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Abstract—The convex layers of a given point set can be 

computed by iterative process of finding convex hull after 

discarding the points of already computed convex hull. 

Computation of convex layers has been widely studied in the 

static environment where the point set are fixed. In this paper, 

we propose an idea to compute set of convex layers in dynamic 

context. There exists an optimal time algorithm to solve the 

static version of the problem in 𝐎(𝒏 𝐥𝐨𝐠𝒏) time. However, to 

solve dynamic version of the problem the suggested algorithm 

requires O(𝒏𝟐) time for a set of 𝐧 points.  

 
Index Terms—Computational geometry, convex hull, convex 

layers, incremental algorithm, tangent. 

 

I. INTRODUCTION 

The set of convex layers (or simply convex layers) can be 

computed by an iterative process of computing convex hull, 

after discarding points of already computed convex hull. It is 

one of the widely studied computational geometry problem, 

because of its wide area of applications. The convex layers 

can be applied to design a robust estimator [1]. Tukey [2] 

suggested a procedure called “peeling”, for eliminating 

outliers. Another application of convex layers has been 

suggested by Lee et al. in the half plane range query problem 

[3]. Recently, Liew [4] suggested application of convex 

layers to TSP problem. Much effort has been applied to 

compute the convex layers of fixed point set. There exist an 

algorithm [5] to compute the convex layers for fixed point set 

in optimal time, i.e., in 𝑂(𝑛 log𝑛) time. However, there exist 

instances, where point set is not fixed and points can be 

inserted or deleted at any time. In this paper, we suggest an 

algorithm to compute the convex layers in dynamic context. 

The convex layers can be computed in 𝑂(𝑛2)  time by 

applying the proposed approach.  

To compute a convex layers from static point set, a brute 

force approach can be applied, which involves applying an 

optimal convex hull algorithm, say [6], repeatedly for each 

layer, thus it requires 𝑂(𝑛2 logn)  time. Silverman et al. 

reduced time complexity to 𝑂(𝑛2) [7]. Chazelle [5] proposed 

algorithm to compute the convex layers in optimal time. In 

[5] the deletion process batched to give 𝑂(𝑛 log𝑛)  time 

algorithm. 

This paper is organized as follows. Some preliminaries are 

presented in Section II. Detailed description of proposed 

algorithm with its analysis is presented in Section III. Finally, 
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in Section IV, we conclude with possible future works. 

 

II. PRELIMINARIES 

A subset 𝑆 of the plane is called convex [8] if and only if 

for any pair of points (𝑝, 𝑞) 𝜖 𝑆 the line segment ℓ𝑠(𝑝, 𝑞) is 

completely contained in 𝑆 . The Convex Hull 𝐶𝐻(𝑆) of a 

point set 𝑆 is the smallest convex set that contains 𝑆 and is 

represented by set of vertices that defines hull edges.  

For a given 2-dimensional planar point set 𝑆 =
{𝑠1, 𝑠2, … , 𝑠𝑛}, its Convex Layers, denoted by 𝐶𝐿, can be 

visualized as  set of convex hulls computed by iterative 

procedure of computing convex hull and discarding the 

points on already computed convex hull (Refer to Fig. 1). In 

this paper, to represent a convex hull 𝐶𝐿𝑖  𝜖 𝐶𝐿 , we use 

counterclockwise (CCW) sequence of vertices on convex 

hull 𝐶𝐿𝑖 . For a point  𝑝 𝜖 𝐶𝐿𝑖   (Refer to Fig. 1), point 𝑝. 𝑝𝑟𝑒𝑣 

and 𝑝. 𝑛𝑒𝑥𝑡 represents point previous to 𝑝 and the point next 

from 𝑝, respectively (in CCW order). 

 

III. ALGORITHM 

The point set is dynamic, so, at any time some point may 

be inserted or deleted from point set. Computing convex 

layers in dynamic context requires insertion as well as 

deletion of points to 𝐶𝐿. In this section we give the detailed 

description of two procedures viz.: Insert() and Delete() to 

accomplish insertion and deletion of points, respectively. 

Assumption: All the points are in general position, i.e. no 

three points are collinear. 

Assumption: The layers 𝐶𝐿𝑖  𝜖 𝐶𝐿, are numbered outward 

to inward. Outermost layer is 𝐶𝐿1  and innermost is 𝐶𝐿𝑘 , 

where 𝑘 be the number of layers in 𝐶𝐿. 

 

 
Fig. 1. Convex layer set 𝐶𝐿. 

 

Definition: The region (here unbounded) is defined as the 

minor sector formed by two rays. In the Fig. 2, region 

𝑅(𝑝1, 𝑝2, 𝑝3) is the minor sector formed by rays 𝑟1  (passing 

through point 𝑝1) and 𝑟2  (passing through point 𝑝3) such that 

both rays have common fixed point 𝑝2. 
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Fig. 2. Region. 

 

The line passing through point 𝑝 and 𝑞 is represented by 

ℓ(𝑝, 𝑞). However, the line segment with the end points 𝑝 and 

𝑞 is represented by ℓ𝑠(𝑝, 𝑞). 
Points 𝑝 and 𝑞 are said to be visible if ℓ𝑠(𝑝, 𝑞) does not 

intersects any other line segment or does not passes through 

any other point. Hence, in Fig. 3, 𝑝1  and 𝑞 are visible, 

whereas 𝑝 and 𝑞 are not visible. 

We say, a point 𝑞 is lying outside layer 𝐶𝐿𝑖 , if it is lying 

outside 𝐶𝐿𝑖  but not outside 𝐶𝐿𝑖−1. 

A. Algorithm to Insert a Point 𝑞 to 𝐶𝐿 

Algorithm 3 inserts an incoming point to 𝐶𝐿. To insert an 

incoming point 𝑞 to convex layer set 𝐶𝐿, first it is required to 

determine the layer 𝐶𝐿𝑖  to which 𝑞  will be inserted, the 

Algorithm 1 serves this purpose. Insertion of a point to 𝐶𝐿𝑖  

requires removal of chain lying under the wedge formed by 

two tangents from the point 𝑞, i.e., the part of 𝐶𝐿𝑖  visible 

from 𝑞. Consider Fig. 3, insertion of point 𝑞 to 𝐶𝐿𝑖  requires 

removal of the visible part of 𝐶𝐿𝑖  , i.e., 𝑚. 𝑝𝑟𝑒𝑣  to 𝑝1 . A 

point is said to be lower (resp. upper) tangent point, denoted 

by 𝑣𝑙  (resp 𝑣𝑢 ), if it is first (resp. last) point of the chain in 

CCW order. Algorithm 2 computes the two tangent points.  

1) Algorithm 1: Find layer 

To determine the layer 𝐶𝐿𝑖  𝜖 𝐶𝐿, to which point 𝑞 is to be 

inserted, a search is performed outward (from 𝐶𝐿1) to inward 

(to 𝐶𝐿𝑘 ). While inspecting a layer 𝐶𝐿𝑖 , a point 𝑝 𝜖 𝐶𝐿𝑖  is 

chosen randomly. If point 𝑞  is not lying in region, 

𝑅(𝑝. 𝑝𝑟𝑒𝑣, 𝑝, 𝑝. 𝑛𝑒𝑥𝑡), then the point is certainly outside the 

layer 𝐶𝐿𝑖. For instance, in Fig. 3 for point 𝑝1 the point 𝑞 lies 

outside the region 𝑅(𝑝. 𝑝𝑟𝑒𝑣, 𝑝, 𝑝. 𝑛𝑒𝑥𝑡). Hence, point 𝑞 lies 

outside layer 𝐶𝐿𝑖 (It is important to note that layer 𝐶𝐿1 to 

𝐶𝐿𝑖−1  has already been examined and search has failed.) 

Otherwise, point may be lying inside or outside the layer. A 

binary search is performed to contract the region and every 

time either 𝑝. 𝑝𝑟𝑒𝑣 or 𝑝. 𝑛𝑒𝑥𝑡 is updated until both become 

adjacent depending on whether 𝑞 is on the left or right of 

ℓ(𝑝, 𝑝𝑚 ), where 𝑝𝑚  is midpoint of chain 𝑝. 𝑛𝑒𝑥𝑡 to 𝑝. 𝑝𝑟𝑒𝑣. 

If the line segment ℓ𝑠(𝑞, 𝑝)  intersects ℓ𝑠(𝑝. 𝑛𝑒𝑥𝑡, 𝑝. 𝑝𝑟𝑒𝑣) 
then point 𝑞 is outside the layer 𝐶𝐿𝑖  (layer being examined), 

otherwise next layer checked to find out if 𝑞 is lying outside. 

Algorithm 1: Find Layer(q, CL) 

Input: Point q and convex layers 𝐶𝐿, say 𝑘 is the number 

of layers in 𝐶𝐿. 

Output: The convex layer 𝐶𝐿𝑖  such that 𝑞 lies outside 𝐶𝐿𝑖 . 

1)  𝑖 ← 1 

2) while(𝑖 ≠ 𝑘 + 1) do  

3) if (𝑖 = 𝑘 and 𝐶𝐿𝑘 contains less than three points) 

4) Return 𝑘 

5) else 

6) select a point 𝑝 𝜖 𝐶𝐿𝑖 
7) if (𝑞 is not in region 𝑅(𝑝. 𝑝𝑟𝑒𝑣, 𝑝, 𝑝. 𝑛𝑒𝑥𝑡)) 

8) Return 𝑖  
9) else 

10) repeat  

11) 𝑚: =  (𝑝. 𝑛𝑒𝑥𝑡 + 𝑝. 𝑝𝑟𝑒𝑣)/2 
12) if (𝑞 is to left of ℓ(𝑝, 𝑝𝑚) ) 

13) 𝑝. 𝑛𝑒𝑥𝑡: =  𝑚     
14) else 

15) 𝑝. 𝑝𝑟𝑒𝑣: =  𝑚      
16) until (𝑝. 𝑛𝑒𝑥𝑡 & 𝑝. 𝑝𝑟𝑒𝑣 are not adjacent) 

17) if (ℓ𝑠(𝑞, 𝑝)  intersects ℓ𝑠(𝑝. 𝑛𝑒𝑥𝑡, 𝑝. 𝑝𝑟𝑒𝑣)) 

18) return 𝑖 
19) else                     

20) 𝑖 + +  
21) Return 𝑘 + 1 //𝑞 is inside 𝐶𝐿𝑘 

 

Let 𝑛 be the total number of points in the point set 𝑆 and 𝑛𝑖  

be the number of points in the layer 𝐶𝐿𝑖 . Let 𝑘 be the number 

of layers in convex layer set 𝐶𝐿. Algorithm 1 determines the 

layer to which incoming point should be inserted. The layers 

are considered in outward to inward fashion. Inspection of 

each layer, 𝐶𝐿𝑖 , takes 𝑙𝑜𝑔(𝑛𝑖) time. So, in the worst case all 

layers inspected, hence, time to compute layer is 

   

𝑙𝑜𝑔(𝑛1) +  𝑙𝑜𝑔(𝑛2) + … +  𝑙𝑜𝑔(𝑛𝑘)   
 𝑛1  +  𝑛2  +  … + 𝑛𝑘  =  𝑛 

 

Hence, it is clear that correct layer to which incoming point 

should be inserted can be found in 𝑂(𝑛) time. 

2) Algorithm 2: Compute tangent 

A line segment from point 𝑞 to a point 𝑣 𝜖 𝐶𝐿𝑖  is said to be 

a tangent from 𝑞  to 𝐶𝐿𝑖 , if both the points 𝑣. 𝑝𝑟𝑒𝑣 and 

𝑣. 𝑛𝑒𝑥𝑡 lie on same side of ℓ(𝑞, 𝑣). If 𝑣. 𝑝𝑟𝑒𝑣 and 𝑣. 𝑛𝑒𝑥𝑡 
lies on the right (resp. left) of ℓ(𝑞, 𝑣) then 𝑣 is said to be 

lower (resp. upper) tangent point, denoted by 𝑣𝑙  (resp. 𝑣𝑢 ). 

 

 
Fig. 3. Find layer. 

 

Let 𝑞 be a point outside layer 𝐶𝐿𝑖 . Then, two points 𝑣 and 

𝑣1 (𝜖 𝐶𝐿𝑖) are said to be of similar nature if i). ℓ𝑠(𝑞, 𝑣) 

intersects ℓ𝑠(𝑣. 𝑝𝑟𝑒𝑣, 𝑣. 𝑛𝑒𝑥𝑡)  and ℓ𝑠(𝑞, 𝑣1)  intersects 

ℓ𝑠(𝑣1. 𝑝𝑟𝑒𝑣, 𝑣1. 𝑛𝑒𝑥𝑡) , or ii). Neither ℓ𝑠(𝑞, 𝑣)  intersects 

ℓ𝑠(𝑣. 𝑝𝑟𝑒𝑣, 𝑣. 𝑛𝑒𝑥𝑡)  nor ℓ𝑠(𝑞, 𝑣1)  intersects 

ℓ𝑠(𝑣1. 𝑝𝑟𝑒𝑣, 𝑣1. 𝑛𝑒𝑥𝑡). 

A point, say 𝑣2 (𝜖 𝐶𝐿𝑖), is chosen randomly and if it is not 

a tangent point then select another point, say 𝑣3 , at 𝑛/2 

distance from 𝑣2. If both the points are of same nature, then 

chain 𝑣2  to 𝑣3  does not contain any tangent point, whereas 

chain 𝑣3 to 𝑣2 contains both the tangent points. Otherwise, 

both the chains 𝑣2  to 𝑣3  and 𝑣3  to 𝑣2  contains one tangent 

point (Refer Fig. 4). 

In Algorithm 2, whether the randomly selected point is 
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tangent or not can be checked in constant time. In the 

contraction step 9-13, binary search like procedure followed, 

every time length of chain reduced to 𝑛/2. As the number of 

points (𝑛𝑖) in layer 𝐶𝐿𝑖  is 𝑂(𝑛). Thus, a tangent point can be 

computed in 𝑂(𝑙𝑜𝑔𝑛) time. Hence, it is clear that two tangent 

points can be computed in 𝑂(𝑙𝑜𝑔𝑛) time. 

 

 
Fig. 4. Computing tangent.  

 

3) Algorithm 3: Insert point 

To insert a point, say 𝑞, to convex layer 𝐶𝐿𝑖 , the chain 𝑣𝑙 

to 𝑣𝑢  must be added to next inner layer, which in turn may 

require inner layer(s) to be reconfigured (Refer to Fig. 5).  

 

 
Fig. 5. Inserting a point to 𝐶𝐿. 

 

The Algorithm 2 can be easily modified to compute either 

upper tangent only (i.e. procedure Compute Upper Tangent() 

in Algortihm 3) or to compute lower tangent only (i.e. 

procedure Compute Lower Tangent() in Algortihm 3). A 

convex hull edge is represented by 𝑒(𝑢, 𝑣), where 𝑢 and 𝑣 

are two consecutive vertices on the convex hull. 

Algorithm 2: Compute Tangent(q, CLi) 

Input: point 𝑞 and convex layer 𝐶𝐿𝑖  

Output: upper (𝑣𝑢 ) and lower tangent point (𝑣𝑙) from 𝑞 to 

𝐶𝐿𝑖  

1) 𝑛:= no. of points in 𝐶𝐿𝑖 , 𝑆𝑖 := points of 𝐶𝐿𝑖  

2) while (two tangent points not computed) do 

3) select a point 𝑣 𝜖 𝑆𝑖  

4) if(𝑣. 𝑝𝑟𝑒𝑣 and 𝑣. 𝑛𝑒𝑥𝑡 lies on the right of ℓ(𝑞, 𝑣)) 

5) return 𝑣 as lower tangent point (𝑣𝑙) 

6) else if(𝑣. 𝑝𝑟𝑒𝑣 and 𝑣. next lies on the left of ℓ(𝑞, 𝑣) ) 
7) return 𝑣 as upper tangent point (𝑣𝑢) 

8) else 

9) select a point 𝑣1 at 𝑛/2 distance from 𝑣 

10) if points 𝑣 and 𝑣1 are of similar nature  

11) discard chain 𝑣 to 𝑣1  

12) 𝑆𝑖 := points of chain 𝑣1 to 𝑣 

13) go to step 3 

14) else 

15) 𝑆1:= points of chain 𝑣 to 𝑣1  

16) 𝑆2:= points of chain 𝑣1  to 𝑣 

17) go to step 3 with 𝑆1  

18) go to step 3 with 𝑆2  

 

Algorithm 3: Insert Point(q, CL)  

Insert a point in the convex layer set while maintaining the 

convexity property. It assumes that at least three points are 

already arrived. 

Input: 𝑞 is the point to be inserted to the convex layers 𝐶𝐿 
with 𝑘 layers.         

Ouptut: Convex layers set 𝐶𝐿 after insertion of point 𝑞. 

1) 𝑖 = 𝐹𝑖𝑛𝑑𝐿𝑎𝑦𝑒𝑟(𝑞, 𝐶𝐿) 
2) if 𝑖 = 𝑘 + 1 then do  

3) 𝐶𝐿𝑘+1 =  𝑞 //new layer added  

4) return 𝐶𝐿 with 𝑘 + 1 layers 

5) if 𝑖 = 𝑘 and 𝐶𝐿𝑘  contains less than three points 

6) 𝐶𝐿𝑘 =  𝐶𝐿𝑘  ∪  𝑞 

7) return 𝐶𝐿 

8) 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑇𝑎𝑛𝑔𝑒𝑛𝑡(𝑞, 𝐶𝐿𝑖)   
9) if 𝑣𝑙  & 𝑣𝑢  are adjacent 

10) connect 𝑞 with 𝑣𝑢  and 𝑣𝑙  

11) remove edge 𝑒(𝑣𝑙 , 𝑣𝑢) 

12) return //𝐶𝐿𝑖+1 not disturbed 

13) remove chain vl  . next to vu . prev from 𝐶𝐿𝑖  

14) remove edges e(𝑣𝑙 , 𝑣𝑙 . next) and e(𝑣𝑢 . prev, 𝑣𝑢) 

15) connect 𝑞 with 𝑣𝑢  and 𝑣𝑙   to complete 𝐶𝐿𝑖  

16) 𝑖 = 𝑖 + 1 
17) while (𝑖 ≠  𝑘) do 

18) 𝑣𝑢 𝑖 + 1 =  Compute Upper Tangent(𝐶𝐿𝑖+1,
𝑣𝑢 . prev)    

19) 𝑣𝑙 𝑖 + 1 = Compute Lower Tangent (𝐶𝐿𝑖+1,
 𝑣𝑙 . next) 

20) if 𝑣𝑙(𝑖 + 1) & 𝑣𝑢(𝑖 + 1) are adjacent 

21) connect 𝑣𝑢 . prev with 𝑣𝑢(𝑖 + 1) and vl . next  
22) with 𝑣𝑙(𝑖 + 1) 

23) remove edge 𝑒(𝑣𝑙(𝑖 + 1), 𝑣𝑢(𝑖 + 1)) 

24) return //next inner layer not disturbed 

25) remove chain 𝑣𝑙(𝑖 + 1). next to 𝑣𝑢(𝑖 + 1). prev from 

𝐶𝐿𝑖+1 

26) remove edges 𝑒 𝑣𝑙 𝑖 + 1 , 𝑣𝑙 𝑖 + 1 . next   
27) &  𝑒(𝑣𝑢(𝑖 + 1). prev , 𝑣𝑢(𝑖 + 1)) 

28) connect 𝑣𝑢 . prev with 𝑣𝑢(𝑖 + 1) &  𝑣𝑙 . next with 

29) 𝑣𝑙(𝑖 + 1) 

30) 𝑣𝑢 . prev ∶=  𝑣𝑢(𝑖 + 1). prev 
31) 𝑣𝑙 . next ∶=  𝑣𝑙(𝑖 + 1). next 
32) 𝑖: = 𝑖 + 1 
33) 𝐶𝐿𝑖  is chain 𝑣𝑢 . prev to 𝑣𝑙 . next 

 

To insert an incoming point 𝑞 the layer, say 𝐶𝐿𝑖 , to which 

it should be inserted can be computed in 𝑂(𝑛) time and two 

tangent points to the layer 𝐶𝐿𝑖  can be found in 𝑂(𝑙𝑜𝑔𝑛𝑖) 

time. With this information, point 𝑞 can be inserted to layer 

𝐶𝐿𝑖  in constant time. Consequently, inner layer(s) may 

require to be modified. In the worst case, the point inserted to 

outer layer and all inner layers required to be modified, in 

that case running time is: 
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𝑂(𝑛) + 𝑂(𝑙𝑜𝑔 𝑛1)       updating outermost layer 

+ 𝑂(𝑙𝑜𝑔 𝑛2) + ⋯ +  𝑂(𝑙𝑜𝑔 𝑛𝑘)    updating all inner layers 

≤ 𝑂(𝑛) +  𝑂(𝑙𝑜𝑔 𝑛1) + (𝑛2  +  𝑛3 + ⋯ +  𝑛𝑘)
≤ 𝑂(𝑛) 

 
Hence, a single point can be inserted in 𝑂(𝑛) time. 

B. Algortithm to Delete a Point from 𝐶𝐿 

Deletion of a point 𝑞 from convex layer 𝐶𝐿𝑖  may result 

into reconfiguration of inner layer(s), whereas outer layers 

remain unaltered. Algorithm 4 deletes a point 𝑞 from 𝐶𝐿 and 

reconfigures 𝐶𝐿, so that convexity is maintained. Deletion 

involves finding tangents and updating inner layer(s) if 

required (Refer Fig. 6).  

 

 
Fig. 6. Deletion. 

 

Deletion of a point (or chain) from layer 𝐶𝐿𝑖 , may require 

inclusion of a part of layer 𝐶𝐿𝑖+1  to layer 𝐶𝐿𝑖  (Refer Fig. 6). 

Candidate list 𝐶𝐿𝑖𝑠𝑡 stores points of 𝐶𝐿𝑖+1  that are to be 

added to 𝐶𝐿𝑖 . 

In step 7 of Algorithm 4, to maintain CCW order, points 

added to 𝐶𝐿𝑖𝑠𝑡 after 𝑞. 𝑝𝑟𝑒𝑣 and before 𝑞. 𝑛𝑒𝑥𝑡. 
A point (or chain) can be added to or removed from layer 

𝐶𝐿𝑖  in constant time. The expensive step is computation of 

tangents. By applying Algorithm 2, a tangent can be 

computed in 𝑂(log𝑛) time. In the worst case, after deletion 

of a point from outermost layer, all the inner layers are 

required to be modified. Thus, tangent computed for all inner 

layers,    

𝑙𝑜𝑔(𝑛2) + … + 𝑙𝑜𝑔(𝑛𝑘)   

 𝑛1  +  𝑛2  +  … + 𝑛𝑘  =  𝑛 

Thus, the time required to delete a point is 𝑂(𝑛). 

Algorithm 4: Delete(q, CLi)  

Input: 𝑞  is the point to be deleted from 𝐶𝐿𝑖  and 𝑘  is 

number of layers in 𝐶𝐿. 

Output: Convex layers set 𝐶𝐿 after deletion of point 𝑞. 

1) Candidate list 𝐶𝐿𝑖𝑠𝑡 initialized as an empty list.                                                                                         

2) 𝑖: = 1 

3) repeat 

4) Compute tangents from 𝑞. 𝑝𝑟𝑒𝑣 and 𝑞. 𝑛𝑒𝑥𝑡 to 𝐶𝐿𝑖+1 

lying to the right of the line 𝑙(𝑞. 𝑝𝑟𝑒𝑣, 𝑞. 𝑛𝑒𝑥𝑡), say 𝑝𝑎  

and 𝑝𝑏  be tangent points, respectively. If no such 

points found, return. 

5) The points lying on the chain 𝑝𝑎  to 𝑝𝑏  are added to 

𝐶𝐿𝑖𝑠𝑡 in order. 

6) if 𝐶𝐿𝑖𝑠𝑡 is empty  //𝐶𝐿𝑖+1 not disturbed  

Remove 𝑞 from 𝐶𝐿𝑖+1 

Return 

7) else 

𝐶𝐿𝑖+1 ∶=   𝐶𝐿𝑖+1 –  𝐶𝐿𝑖𝑠𝑡 

𝐶𝐿𝑖 : = 𝐶𝐿𝑖  − {𝑞} 

𝐶𝐿𝑖 : =  𝐶𝐿𝑖 ∪  𝐶𝐿𝑖𝑠𝑡 

𝑞. 𝑛𝑒𝑥𝑡 ∶=  𝐶𝐿𝑖𝑠𝑡[𝑙𝑎𝑠𝑡]. 𝑛𝑒𝑥𝑡 

𝑞. 𝑝𝑟𝑒𝑣 ∶=  𝐶𝐿𝑖𝑠𝑡[𝑓𝑖𝑟𝑠𝑡]. 𝑝𝑟𝑒𝑣 

𝑒𝑚𝑝𝑡𝑦 𝐶𝐿𝑖𝑠𝑡 

𝑖 = 𝑖 + 1 

8) while (𝑖 ≠ 𝑘)  
 

Hence, it is clear that a single point can be inserted or 

deleted in 𝑂(𝑛) time. Algorithm 3 and Algorithm 4 can be 

used to compute the convex layers in the dynamic context in 

𝑂(𝑛2) . However, the amortized time complexity will be 

much lower. 

 

IV.  CONCLUSION 

In this paper we have presented an idea to compute convex 

layers in dynamic environment. The primary requirement is 

to allow insertion and deletion at any instant. Time 

complexity of proposed algorithm is 𝑂(𝑛2). To reduce the 

running time for insertion and deletion will be our future 

work. 
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