



Abstract—The convex layers of a given point set can be

computed by iterative process of finding convex hull after

discarding the points of already computed convex hull.

Computation of convex layers has been widely studied in the

static environment where the point set are fixed. In this paper,

we propose an idea to compute set of convex layers in dynamic

context. There exists an optimal time algorithm to solve the

static version of the problem in 𝐎(𝒏 𝐥𝐨𝐠𝒏) time. However, to

solve dynamic version of the problem the suggested algorithm

requires O(𝒏𝟐) time for a set of 𝐧 points.

Index Terms—Computational geometry, convex hull, convex

layers, incremental algorithm, tangent.

I. INTRODUCTION

The set of convex layers (or simply convex layers) can be

computed by an iterative process of computing convex hull,

after discarding points of already computed convex hull. It is

one of the widely studied computational geometry problem,

because of its wide area of applications. The convex layers

can be applied to design a robust estimator [1]. Tukey [2]

suggested a procedure called “peeling”, for eliminating

outliers. Another application of convex layers has been

suggested by Lee et al. in the half plane range query problem

[3]. Recently, Liew [4] suggested application of convex

layers to TSP problem. Much effort has been applied to

compute the convex layers of fixed point set. There exist an

algorithm [5] to compute the convex layers for fixed point set

in optimal time, i.e., in 𝑂(𝑛 log𝑛) time. However, there exist

instances, where point set is not fixed and points can be

inserted or deleted at any time. In this paper, we suggest an

algorithm to compute the convex layers in dynamic context.

The convex layers can be computed in 𝑂(𝑛2) time by

applying the proposed approach.

To compute a convex layers from static point set, a brute

force approach can be applied, which involves applying an

optimal convex hull algorithm, say [6], repeatedly for each

layer, thus it requires 𝑂(𝑛2 logn) time. Silverman et al.

reduced time complexity to 𝑂(𝑛2) [7]. Chazelle [5] proposed

algorithm to compute the convex layers in optimal time. In

[5] the deletion process batched to give 𝑂(𝑛 log𝑛) time

algorithm.

This paper is organized as follows. Some preliminaries are

presented in Section II. Detailed description of proposed

algorithm with its analysis is presented in Section III. Finally,

Manuscript received July 13, 2014; revised October 10, 2014.

Sanjib Sadhu is with the Department of Computer Science, National

Institute of Technology, Durgapur, India 713209 (e-mail:

sanjibsadhu411@gmail.com).

Niraj Kumar was with the National Institute of Technology, Durgapur,

India 713209. He is now with the Department of Computer Science,

Dronacharya College of engineering, Gurgaon, Haryana (e-mail:

nirajcse08@gmail.com).

in Section IV, we conclude with possible future works.

II. PRELIMINARIES

A subset 𝑆 of the plane is called convex [8] if and only if

for any pair of points (𝑝, 𝑞) 𝜖 𝑆 the line segment ℓ𝑠(𝑝, 𝑞) is

completely contained in 𝑆 . The Convex Hull 𝐶𝐻(𝑆) of a

point set 𝑆 is the smallest convex set that contains 𝑆 and is

represented by set of vertices that defines hull edges.

For a given 2-dimensional planar point set 𝑆 =
{𝑠1, 𝑠2, … , 𝑠𝑛}, its Convex Layers, denoted by 𝐶𝐿, can be

visualized as set of convex hulls computed by iterative

procedure of computing convex hull and discarding the

points on already computed convex hull (Refer to Fig. 1). In

this paper, to represent a convex hull 𝐶𝐿𝑖 𝜖 𝐶𝐿 , we use

counterclockwise (CCW) sequence of vertices on convex

hull 𝐶𝐿𝑖 . For a point 𝑝 𝜖 𝐶𝐿𝑖 (Refer to Fig. 1), point 𝑝. 𝑝𝑟𝑒𝑣

and 𝑝. 𝑛𝑒𝑥𝑡 represents point previous to 𝑝 and the point next

from 𝑝, respectively (in CCW order).

III. ALGORITHM

The point set is dynamic, so, at any time some point may

be inserted or deleted from point set. Computing convex

layers in dynamic context requires insertion as well as

deletion of points to 𝐶𝐿. In this section we give the detailed

description of two procedures viz.: Insert() and Delete() to

accomplish insertion and deletion of points, respectively.

Assumption: All the points are in general position, i.e. no

three points are collinear.

Assumption: The layers 𝐶𝐿𝑖 𝜖 𝐶𝐿, are numbered outward

to inward. Outermost layer is 𝐶𝐿1 and innermost is 𝐶𝐿𝑘 ,

where 𝑘 be the number of layers in 𝐶𝐿.

Fig. 1. Convex layer set 𝐶𝐿.

Definition: The region (here unbounded) is defined as the

minor sector formed by two rays. In the Fig. 2, region

𝑅(𝑝1, 𝑝2, 𝑝3) is the minor sector formed by rays 𝑟1 (passing

through point 𝑝1) and 𝑟2 (passing through point 𝑝3) such that

both rays have common fixed point 𝑝2.

Computing Convex Layers of a Dynamic Point Set

Sanjib Sadhu and Niraj Kumar

International Journal of Computer Theory and Engineering, Vol. 7, No. 6, December 2015

495DOI: 10.7763/IJCTE.2015.V7.1008

Fig. 2. Region.

The line passing through point 𝑝 and 𝑞 is represented by

ℓ(𝑝, 𝑞). However, the line segment with the end points 𝑝 and

𝑞 is represented by ℓ𝑠(𝑝, 𝑞).
Points 𝑝 and 𝑞 are said to be visible if ℓ𝑠(𝑝, 𝑞) does not

intersects any other line segment or does not passes through

any other point. Hence, in Fig. 3, 𝑝1 and 𝑞 are visible,

whereas 𝑝 and 𝑞 are not visible.

We say, a point 𝑞 is lying outside layer 𝐶𝐿𝑖 , if it is lying

outside 𝐶𝐿𝑖 but not outside 𝐶𝐿𝑖−1.

A. Algorithm to Insert a Point 𝑞 to 𝐶𝐿

Algorithm 3 inserts an incoming point to 𝐶𝐿. To insert an

incoming point 𝑞 to convex layer set 𝐶𝐿, first it is required to

determine the layer 𝐶𝐿𝑖 to which 𝑞 will be inserted, the

Algorithm 1 serves this purpose. Insertion of a point to 𝐶𝐿𝑖

requires removal of chain lying under the wedge formed by

two tangents from the point 𝑞, i.e., the part of 𝐶𝐿𝑖 visible

from 𝑞. Consider Fig. 3, insertion of point 𝑞 to 𝐶𝐿𝑖 requires

removal of the visible part of 𝐶𝐿𝑖 , i.e., 𝑚. 𝑝𝑟𝑒𝑣 to 𝑝1 . A

point is said to be lower (resp. upper) tangent point, denoted

by 𝑣𝑙 (resp 𝑣𝑢), if it is first (resp. last) point of the chain in

CCW order. Algorithm 2 computes the two tangent points.

1) Algorithm 1: Find layer

To determine the layer 𝐶𝐿𝑖 𝜖 𝐶𝐿, to which point 𝑞 is to be

inserted, a search is performed outward (from 𝐶𝐿1) to inward

(to 𝐶𝐿𝑘). While inspecting a layer 𝐶𝐿𝑖 , a point 𝑝 𝜖 𝐶𝐿𝑖 is

chosen randomly. If point 𝑞 is not lying in region,

𝑅(𝑝. 𝑝𝑟𝑒𝑣, 𝑝, 𝑝. 𝑛𝑒𝑥𝑡), then the point is certainly outside the

layer 𝐶𝐿𝑖. For instance, in Fig. 3 for point 𝑝1 the point 𝑞 lies

outside the region 𝑅(𝑝. 𝑝𝑟𝑒𝑣, 𝑝, 𝑝. 𝑛𝑒𝑥𝑡). Hence, point 𝑞 lies

outside layer 𝐶𝐿𝑖 (It is important to note that layer 𝐶𝐿1 to

𝐶𝐿𝑖−1 has already been examined and search has failed.)

Otherwise, point may be lying inside or outside the layer. A

binary search is performed to contract the region and every

time either 𝑝. 𝑝𝑟𝑒𝑣 or 𝑝. 𝑛𝑒𝑥𝑡 is updated until both become

adjacent depending on whether 𝑞 is on the left or right of

ℓ(𝑝, 𝑝𝑚), where 𝑝𝑚 is midpoint of chain 𝑝. 𝑛𝑒𝑥𝑡 to 𝑝. 𝑝𝑟𝑒𝑣.

If the line segment ℓ𝑠(𝑞, 𝑝) intersects ℓ𝑠(𝑝. 𝑛𝑒𝑥𝑡, 𝑝. 𝑝𝑟𝑒𝑣)
then point 𝑞 is outside the layer 𝐶𝐿𝑖 (layer being examined),

otherwise next layer checked to find out if 𝑞 is lying outside.

Algorithm 1: Find Layer(q, CL)

Input: Point q and convex layers 𝐶𝐿, say 𝑘 is the number

of layers in 𝐶𝐿.

Output: The convex layer 𝐶𝐿𝑖 such that 𝑞 lies outside 𝐶𝐿𝑖 .

1) 𝑖 ← 1

2) while(𝑖 ≠ 𝑘 + 1) do

3) if (𝑖 = 𝑘 and 𝐶𝐿𝑘 contains less than three points)

4) Return 𝑘

5) else

6) select a point 𝑝 𝜖 𝐶𝐿𝑖
7) if (𝑞 is not in region 𝑅(𝑝. 𝑝𝑟𝑒𝑣, 𝑝, 𝑝. 𝑛𝑒𝑥𝑡))

8) Return 𝑖
9) else

10) repeat

11) 𝑚: = (𝑝. 𝑛𝑒𝑥𝑡 + 𝑝. 𝑝𝑟𝑒𝑣)/2
12) if (𝑞 is to left of ℓ(𝑝, 𝑝𝑚))

13) 𝑝. 𝑛𝑒𝑥𝑡: = 𝑚
14) else

15) 𝑝. 𝑝𝑟𝑒𝑣: = 𝑚
16) until (𝑝. 𝑛𝑒𝑥𝑡 & 𝑝. 𝑝𝑟𝑒𝑣 are not adjacent)

17) if (ℓ𝑠(𝑞, 𝑝) intersects ℓ𝑠(𝑝. 𝑛𝑒𝑥𝑡, 𝑝. 𝑝𝑟𝑒𝑣))

18) return 𝑖
19) else

20) 𝑖 + +
21) Return 𝑘 + 1 //𝑞 is inside 𝐶𝐿𝑘

Let 𝑛 be the total number of points in the point set 𝑆 and 𝑛𝑖

be the number of points in the layer 𝐶𝐿𝑖 . Let 𝑘 be the number

of layers in convex layer set 𝐶𝐿. Algorithm 1 determines the

layer to which incoming point should be inserted. The layers

are considered in outward to inward fashion. Inspection of

each layer, 𝐶𝐿𝑖 , takes 𝑙𝑜𝑔(𝑛𝑖) time. So, in the worst case all

layers inspected, hence, time to compute layer is

𝑙𝑜𝑔(𝑛1) + 𝑙𝑜𝑔(𝑛2) + … + 𝑙𝑜𝑔(𝑛𝑘)
 𝑛1 + 𝑛2 + … + 𝑛𝑘 = 𝑛

Hence, it is clear that correct layer to which incoming point

should be inserted can be found in 𝑂(𝑛) time.

2) Algorithm 2: Compute tangent

A line segment from point 𝑞 to a point 𝑣 𝜖 𝐶𝐿𝑖 is said to be

a tangent from 𝑞 to 𝐶𝐿𝑖 , if both the points 𝑣. 𝑝𝑟𝑒𝑣 and

𝑣. 𝑛𝑒𝑥𝑡 lie on same side of ℓ(𝑞, 𝑣). If 𝑣. 𝑝𝑟𝑒𝑣 and 𝑣. 𝑛𝑒𝑥𝑡
lies on the right (resp. left) of ℓ(𝑞, 𝑣) then 𝑣 is said to be

lower (resp. upper) tangent point, denoted by 𝑣𝑙 (resp. 𝑣𝑢).

Fig. 3. Find layer.

Let 𝑞 be a point outside layer 𝐶𝐿𝑖 . Then, two points 𝑣 and

𝑣1 (𝜖 𝐶𝐿𝑖) are said to be of similar nature if i). ℓ𝑠(𝑞, 𝑣)

intersects ℓ𝑠(𝑣. 𝑝𝑟𝑒𝑣, 𝑣. 𝑛𝑒𝑥𝑡) and ℓ𝑠(𝑞, 𝑣1) intersects

ℓ𝑠(𝑣1. 𝑝𝑟𝑒𝑣, 𝑣1. 𝑛𝑒𝑥𝑡) , or ii). Neither ℓ𝑠(𝑞, 𝑣) intersects

ℓ𝑠(𝑣. 𝑝𝑟𝑒𝑣, 𝑣. 𝑛𝑒𝑥𝑡) nor ℓ𝑠(𝑞, 𝑣1) intersects

ℓ𝑠(𝑣1. 𝑝𝑟𝑒𝑣, 𝑣1. 𝑛𝑒𝑥𝑡).

A point, say 𝑣2 (𝜖 𝐶𝐿𝑖), is chosen randomly and if it is not

a tangent point then select another point, say 𝑣3 , at 𝑛/2

distance from 𝑣2. If both the points are of same nature, then

chain 𝑣2 to 𝑣3 does not contain any tangent point, whereas

chain 𝑣3 to 𝑣2 contains both the tangent points. Otherwise,

both the chains 𝑣2 to 𝑣3 and 𝑣3 to 𝑣2 contains one tangent

point (Refer Fig. 4).

In Algorithm 2, whether the randomly selected point is

International Journal of Computer Theory and Engineering, Vol. 7, No. 6, December 2015

496

tangent or not can be checked in constant time. In the

contraction step 9-13, binary search like procedure followed,

every time length of chain reduced to 𝑛/2. As the number of

points (𝑛𝑖) in layer 𝐶𝐿𝑖 is 𝑂(𝑛). Thus, a tangent point can be

computed in 𝑂(𝑙𝑜𝑔𝑛) time. Hence, it is clear that two tangent

points can be computed in 𝑂(𝑙𝑜𝑔𝑛) time.

Fig. 4. Computing tangent.

3) Algorithm 3: Insert point

To insert a point, say 𝑞, to convex layer 𝐶𝐿𝑖 , the chain 𝑣𝑙

to 𝑣𝑢 must be added to next inner layer, which in turn may

require inner layer(s) to be reconfigured (Refer to Fig. 5).

Fig. 5. Inserting a point to 𝐶𝐿.

The Algorithm 2 can be easily modified to compute either

upper tangent only (i.e. procedure Compute Upper Tangent()

in Algortihm 3) or to compute lower tangent only (i.e.

procedure Compute Lower Tangent() in Algortihm 3). A

convex hull edge is represented by 𝑒(𝑢, 𝑣), where 𝑢 and 𝑣

are two consecutive vertices on the convex hull.

Algorithm 2: Compute Tangent(q, CLi)

Input: point 𝑞 and convex layer 𝐶𝐿𝑖

Output: upper (𝑣𝑢) and lower tangent point (𝑣𝑙) from 𝑞 to

𝐶𝐿𝑖

1) 𝑛:= no. of points in 𝐶𝐿𝑖 , 𝑆𝑖 := points of 𝐶𝐿𝑖

2) while (two tangent points not computed) do

3) select a point 𝑣 𝜖 𝑆𝑖

4) if(𝑣. 𝑝𝑟𝑒𝑣 and 𝑣. 𝑛𝑒𝑥𝑡 lies on the right of ℓ(𝑞, 𝑣))

5) return 𝑣 as lower tangent point (𝑣𝑙)

6) else if(𝑣. 𝑝𝑟𝑒𝑣 and 𝑣. next lies on the left of ℓ(𝑞, 𝑣))
7) return 𝑣 as upper tangent point (𝑣𝑢)

8) else

9) select a point 𝑣1 at 𝑛/2 distance from 𝑣

10) if points 𝑣 and 𝑣1 are of similar nature

11) discard chain 𝑣 to 𝑣1

12) 𝑆𝑖 := points of chain 𝑣1 to 𝑣

13) go to step 3

14) else

15) 𝑆1:= points of chain 𝑣 to 𝑣1

16) 𝑆2:= points of chain 𝑣1 to 𝑣

17) go to step 3 with 𝑆1

18) go to step 3 with 𝑆2

Algorithm 3: Insert Point(q, CL)

Insert a point in the convex layer set while maintaining the

convexity property. It assumes that at least three points are

already arrived.

Input: 𝑞 is the point to be inserted to the convex layers 𝐶𝐿
with 𝑘 layers.

Ouptut: Convex layers set 𝐶𝐿 after insertion of point 𝑞.

1) 𝑖 = 𝐹𝑖𝑛𝑑𝐿𝑎𝑦𝑒𝑟(𝑞, 𝐶𝐿)
2) if 𝑖 = 𝑘 + 1 then do

3) 𝐶𝐿𝑘+1 = 𝑞 //new layer added

4) return 𝐶𝐿 with 𝑘 + 1 layers

5) if 𝑖 = 𝑘 and 𝐶𝐿𝑘 contains less than three points

6) 𝐶𝐿𝑘 = 𝐶𝐿𝑘 ∪ 𝑞

7) return 𝐶𝐿

8) 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑇𝑎𝑛𝑔𝑒𝑛𝑡(𝑞, 𝐶𝐿𝑖)
9) if 𝑣𝑙 & 𝑣𝑢 are adjacent

10) connect 𝑞 with 𝑣𝑢 and 𝑣𝑙

11) remove edge 𝑒(𝑣𝑙 , 𝑣𝑢)

12) return //𝐶𝐿𝑖+1 not disturbed

13) remove chain vl . next to vu . prev from 𝐶𝐿𝑖

14) remove edges e(𝑣𝑙 , 𝑣𝑙 . next) and e(𝑣𝑢 . prev, 𝑣𝑢)

15) connect 𝑞 with 𝑣𝑢 and 𝑣𝑙 to complete 𝐶𝐿𝑖

16) 𝑖 = 𝑖 + 1
17) while (𝑖 ≠ 𝑘) do

18) 𝑣𝑢 𝑖 + 1 = Compute Upper Tangent(𝐶𝐿𝑖+1,
𝑣𝑢 . prev)

19) 𝑣𝑙 𝑖 + 1 = Compute Lower Tangent (𝐶𝐿𝑖+1,
 𝑣𝑙 . next)

20) if 𝑣𝑙(𝑖 + 1) & 𝑣𝑢(𝑖 + 1) are adjacent

21) connect 𝑣𝑢 . prev with 𝑣𝑢(𝑖 + 1) and vl . next
22) with 𝑣𝑙(𝑖 + 1)

23) remove edge 𝑒(𝑣𝑙(𝑖 + 1), 𝑣𝑢(𝑖 + 1))

24) return //next inner layer not disturbed

25) remove chain 𝑣𝑙(𝑖 + 1). next to 𝑣𝑢(𝑖 + 1). prev from

𝐶𝐿𝑖+1

26) remove edges 𝑒 𝑣𝑙 𝑖 + 1 , 𝑣𝑙 𝑖 + 1 . next
27) & 𝑒(𝑣𝑢(𝑖 + 1). prev , 𝑣𝑢(𝑖 + 1))

28) connect 𝑣𝑢 . prev with 𝑣𝑢(𝑖 + 1) & 𝑣𝑙 . next with

29) 𝑣𝑙(𝑖 + 1)

30) 𝑣𝑢 . prev ∶= 𝑣𝑢(𝑖 + 1). prev
31) 𝑣𝑙 . next ∶= 𝑣𝑙(𝑖 + 1). next
32) 𝑖: = 𝑖 + 1
33) 𝐶𝐿𝑖 is chain 𝑣𝑢 . prev to 𝑣𝑙 . next

To insert an incoming point 𝑞 the layer, say 𝐶𝐿𝑖 , to which

it should be inserted can be computed in 𝑂(𝑛) time and two

tangent points to the layer 𝐶𝐿𝑖 can be found in 𝑂(𝑙𝑜𝑔𝑛𝑖)

time. With this information, point 𝑞 can be inserted to layer

𝐶𝐿𝑖 in constant time. Consequently, inner layer(s) may

require to be modified. In the worst case, the point inserted to

outer layer and all inner layers required to be modified, in

that case running time is:

International Journal of Computer Theory and Engineering, Vol. 7, No. 6, December 2015

497

𝑂(𝑛) + 𝑂(𝑙𝑜𝑔 𝑛1) updating outermost layer

+ 𝑂(𝑙𝑜𝑔 𝑛2) + ⋯ + 𝑂(𝑙𝑜𝑔 𝑛𝑘) updating all inner layers

≤ 𝑂(𝑛) + 𝑂(𝑙𝑜𝑔 𝑛1) + (𝑛2 + 𝑛3 + ⋯ + 𝑛𝑘)
≤ 𝑂(𝑛)

Hence, a single point can be inserted in 𝑂(𝑛) time.

B. Algortithm to Delete a Point from 𝐶𝐿

Deletion of a point 𝑞 from convex layer 𝐶𝐿𝑖 may result

into reconfiguration of inner layer(s), whereas outer layers

remain unaltered. Algorithm 4 deletes a point 𝑞 from 𝐶𝐿 and

reconfigures 𝐶𝐿, so that convexity is maintained. Deletion

involves finding tangents and updating inner layer(s) if

required (Refer Fig. 6).

Fig. 6. Deletion.

Deletion of a point (or chain) from layer 𝐶𝐿𝑖 , may require

inclusion of a part of layer 𝐶𝐿𝑖+1 to layer 𝐶𝐿𝑖 (Refer Fig. 6).

Candidate list 𝐶𝐿𝑖𝑠𝑡 stores points of 𝐶𝐿𝑖+1 that are to be

added to 𝐶𝐿𝑖 .

In step 7 of Algorithm 4, to maintain CCW order, points

added to 𝐶𝐿𝑖𝑠𝑡 after 𝑞. 𝑝𝑟𝑒𝑣 and before 𝑞. 𝑛𝑒𝑥𝑡.
A point (or chain) can be added to or removed from layer

𝐶𝐿𝑖 in constant time. The expensive step is computation of

tangents. By applying Algorithm 2, a tangent can be

computed in 𝑂(log𝑛) time. In the worst case, after deletion

of a point from outermost layer, all the inner layers are

required to be modified. Thus, tangent computed for all inner

layers,

𝑙𝑜𝑔(𝑛2) + … + 𝑙𝑜𝑔(𝑛𝑘)

 𝑛1 + 𝑛2 + … + 𝑛𝑘 = 𝑛

Thus, the time required to delete a point is 𝑂(𝑛).

Algorithm 4: Delete(q, CLi)

Input: 𝑞 is the point to be deleted from 𝐶𝐿𝑖 and 𝑘 is

number of layers in 𝐶𝐿.

Output: Convex layers set 𝐶𝐿 after deletion of point 𝑞.

1) Candidate list 𝐶𝐿𝑖𝑠𝑡 initialized as an empty list.

2) 𝑖: = 1

3) repeat

4) Compute tangents from 𝑞. 𝑝𝑟𝑒𝑣 and 𝑞. 𝑛𝑒𝑥𝑡 to 𝐶𝐿𝑖+1

lying to the right of the line 𝑙(𝑞. 𝑝𝑟𝑒𝑣, 𝑞. 𝑛𝑒𝑥𝑡), say 𝑝𝑎

and 𝑝𝑏 be tangent points, respectively. If no such

points found, return.

5) The points lying on the chain 𝑝𝑎 to 𝑝𝑏 are added to

𝐶𝐿𝑖𝑠𝑡 in order.

6) if 𝐶𝐿𝑖𝑠𝑡 is empty //𝐶𝐿𝑖+1 not disturbed

Remove 𝑞 from 𝐶𝐿𝑖+1

Return

7) else

𝐶𝐿𝑖+1 ∶= 𝐶𝐿𝑖+1 – 𝐶𝐿𝑖𝑠𝑡

𝐶𝐿𝑖 : = 𝐶𝐿𝑖 − {𝑞}

𝐶𝐿𝑖 : = 𝐶𝐿𝑖 ∪ 𝐶𝐿𝑖𝑠𝑡

𝑞. 𝑛𝑒𝑥𝑡 ∶= 𝐶𝐿𝑖𝑠𝑡[𝑙𝑎𝑠𝑡]. 𝑛𝑒𝑥𝑡

𝑞. 𝑝𝑟𝑒𝑣 ∶= 𝐶𝐿𝑖𝑠𝑡[𝑓𝑖𝑟𝑠𝑡]. 𝑝𝑟𝑒𝑣

𝑒𝑚𝑝𝑡𝑦 𝐶𝐿𝑖𝑠𝑡

𝑖 = 𝑖 + 1

8) while (𝑖 ≠ 𝑘)

Hence, it is clear that a single point can be inserted or

deleted in 𝑂(𝑛) time. Algorithm 3 and Algorithm 4 can be

used to compute the convex layers in the dynamic context in

𝑂(𝑛2) . However, the amortized time complexity will be

much lower.

IV. CONCLUSION

In this paper we have presented an idea to compute convex

layers in dynamic environment. The primary requirement is

to allow insertion and deletion at any instant. Time

complexity of proposed algorithm is 𝑂(𝑛2). To reduce the

running time for insertion and deletion will be our future

work.

REFERENCES

[1] M. I. Shamos, “Computational geometry,” Ph.D. thesis. Dept. of

Computer Science, Yale University, 1978.

[2] P. J. Huber., “Robust statistics: a review,” Annals of Mathematical

Statistics, vol. 43, no. 3, pp. 1041-1067, 1972.

[3] B. Chazelle, L. J. Guibas, and D. T. Lee, “The power of geometric

duality,” in Proc. 24th IEEE Annual Symposium Foundations of

Computer Science, 1983, pp. 217-225.

[4] S. Liew, “Introducing convex layers to the Traveling Salesman

Problem,” The Computing Research Repository, 2012.

[5] B. Chazelle, “On the convex layers of a planar set,” IEEE Transactions

on Information Theory, vol. IT-31, pp. 509-517, 1985.

[6] R. L. Graham, “An efficient algorithm for determining the convex hull

of a finite planar set,” Information Processing Letter, vol. 1, pp.

132-133, 1972.

[7] P. J. Green and B. W. Silverman, “Constructing the convex hull of a set

of points in the plane,” Computer Journal, vol. 22, pp. 262-266, 1979.

[8] M. D. Berg, O. Cheong, M. V. Kreveld, and M. Overmars,

Computational Geometry: Algorithms and Applications, 3rd ed.,

Springer-Verlag TELOS Santa Clara, CA, USA, 2008.

Sanjib Sadhu has done his B.E. degree in computer

science and engineering from NIT Durgapur and

M.Tech. degree in computer science and engineering

from N.I.T. Durgapur. Currently he is working with the

Department of Computer Science and Engineering at

NIT Durgapur as an assistant professor. His research

areas include algorithm design and computational

geometry.

Niraj Kumar got the B.E. degree in computer science

and engineering from MDU Rohtak and M.Tech.

degree in computer science and engineering from N.I.T.

Durgapur. Currently he is working with the Department

of Computer Science and Engineering at Dronacharya

College of Engineering Gurgaon as an assistant

professor. His research areas include algorithm design

and computational geometry.

International Journal of Computer Theory and Engineering, Vol. 7, No. 6, December 2015

498

