 15.834 15.959 0.9997

 CBSVM 145.237 0.034 145.271 0.9995

 RPSVM 15.767 0.185 15.953 0.9999

 RSSVM(0.5%) 0.012 0.970 0.982 0.8873

 RSSVM(1.0%) 0.020 2.965 2.985 0.9124

NWI RSSVM(5.0%) 0.059 48.734 45.793 0.9185

 CBSVM 550.470 23.455 573.925 0.9202

 RPSVM 148.462 29.895 178.357 0.9240

V. CONCLUSION

In this paper we present a novel SVM training scheme,

RPSVM. It adopts the idea of gradually refining critical

clusters found in every iteration, and doesn’t use any

clustering algorithms to preprocess the training set to get

meaningful clusters for reflecting the original data

distribution, which degrades the time complexity. We give

the theoretical analysis which concludes that RPSVM has a

linear time complexity on a large data set and further validate

it with experiments. The other advancement is that RPSVM

avoids important information loss occurred probably in the

approach of random sampling SVM during data compression

or reduction and guarantee the classification accuracy.

REFERENCES

[1] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for

optimal margin classifiers,” in Proc. 5th Annual Workshop on

Computational Learning Theory, Pittsburgh, ACM, 1992, pp. 144-152.

[2] V. N. Vapnik, Statistical Learning Theory, John Wiley and Sons, 1998.

[3] J. Wang, P. Neskovic, and L. N. Cooper, “Training data selection for

support vector machines,” in Proc. International Conference on Neural

Computation, 2006.

[4] H. Yu, J. Yang, and J. Han, “Classifying large data sets using SVM

with hierarchical clusters,” in Proc. 9th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2003.

[5] T. Joachims, “Making large-scale support vector machine learning

practical,” Advances in Kernel Methods: Support Vector Learning,

MIT Press, 1999.

[6] E. Osuna, R. Freund, and F. Girosi, “An improved training algorithm

for support vector machines,” in Proc. IEEE NNSP, 1997.

[7] J. C. Platt, “Fast training of support vector machines using sequential

minimal optimization,” Advances in Kernel Methods: Support Vector

Learning, MIT Press, 1999.

[8] T. Joachims, “Training linear SVMs in linear time,” in Proc. 12th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, 2006.

[9] G. Schohn and D. Cohn, “Less is more: active learning with support

vector machines,” in Proc. 17th International Conference on Machine

Learning, 2000.

[10] S. Shwartz, Y. Singer, and N. Srebro, “Pegasos: Primal Estimated

sub-GrAdient SOlver for SVM,” in Proc. 24th International

Conference on Machine Learning, 2007.

[11] J. L. Balczar, Y. Dai, and O. Watanabe, “Watanabe, a random sampling

technique for training support vector machines,” in Proc. 13th

International Conference on Algorithmic Learning Theory, 2001.

[12] S. Ong and D. Koller, “Support vector machine active learning with

applications to text classification,” in Proc. 17th International

Conference on Machine Learning, 2000.

[13] R. Koggalage and S. Halgamuge, “Reducing the number of training

samples for fast support vector machine classification,” Neural

Information Processing, Letters and Reviews, 2004.

[14] M. B. Almeida and A. P. Braga, “SVM-KM: Speeding SVMs learning

with a priori Cluster Selection and k-Means,” in Proc. Neural Networks

2000, 6th Brazilian Symposium, pp. 162-167, 2000.

[15] D. Boley and D. Caoy, “Training support vector machine using

adaptive clustering,” in Proc. SIAM International Conference on Data

Mining, 2004.

[16] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: an efficient data

clustering method for very large databases,” in Proc. ACM SIGMOD

International Conference on Management of Data, 1996.

[17] C. C. Chang and C. Lin. LIBSVM: a library for support vector

machines. [Online]. Available: http://www.csie.ntu.edu.tw/

cjlin/libsvm

Hongzhi Xu received the BSc degree in computer

science from Chengdu Polytechnic University, China, in

2004 and the MSc degree in software engineering from

Tsinghua University, China in 2008. He worked at NEC

Institute in Beijing as a software engineer from 2008 to

2011. He is currently a PhD candidate in the Hong Kong

Polytechnic University. His research interests include

machine learning, data mining and natural language

processing.

Chunping Li received the BS and MSC degrees in

computer science from Jilin University, China in 1985

and 1988, and the PhD degree from Darmstadt

University of Technology, Germany in 1999. He is

currently an associate professor in Tsinghua University,

China. His research interests include machine learning

and automated reasoning, data analysis and mining. He

has published more than 80 research papers in related

fields.

Hongyu Shi received his BSc and MSc degree in

computer science from Harbin Institute of Technology,

China in 2010 and 2013, respectively. Now he is a

research engineer of Central Research Institute's Shannon

Lab, Huawei Technologies Co., Ltd. His research

interests lie in context-aware computing, mobile data

mining and human-computer interface.

Li Li received her BSc and MSc degrees in School of

Information and Communication Engineering, from

Beijing University of Posts and Telecommunications,

China, in 2008 and 2011 respectively. Now she is a

research engineer of Central Research Institute's Shannon

Lab, Huawei Technologies Co., Ltd. Her research

interests lie in context-aware computing, mobile data

mining and human-computer interface.

International Journal of Computer Theory and Engineering, Vol. 7, No. 1, February 2015

33

