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Abstract—In this paper an output feedback controller for 

tracking control of surface ships based on Euler-Lagrange 

equations has been proposed. It has been assumed that a surface 

ship is moving in a horizontal plane and under-actuated in sway 

direction. The change of coordinate’s method is applied to 

overcome the third order component that arises in the 

Lyapunov function derivatives due to Coriolis and centripetal 

forces term. The design of the controller is based on the 

backstepping control technique and Lyapunov stability theory. 

Firstly, the observer is derived using the change of coordinate 

method. Next, backstepping control technique is employed to 

derive the control law. Finally, a global asymptotic convergence 

is proven using Lyapunov stability theorems. Simulations are 

provided to demonstrate the performance of the designed 

controller and prove tracking error of the controller 

convergence. 

 
Index Terms—Change of coordinates, euler-lagrange 

equations, output feedback controller, under-actuated surface 

ship, third order component, backstepping control technique.  

 

I. INTRODUCTION 

A conventional ship considers the motion in surge 

(forward), sway (sideways), and yaw (heading). Normally, 

we have surge and sway control forces and yaw control 

moment available for navigating the ship. However, this 

assumption is not practical for all ships. For example, some 

ships are either equipped with two autonomous aft-thrusters 

or with one main aft-thruster and a rudder, but there is no any 

bow or side thrusters, like, for example, many supply ships. 

As a result, there is control force in the sway axis. In this 

paper, we deal with the tracking control for ships with only 

surge (x-axis) and yaw (z-axis) control moment available. 

Since we need to control 3DOF (three degrees of freedom) 

with only two inputs available, thus we are dealing with an 

under-actuated problem. Since we want to control the ship 

motion in the horizontal plane, therefore, we neglect the 

dynamics related to the motion in heave, roll, and pitch [1], 

[2]. 

The tracking control of surface ships is compulsory in 

order to achieve offshore exploitation, activities and various 

applications such as the drilling, pipe laying, diving support, 

etc. [3]. Several control strategies have been proposed for 

surface ships such as global uniform asymptotic stabilization 

of an under-actuated surface vessel was presented [4]. A 
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Robust adaptive ship autopilot with wave filter and integral 

action was proposed in [5]. Sliding mode control was 

presented and experimentally implemented for trajectory 

tracking of under-actuated autonomous surface vessels [6]. 

An approximation based control was developed to handle 

model uncertainties and unknown disturbances for fully 

actuated ocean surface vessels [7]. Another approach to 

design a global tracking controller for under-actuated ships 

with the sway axis unactuated has been introduced [8]. In the 

proposed work, the assumption that the mass and damping 

matrices are diagonal is not used as required globally to track 

the reference trajectory. Also, a pi-type sliding controller for 

tracking control of the ship is given in [9]. The method 

applies three components of which one component is to 

ensure stability in the absence of uncertainties and 

environmental disturbances. The rest two components are 

and proportional integral type variable structure controllers 

respectively. An adaptive feedback controller using neural 

network feedback-feedforward compensator for a surface 

ship at high speed has been proposed [10] so as to include the 

influence of the nonlinear hydrodynamic damping terms on 

the tracking precision. In [10], the neural network 

feedback-feedforward compensator is used to for estimation 

of the uncertainty nonlinear parts of the system where a 

single layer neural network is used to obtain the adaptive 

signal online. A trajectory tracking controller design for an 

underactuated surface ship has been given in [11]. The 

control system design is based on a linear algebra method and 

numerical method. Saturated control inputs and an 

assumption that the reference trajectory is used [11]. The 

main future of the controller addressed in [11] is that the 

conditions for tracking errors goes to zero and calculation of 

control action is done by solving linear equations. Many 

studies have been presented for the tracking control of 

surface ships. However, more studies of precise control of 

trajectory of ships are still in demand. Thus, in this study an 

observer design for the tracking control of under-actuated 

surface ships has been presented.   

Generally, it is noted that the coriolis and centripetal forces 

cause third-order components to appear in the Lyapunov 

function derivative, and these terms can only be dominated 

on a compact domain about the origin, preventing a global 

stability conclusion. These high order terms arise due to 

coriolis and centrifugal forces vector in the Euler-Lagrange 

equation [12]. Therefore in this paper we utilize the alteration 

of coordinates to solve the problem.  

The key contribution of this paper is based on the design 

an output feedback controller for tacking control of the 

under-actuated ship via Euler-Lagrange equation and ensures 

that the surface ship complies with the desired dynamics and 

behavior using only available position and heading of the 
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ship.  This paper is structured as follows: Section two 

presents Euler-Lagrange formula in vector form. 

Mathematical model of under-actuated surface ship is 

presented in section three. Observer design for 

under-actuated surface ship is persuasively presented in 

section four. While backstepping control design and analysis 

is eloquently presented in section five. Lastly, the conclusion 

is given in section six. 

 

II. EULER-LAGRANGE FORMULA 

The Euler-Lagrange equation for dynamical system can be 

represented in the following form 

( , ) ( , )
T

d L q q L q q

dt q L


  
  

  

 


                       (1) 

where Lagrange ( , ) ( )L T q q V q  , ( , )T q q is the kinetic 

energy and ( )V q  is the potential energy function 

and n
T  is the control input. It is assumed that the kinetic 

energy function is of quadratic form 

1
( , ) ( )

2

TT q q q M q q                             (2) 

where ( ) n nM q   is positive definite and uniformly 

bounded satisfying the following condition 

min max0 ( ( )) ( ( ))M q M q                        (3) 

Using the Christoffel [9] symbols of the first kind, the 

equation given in (1) can be written as  

( ) ( , ) ( , ) ( )q TM q q C q q q D q q q G q                       (4) 

where ( , )C q q is the coriolis and centrifugal matrix, 

( )
( )q

V q
G q

q





 are gravitational and buoyancy forces 

and ( , )D q q is the hydrodynamic damping matrix.  

Remark 1: The coriolis and centrifugal matrix ( , )C x y is 

bounded in x and linear in y having the following properties 

[9] 

1) ( , ) ( , ) , for all , , nC x y y C q y x x y q           (5) 

2) ( , ) ZC x y C y                              (6) 

where 0ZC  . In addition, we can parameterize the coriolis 

and centrifugal matrix in the form of Christoffel symbols [8]. 

 

III. SHIP MODEL 

A 3 degree of freedom (DOF) dynamic model of a surface 

ship moving in a horizontal plane (i.e. surge, sway, and yaw 

modes) is used in this paper. This model is found in [13], and 

is composed of the kinematics 

( )J                                        (7) 

   M C D                                    (8) 

where 2[ , , ]Tx y S      represents the earth-fixed 

position and heading (with [ , ]S    ), 

3[ , , ]Tx y      represents the ship-fixed velocity, 

( ) (3)J SO  is the transformation matrix 

cos( ) sin( ) 0

( ) sin( ) cos( ) 0

0 0 1

J

 

  

 

  

 
 

  
 
 

                      (9) 

Which transforms from the ship-fixed BODY frame ( )B to 

the earth-fixed NED frame ( )N , M  is the inertia matrix, 

( )C  is the centrifugal and coriolis matrix, while ( )D  is the 

hydrodynamic damping matrix. The system matrices satisfy 

the properties 0TM M  , TC C  and 0D  . The 

ship-fixed propulsion forces and moment is represented by 

the vector 3[ , , ]Tx y      . The values of M , ( )C  , 

( )D   are: 

1311 11

22 22 23

33 33 31 32

0 00 0 0 0

0 0 ,  0 0 ,  ( ) 0 0

0 0 0 0 0

cm d

M m D d C c

m d c c



    
    

       
    

     

 

where 13 22 yc m   , 23 11 xc m  , 31 22 yc m  and

32 11 xc m   . In this paper we assume that there is no thrust 

force in sway direction, therefore there is no motion in sway 

direction. Thus, 0y   and [ , 0, ]Tx    . Furthermore, 

we assume that the only position ( , )x y  and heading   

are available for measurement.  

 

IV. OBSERVER DESIGN 

In this part we present an observer based on the general 

Euler-Lagrange equation. We introduce change of 

coordinates to overcome or eliminate the problem of 

third-order terms that remain in the Lyapunov function 

derivatives. Third-order terms are due to the coriolis and 

centrifugal forces in (4). These terms have quadratic growth 

in the velocities which are not measured. Now we introduce 

the following alteration of coordinates to remove these 

undesired nonlinearities, thus let 

1z                                           (10) 

2 1z z                                         (11) 

Thus, rewriting (4) we obtain the following 

1 2z z                                         (12) 

11 2 1 1 1 1 1 1 1( ) ( , ) ( , ) ( )z TM z z C z z z D z z z G z                (13) 

Now to remove the nonlinear term 1 1 1( , )C z z z  we can 

define the following coordinate change 

 1( , )
1 2

t z
w e z


                             (14) 
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where 1( , )t z is invertible matrix to be defined. Taking time 

derivative of (14) we obtain the following result 

1 1( , ) ( , )
1 2 1 2( , )

t z t z
w e z t z e z

          (14) 

Substituting (14) in (12) and (13) yields the following 

result 

1( , ) 1
1 1 1 1 2 1 1 2( )[ ( , ) ( , )

t z
Tw e M z C z z z D z z z

       

1

1

( , )
1 1 2    ( )] ( , )

t z
zG z t z e z

            (15) 

Further, equation (15) can be written as 

1 1

1

( , ) ( , )1
1 1 1 1 2 1( )[ ( , ) ( )]

t z t z
T zw e M z D z z z G z e

     

 1
1 1 1 1 2     [ ( , ) ( ) ( , )]t z M z C z z z         (16) 

Now we choose a dynamic for 1( , )t z  such that the 

coriolis matrix will diminish during the observer derivation. 

Let  

1
1 1 1 1( , ) ( ) ( , )t z M z C z z                         (17) 

The objective is to cancel the effect of the 1 1( , )C z z term in 

the Lyapunov function and to providing negative and radially 

unbounded term in Lyapunov function derivative.  

Remark 2: The solution of (17) is bounded. Proof: The 

coriolis and centrifugal matrix 1( , .)C z can be selected as 

 1

1

,

n

ijk i

i

C z y c y



  
  
  
                           (18) 

where 
1 1 1

1

2

kj ijik
ijk

i j k

m mm
c

z z z

  
   

    

are the Christoffel symbol 

of the first kind, 1 1( ) { ( )}ijM z m z . Now applying properties 

(i) and (ii), the Christoffel symbols are bounded and thus the 

Coriolis and centrifugal matrix satisfy the following 

conditions 

1

( , )

n

ijk i Z

i

C x y c y y C y



  
  

  
                 (19) 

Hence from equation (15) we have 

1
1 1 1 1 1

min

( , ) ( ) ( , ) ZC
t z M z C z z z



                (20) 

where min is the minimum eigenvalue of the matrix 1( )M z . 

Using Lemma from [14], yields the following results 

0

1 1 1 1 0
min min

( , ) ( ( ) ( ))

t

Z Z

t

C C
t z z dt z t z t

 
            (21) 

Since the control object is to converge the 1z state to a 

smooth trajectory, therefore the solution is bound. Now 

substituting (17) into (16) result to the following   

1 1 1

1

( , ) ( , ) ( , )1 1
1 1 1 1 1 1 1( ) ( , ) ( )[ ( )]

t z t z t z
T zw e M z D z z e w e M z G z

         (22) 

Then recalling (12) and (13) and substitute (22) into them 

we have the following 

1( , )
1 1

t z
z e w


                                   (23) 

 
1 1 1

1

( , ) ( , ) ( , )1 1
1 1 1 1 1 1 1( ) ( , ) ( )[ ( )]

t z t z t z
T zw e M z D z z e w e M z G z

         (24) 

Based on (23) and (24), the following observer is proposed 

1( , )
1 1 1 1 1

ˆˆ ˆ( )


  
t z

z e w K z z                       (25) 

1 1 1( , ) ( , ) ( , )1 1
1 1 1 1 1 1

ˆ ˆˆ( ) ( , ) ( )
      t z t z t z

w e M z D z z e w e M z  

1 1 2 1 1 1̂    [ ( )] ( , )( )T zG z K t z z z            (26) 

where 1̂z and 1( , )
1 1

ˆ ˆt z
w e z


  are estimates of 

1z and 1w respectively, 1 1
TK K is a positive diagonal gain 

matrix. 2 1( , )K t z is defined in remark 3. Now subtracting 

(23) from (25) and (24) from (26) yield the following error 

dynamics 

1( , )
1 1 1 1

t z
z e w K z


                              (27) 

1 1( , ) ( , )1
1 1 1 1 1 2 1 1ˆ( ) ( , ) ( , )

t z t z
w e M z D z z e w K t z z

          (28) 

where 1 1 1̂z z z  and 1 1 1
ˆw w w   are error dynamics of the 

observer.  

Remark 3: Given a positive definite matrix 1  

and 2 such that the matrix gain 2 1( , )K t z is chosen such that  

1( , )1
2 1 1 2( , )

t z
K t z e

                           (29) 

then the estimation errors 1z and 2z converge globally to the 

origin. Moreover, (12) and (13) can be written in new 

coordinates 1 2ˆ( , )z z as  

1 2 1 2( , ) ( )T B                                (30) 

2 1 2 2( , )F                                    (31) 

To prove this we define Lyapunov function candidate as  

1 1 1 2 1 1 1 1

1 1
( , )

2 2

T TV z w z z w w                         (32) 

Taking time derivative of (32) along the trajectory of (27) 

and (28) together yields the following results 

1 1( , ) ( , )1
1 2 1 1 1 1 1 1 1 1ˆ( ) ( , )

t z t zT TV z K z w e M z D z z e w
         

 1( , )
1 1 2 1 2 1  ( ( , ) )

t zTw K t z e K z


                    (33) 

Choosing 2 1( , )K t z as in (29), then the time derivative of 

the Lyapunov function of (27) and (28) can be written as 

1 1( , ) ( , )1
1 2 1 1 1 1 1 1 1 1ˆ( ) ( , ) 0

t z t zT TV z K z w e M z D z z e w
          (34) 

Therefore from (34) we conclude that the observer is 

globally exponentially stable equilibrium, thus 

0 0
1 01 ( )

1 1 0

( )( )

( ) ( )

t tz tz t
e

w t w t

 




 
                    (35) 

Moreover, using (14) and 1( , )
1 2

ˆ ˆ


t z
w e z  , we obtain the 
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following 

1( , )
1 2

t z
w e z


                              (36) 

thus using (35) and remark 2, we conclude that the 

equilibrium of 2z is globally exponential stable, hence 

0 0
1 01 ( )

0
2 2 0

( )( )

( ) ( )

t tz tz t
e

z t z t

  




 
                     (37) 

Therefore based on the above analysis, we shall derive an 

observer for the under-actuated ship using (7) and (8). First 

we write (7) and (8) in the new coordinate system, i.e. 

ˆ( , )  as follows 

11 3 3 1

11 1 1
3 3 22

ˆ 0( )

0 ( )ˆ ˆ ˆ ˆ( )





 

    



  


     
       

             

 
 

HJ w

J HM C M D M

  (38) 

where 1( , )
11

t z
H e


 and 1( , )

22 2 1( ( , ))
t z

H K t z e


  

with  

0 0
0 ( )

0

0

( )( )

ˆ ˆ( ) ( )





 

 
  

   
      



 
t t

tt
e

t t
                      (39) 

expanding (38) we have the following results 

ˆ ˆ( )cos( ) ( )sin( )            
x x x y y             (40) 

ˆ ˆ( )sin( ) ( )cos( )            
y x x y y             (41) 

ˆ
                                          (42) 

22 11

11 11 11

1
ˆ ˆ ˆ ˆ

         
xx y x x

m d

m m m
              (43) 

11 22

22 22

ˆ ˆ ˆ ˆ
        

yy x y

m d

m m
                   (44) 

3311 22

33 33 33

1
ˆ ˆ ˆ ˆ

         


   
x

dm m

m m m
     (45) 

where
x

 ,
y

 ,


 and first, second and third terms 

of
1

22( )J H   . Now we establish the trajectory errors of 

the ship according to [1], [9], we assume that the ship is on a 

frame attached to the parameterized trajectory ( )   such 

that 

1[ , , ] ( )[ , , ]T T
xe ye e x xd y yd dJ                  (46) 

where xe , ye and e  are the tangential, cross and heading 

tracking error respectively, xd , yd and d are desired 

tracking in surge, sway and yaw respectively. Furthermore, 

d is defined by 

1tan
yd

d
xd








  
   

 
                             (47) 

where
( )x

xd

 








, 

( )y

yd

 








 

Taking time derivative of (46) and (47) along the trajectory 

of (40) – (42), result in the following tracking error dynamics 

ˆ ˆcos( ) ( )               
xe x xd e ye x            (48) 

ˆ ˆsin( ) ( )               
ye y xd e xe y             (49) 

ˆ
e d                                      (50) 

22 11

11 11 11

1
ˆ ˆ ˆ ˆ

         
xx y x x

m d

m m m
           (51) 

11 22

22 22

ˆ ˆ ˆ ˆ
        
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x
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m m m
    (53) 

where 

2 2( ) ( )xd xd yd
                                 (54) 

and 

2 2

2 2

( ) ( ) ( ) ( )

( ) ( )

xd yd xd yd

d

xd yd

   

  

       
 

   






             (55) 

where xd and d are the desired surge and yaw velocities 

respectively. 

 

V. CONTROL SYSTEM DESIGN 

The knowledge of backstepping design approach is for 

construction of feedback control law through a recursive 

construction of a control Lyapunov function. In this section 

the design of the controller using backstepping approach is 

presented. We assume that the ship velocities are 

unmeasurable. Since velocities are unmeasurable, we are 

going to use ˆ
x as state variable estimate of x . Thus, we 

apply ˆ
x to stabilize the error dynamics in surge motion. 

Nevertheless, we cannot apply the estimate of ˆ
y to directly 

control the error dynamics in sway motion because it is 

un-actuated. Instead we are going to use e as a virtual 

control to stabilize the error dynamics in sway motion. Hence 

we define the following variable as 

ˆ
xe x x                                       (56) 

ee e                                       (57) 

ˆ
e                                       (58) 

Now the control is designed through the following steps  

1) Stabilizing the xe -dynamics, we rewrite equation (48) 

and (56)-(58) as follows 

 ˆcos( ) ( )xe xe x xd e ye x                        (59) 

choosing x as the first virtual control to stabilize 
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the xe -dynamics as 

1 cos( )x xd e                             (60) 

which gives 

1
ˆ( )xe ye xe x                               (61) 

where 1
1

1

xek



 and

2 2
1 1 xe ye      

2) Stabilizing the ye -dynamics, we use (49) as follows 

ˆsin( ) ( )
eye y xd xe xd y                       (62) 

where 

sin( ) cos( ) (cos( ) 1)sin( )
e ee e                  (63) 

By assuming that x cannot be equal to zero, then we 

choose the virtual control as 

21tan
e

yd

xd


 





 

   
 

                           (64) 

where
2

2

1

yek 



 and yd is the desired sway velocity. 

Hence we obtain the following 

2
ˆ( )ye xe xd y                                 (65) 

3) We stabilize the e -dynamics. Taking time derivative 

of (57) along the trajectory of (64) and (48)-(50) we have 
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2
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3 3
1 1
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      ( ) ( )
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      

   


         (66) 

where 2
2( )xd xd      . Now from (66) we can choose 

the value of 2 such that 2 2 2min( , )k k k , 

2 : min( ) max( )xd ydk    and 2 : min( )k  . Now we design 

the virtual control  based on (58) as follows 

1

32 2

1 2 1
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1

yd yd xd eexe
d

kk k 
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 (67) 

Note that, to cancel the cross term in the ye -dynamics, we 

added the last term in (67). Note that 
1

0

sin( )
cos( )

e

e
e

t dt









  and

1

0

cos( ) 1
sin( )

e

e
e

t dt











  are 

smooth functions of e . Thus, e -dynamics becomes 

2
23 2 2

3 3
1 1 1 1

(1 )
1

xe yee xe xe
e xe ye

kk k k
 

   
   

      

  
     

 



 
2

2 2

3 3
1 1

(1 )
      ( )

xd ye ye xe
ye x

e

k k




   
  

    

 
      

       ( )y ye                                           (68) 

Now, the desired sway velocity yd is obtained by taking 

time derivative of ˆ
ye y yd    along the trajectory of (52)  

22 11 11 11
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and from (69) we obtain 
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Which gives the following 
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4) To stabilize ye -dynamics, we differentiate with respect 

to time equation (56) and (60) as 
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Since the control law x appears in (72), then we design 

control law as  
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                                       (73) 

Differentiating with respect to time (58) along the 
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trajectory of (53) we obtain control law  as 
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                (74) 

Therefore, if the control laws x and  derived in (73) and 

(74) are applied to the under-actuated ship model described 

by (7)-(9) (together with the observer in (38)), then we can 

conclude that the trajectory tracking errors (i.e. xe , ye , 

e , xe , ye and e ) converges globally asymptotically to 

zero. The proof of is excluded due to restricted space. Notice 

that in this paper we have dealt with environmental 

disturbance free under-actuated ship.  

 

VI. SIMULATION STUDY 
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Fig. 1. Trajectory tracking of ( , , )x y  . 

 

In this paper we use the ship proposed in [15] for 

simulation purposes. The following parameters are used  
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The control gains 1K and 2K are taken as  
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Fig. 2. Trajectory tracking error convergence of ( , , )x y  . 
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Fig. 3. Control signal ( , )x   . 
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The initial conditions are set to 

be ( ) (0) [0m, -2m, -0.5rad]t    and

ˆ(0) (0) [0m/s, 0m/s, 0rad/s]    . Fig. 1 shows the 

simulation results of trajectory tracking of the position ( , )x y  

and heading   of the ship. Fig. 2 shows the simulation 

results of tracking error convergence of the observer position 

and heading. It is clear that from Fig. 2 the error converge as 

faster as 10 seconds, thus showing that the proposed observer 

is stable.  

Finally, simulation results of Fig. 3 show the control signal 

( , )x   applied.   

 

VII. CONCLUSION 

In this paper an output feedback controller for tracking 

control of under-actuated surface ships using Euler Lagrange 

equations has been given. The change of coordinates was 

applied to overcome the third order that arises in the 

Lyapunov function derivatives due to Coriolis and centripetal 

forces term. The controller design was carried out using back 

stepping control technique and Lyapunov stability theorems. 

The control law was derived via Lyapunov stability theory 

and backstepping control technique. The observer was 

derived using the change of coordinate method; then 

backstepping control technique was employed to derive the 

control law. Simulation results presented validates the 

performance of the controller and prove that the tracking 

error converges. 
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