

Abstract—This paper presents a monitoring and notification

system based on risk analysis using map-reduce framework that

can do risk prediction using big data. By using social media and

access records of their users, the proposed system determines

their risks. Also, it monitors the restricted area through setting

them and notifies the administrator as soon as the intrusions are

detected. So, it will provide a control situation for administrator

in real time and can detect the risky moments that may occur in

advance. Therefore it can reduce the probability of risk of

security penetration. Also, since it receives the control situation

and provides real-time control screen via smartphone, it is

possible to improve the convenience of intrusion management in

a very fast and effective way.

Index Terms—Mapreduce, mahout, big data, predictive

analytics.

I. INTRODUCTION

Big data and its analysis are at the center of modern

science and business. These data are generated from online

transactions, emails, videos, audios, images, click streams,

logs, posts, search queries, health records, social networking

interactions, science data, sensors and mobile phones and

their applications [1], [2]. Big data concept means a large

dataset which continues to grow so much that it becomes

difficult to manage it using existing database management

concepts & tools [3]. The difficulty can be related to data

capture, storage, search, sharing, analytics and visualization

etc. Big data can help to gain insights and make better

decisions. It presents an opportunity to create unprecedented

business advantage and better service delivery. It also

requires new infrastructures and new ways of thinking about

how business and IT industry works.

Much of the current discussion about big data analytics

today focuses on managing and analyzing unstructured data

from business and social sources such as e-mail, videos,

tweets, Facebook posts, reviews, and Web behavior [4]-[6].

While this type of big data analytics promises to provide

significant value to organizations, data generated at the edge

of the network from sensors and other devices represent

another huge and untapped resource with the potential to

deliver insights that can transform the operations and

strategic initiatives of public and private sector organizations

[7].

This paper presents a monitoring and notification system

based on risk analysis using map-reduce framework that can

do risk prediction using big data. By using social media and

access records of their users, the proposed system determines

uncertain risks they could create. By using the risk

information that has been obtained from the platform, it can

determine whether they should be granted the requested

rights to access to restricted areas. And it can set some places

that should be monitored as restricted areas. If the intrusion is

detected in an area that has been set, then it promptly notifies

the administrator with agile viewers showing him/her the

intrusion for preparing the next step. So, it will provide a

control situation for the administrator in real time and can

detect the risky moments that may occur in advance.

Therefore it can reduce the probability of risk of security

penetration. Also, since it receives the control situation and

provides real-time control screen via smartphone, it is

possible to improve the convenience of intrusion

management in a very fast and effective way.

II. RELATED WORK

The MapReduce programming model is designed to

process large volumes of data in parallel by dividing a job

into a set of independent tasks [8]-[10]. The job is referred to

here as a full MapReduce program, which is the execution of

a Mapper or Reducer across a set of data. A task is an

execution of a Mapper or Reducer on a slice of data. So, the

MapReduce job usually splits the input data set into

independent chunks, which are processed by the map tasks in

a completely parallel manner.

Fig. 1. Hadoop architecture.

Fig. 1 illustrates the Hadoop architecture. The Hadoop

MapReduce framework consists of a single Master node that

runs a JobTracker instance which accepts Job requests from a

client node and Slave nodes each running a TaskTracker

instance [11]. The JobTracker assumes the responsibility of

Monitoring and Notification System Based on Risk

Analysis Using Map-Reduce Framework

Yoondeuk Seo and Jinho Ahn

International Journal of Computer Theory and Engineering, Vol. 7, No. 6, December 2015

444DOI: 10.7763/IJCTE.2015.V7.1000

Manuscript received September 8, 2014; revised October 21, 2014. This

work was supported in part by the U.S. Department of Commerce under

Grant BS123456 (sponsor and financial support acknowledgment goes here).

The authors are with the Department of Computer Science, Kyonggi

University, Iuidong, Yeongtonggu, Suwon 443-760 Gyeonggi, Republic of

Korea (Corresponding author: Jinho Ahn; tel.: +82 31 249-9674; fax: +82 31

249-9673; e-mail: seoyd@kgu.ac.kr, jhahn@kgu.ac.kr).

mailto:seoyd@kgu.ac.kr

distributing the software configuration to the Slave nodes,

scheduling the job’s component tasks on the TaskTrackers,

monitoring them and reassigning tasks to the TaskTrackers

when they failed. It is also responsible for providing the

status and diagnostic information to the client. The

TaskTrackers execute the tasks as directed by the

JobTracker. The TaskTracker executes tasks in separate java

processes so that several task instances can be performed in

parallel at the same time.

The MapReduce input data typically come from the input

files loaded into the HDFS. These files are evenly distributed

across all the nodes in the cluster. In Hadoop, computer

nodes and data nodes are all the same, meaning that the

MapReduce and HDFS run on the same set of nodes. At the

mapping phase, the input file is divided into independent

Input Splits and each split of these Splits describes a unit of

work that comprises a single map task in the MapReduce job.

The map tasks are then assigned to the nodes in the system

based on the physically residence of the input file splits.

Several map tasks can be assigned to an individual node,

which attempts to perform as many tasks in parallel as it can.

When the mapping phase has completed, the intermediate

outputs of the map tasks are exchanged between all nodes;

and they are also the input of the reduction tasks. This

process of exchanging the map intermediate outputs is known

as the shuffling. The reduce tasks are spread across the same

nodes in the cluster as the mappers. The output of the reduce

tasks is stored locally on the slave node.

Technically, a MapReduce system is a framework for

processing data in chunks. A framework is a collection of

functions that can be called by user code, and that may also

call user-defined functions, which are then named callback

functions. A MapReduce system has the following

properties:

1) The format of the input data can be chosen freely.

2) The output data consist of pairs of arbitrary keys and

values.

3) Processing happens in two consecutive phases, using

two user-defined functions: mapper and reducer.

4) The mapper function creates intermediate results (pairs

of keys and values of arbitrary type each) from each

input chunk.

5) The reducer function is applied in unison to all

intermediate results with the same key, and produces

arbitrarily many final results.

Additionally, there is a main function in a MapReduce

framework that has to be called by the user to specify the

MapReduce program to be run as a job: which mapper and

reducer function to execute and which data to process.

MapReduce employs multiple used-defined functions

operating on arbitrary data types. For aMapReduce program

to be correct, the types of the data items and of the functions

need to be compatible with each other.

MapReduce owes its name to the two main phases into

which its execution can be divided: the Map phase (in which

mainly the mapper function executes) and the Reduce phase

(executing the reducer function). This is illustrated in Fig. 2.

Rectangles represent chunks of distributed (input,

intermediate, and output) data, and ovals labelled “worker”

represent nodes executing user-defined functions. In each

phase, processing can happen in parallel. In contemporary

applications, the computation is typically distributed over a

cluster of hundreds to thousands of worker nodes, controlled

by a single master node. In this distributed setting, large sets

of data have to be serialized (converted to a representation

suitable for transport over a network), communicated over

the network, and deserialized during a MapReduce

computation. As this may incur huge communication costs,

MapReduce also contains a feature that optimizes locality in

the Map phase: the mapper function, operating on a particular

chunk of input data, is typically computed on the same node

on which the chunk is stored.

Fig. 2. Schematic overview of MapReduce processing.

Mahout [12] is a machine learning library that runs over a

Hadoop system. It has a collection of algorithms to solve

clustering, classification and prediction problems. It uses

MapReduce paradigm which in combination with Hadoop

can be used as an inexpensive solution to solve machine

learning problems.

Mahout is a project still in development which has been

used mainly for recommendation engines, document

classifiers and to solve other web typical problems. At the

moment, its usage for clustering is not sufficiently explored.

Hadoop and Mahout are free and open source projects.

Due to their inexpensive and scalable characteristics, these

platforms can be a promising technology to solve data

intensive problems which were not trivial in the past.

However, it is important to study the tradeoff between the

overhead of using Map/Reduce and the gain of performance

by distributing the computation. It is also essential to check if

the clusters maintain their quality.

Mahout contains various implementations of clustering,

like K-means, fuzzy K-means, meanshift and Dirichlet

among others. To input the data for Mahout clustering it is

necessary to do some procedures first. If the data is not

numerical it has to be first preprocessed. It is required then to

create vectors. If the data set is sparse it allows the user to

create sparse vectors that are much more compact. The

vectors are finally converted to a specific Hadoop file format

that is SequenceFile. The K-means clustering algorithm takes

the following input parameters:

 A SequenceFile containing the input vectors.

 A SequenceFile containing the initial cluster centers. If

not present it will attribute them randomly.

 A similarity measure to be used.

 The convergence Threshold that will be the stopping

condition of the K-means. If in a particular iteration, any

International Journal of Computer Theory and Engineering, Vol. 7, No. 6, December 2015

445

centers of the clusters do not change beyond that

threshold, then no further iterations are done.

 The maximum number of iterations to be processed if it

does not converge first.

 The number of reducers to be used. This value determines

the parallelism of the execution.

 The vector implementation used for the input files.

As output the user gets the centroids coordinates and the

samples attributed to each cluster. The output files are in

SequenceFile format. Mahout provides the necessary tools

for file conversion and creating the vectors.

III. THE PROPOSED RISK ANALYSIS MODULE

In this section, the risk prediction module is proposed. It

was developed by using the Apache mahout. Fig. 3 shows the

risk determining process.

Fig. 3. Risk determining process.

The risk is determined through the following process.

First, it creates a training data that contains the predictor

value and the target value. Then, it learns the training data

through their appropriate training algorithm such as Naive

Bayes algorithm. It generates a model through the learning

procedure. Using the generated model, it classifies the target

data and determines potential risks caused by their users

utilizing the access records, the information of social media

and the values that have been classified before. The

administrator evaluates the classified values and adds them to

the training data. Afterwards, it generates more appropriate

model using the newly changed training data and executes

the same procedural steps as mentioned earlier again.

Training data is input data for creating the model. Target

data is obtained by pre-treating the social media of the user.

Determine risk is a module for determining potential risks

caused by their users utilizing the access records with the

results obtained from the classification system.

IV. PLATFORM ARCHITECTURE

Fig. 4 shows the system architecture. Camera Module

controls the function associated with the camera. Image

Recognition recognizes the face of the users. It sends the user

information which has been recognized to the server. Motion

Recognition detects a motion on the screen, sends the camera

information to the server. Streaming module provides a

streaming service.

Integrated Control Platform manages the control situations

and determines the risk using big data. Control data

processing manages and processes control messages.

Determine Risk determines the risk of the user. MapReduce

and HDFS Connectors are responsible for communication

with the big data platform. Registration Management stores

the control data in the DB. ActiveMQ sends a control

message to the Integrated Control Client. Android push sends

a control message to the Android mobile phone.

Integrated Control Client is a client program that allows

administrators to use the Integrated Control Platform.

Registration Management provides a screen for registering

the information for the operators. Control Situation

Management provides a screen to manage the control

situation. ActiveMQ receives the messages from the

Integrated Control Platform. Streaming shows the image that

has been transferred from the camera.

Big Data platform performs two functions. One is

collecting big data. Another is processing big data. In order to

determine risk, Data Collector module collects the social

media. Data Processing module processes the data from the

classification system.

Fig. 4. System architecture.

V. APPLIED SCENARIOS OF IMPLEMENTED SYSTEM

Fig. 5. Intrusion detection.

In this section, the two scenarios are introduced in the

proposed system. The first scenario is for intrusion detection

like in Fig. 5. By setting the monitored area in the camera

image, the monitoring is started. If suspicious motions are

detected in the monitored area, then the motion recognition

module sends the information of current status to the

International Journal of Computer Theory and Engineering, Vol. 7, No. 6, December 2015

446

Integrated Control Platform. Integrated Control Platform has

received the control message and then it transmits the status

to the client. When the client receives the message, the client

requests the streaming server in order to confirm the current

status. The streaming server provides the current video to

each requesting client.

The second scenario is for prompt risk notification like in

Fig. 6. Big data platform collects Twitter messages

periodically. When Collection is completed, then Big data

platform reports the situation to the Integrated Control

Platform. Integrated Control Platform initiates the risk

determination process to have a message that has been

collected. If suspicious risks are detected, Integrated Control

Platform would send a message related to them to the

corresponding client. Upon receiving the message from the

server, the client promptly displays it on the screen.

Fig. 6. Risk notification.

VI. CONCLUSION

This paper presents a monitoring and notification system

based on risk analysis using map-reduce framework that can

do risk prediction using big data. By using social media and

access records of their users, the proposed system determines

uncertain risks they could create. By using the risk

information that has been obtained from the platform, it can

determine whether they should be granted the requested

rights to access to restricted areas. Also, it monitors some

restricted areas through setting them up by the corresponding

administrator and notifies him/her when and where the

intrusion detection is activated. So, it will provide a control

situation for the administrator in real time and can detect the

risky moments that may occur in advance. Therefore it can

reduce the probability of risk of security penetration. Also,

since it receives the control situation and provides real-time

control screen via smartphone, it is possible to improve the

convenience of intrusion management in a very fast and

effective way.

REFERENCES

[1] C. Eaton, D. Deroos, T. Deutsch, G. Lapis, and P. C. Zikopoulos,

Understanding Big Data: Analytics for Enterprise Class Hadoop and

Streaming Data, Mc Graw-Hill Companies, 2012.

[2] R. D. Schneider, Hadoop for Dummies Special Edition, John

Wiley&Sons Canada, 2012, ch. 1.

[3] D. Agrawal, S. Das, and A. E. Abbadi, “Big data and cloud computing:

New wine or just new bottles?” PVLDB, vol. 3, no. 2, pp. 1647–1648,

Sep. 2010.

[4] N. Marz and J. Warren, Big Data: Principles and Best Practices of

Scalable Realtime Data Systems, Manning Publications, 2013.

[5] A. Bifet and E. Frank, “Sentiment knowledge discovery in Twitter

streaming data,” in Proc. 13th International Conference on Discovery

Science, 2010, pp. 1-15.

[6] M. Tsytsarau and T. Palpanas, “Survey on mining subjective data on

the web,” Data Mining and Knowledge Discovery, vol. 24, no. 3, pp.

478-514, May 2012.

[7] H. Chen, R. Chiang, and V. Storey, “Business Intelligence and

Analytics: From Big Data to Big Impact,” MIS Quarterly, vol. 36, no.

4, pp. 1165-1188, Dec. 2012.

[8] J. Berthold, M. Dieterle, and R. Loogen, “Implementing Parallel

Google Map-Reduce in Eden,” in Proc. Euro-Par, LNCS 5704, 2009,

pp. 990-1002.

[9] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” Communications of the ACM, vol. 51, no. 1, pp.

107-113, Jan. 2008.

[10] J. Dean and S. Ghemawat, “MapReduce: a flexible data processing

tool,” Communications of the ACM, vol. 53, no. 1, pp. 72-77, Jan. 2010.

[11] Apache Hadoop project. [Online]. Available:

http://hadoop.apache.org/

Yoon-Deuk Seo received his B.S. and M.S. degrees in

computer science from Kyonggi University, Korea, in

2008 and 2010, respectively. He has been a Ph.D. student

in the Department of Computer Science, Kyonggi

University from 2010. His research interests include

distributed computing, RFID systems, P2P networks and

group communication.

Jinho Ahn received his B.S., M.S. and Ph.D. degrees in

computer science and engineering from Korea

University, Korea, in 1997, 1999 and 2003, respectively.

He has been an associate professor in the Department of

Computer Science, Kyonggi University. He has

published more than 70 papers in refereed journals and

conference proceedings and served as a program or

organizing committee member or the session chair in

several domestic/international conferences and editor-in-chief of Journal of

Korean Institute of Information Technology and editorial board member of

journal of Korean Society for Internet Information. His research interests

include distributed computing, fault-tolerance, sensor networks and mobile

agent systems.

International Journal of Computer Theory and Engineering, Vol. 7, No. 6, December 2015

447

[12] R. A. S. Owen, T. Dunning, and E. Friedman, Mahout in Action,

Manning Publications, pp. 225-357, 2010.

