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Abstract—The prediction of marine weather is an 

application employed for forecasting atmospheric conditions 

for a given position and time. Data pre-processing is the first 

step in the marine weather forecasting process. Data mining 

method is employed for changing data. The purpose of the data 

pre-processing is to clean and organize the text for an accurate 

classification process. Also, the pre-processing of large datasets 

is used to remove the noisy and missing values encountered 

during the data collection. Many existing data pre-processing 

methods are studied to improve forecasting performance. 

However, the conventional methods of space complexity and 

time complexity during pre-processing were not reduced. In 

order to address these problems, Ridge Regularized-Imputed-

Scaled Clipping Normalization-based Deep Learnt Data Pre-

processing (RRISCN-DLDP) Method is introduced. The key 

objective of the RRISCN-DLDP method is to remove the noisy 

data and to fill in the missing values in the database for 

improving the classification performance. RRISCN Method 

comprises six layers, namely one input layer, four hidden 

layers, and one output layer for efficient pre-processing. 

Initially in RRISCN Method, the number of marine weather 

data points is collected from the database at the input layer. 

After that, the input marine weather data is transmitted to 

hidden layer 1. In that layer, Ridge Regularized data quality is 

assessed through mismatched data types, mixed data values, 

and data outliers with higher data quality. Then, the missing 

data values are filled in hidden layer 2 to perform a data 

cleaning process using Imputed nearest neighbor interpolation 

through approximating the feature value for a non-given point 

in corresponding columns with a lesser error rate. Next, the 

data duplication is removed in the hidden layer 3 by using 

pointwise animator correlation analysis to execute the data 

reduction process for measuring the two marine weather data 

points. Followed by, the data transformation is performed 

through the scaled clipping normalization process. In this way, 

efficient data pre-processing is carried out by using RRISCN 

Method to minimize time and space consumption. 

Experimental evaluation is performed using various 

quantitative metrics namely accuracy, space complexity as well 

as the time involved in pre-processing. The analyzed results 

reveal the superior performance of our proposed RRISCN 

Method with higher pre-processing accuracy by 4% as well as 

lesser space complexity and pre-processing time by 22% and 

13% when compared to using conventional techniques. 

Index Terms—Marine weather forecasting, data 

pre-processing, data mining 

I. INTRODUCTION

The prediction of marine weather is issued for forecasting 

atmospheric conditions to a particular location. The 

prediction of marine weather is an essential process to 
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evaluate the atmospheric situation. A multi-objective 

grasshopper optimization was developed in [1] without 

negative constraints. Ensemble empirical mode 

decomposition was employed for attaining accurate 

prediction results. However, the designed method of error 

rate during pre-processing was not reduced. 

U-Net based deep learning architecture was designed in

[2] to study complex mapping. The designed architecture

employed residual connection, parallel convolution, and

asymmetric convolution. But, the pre-processing time was

not reduced by U-Net-based deep learning architecture. A

new error correction system was introduced in [3] to collect

data well as improve prediction ability. Quasi-real-time

decomposition approach was built for attaining error to

every subseries. However, pre-processing accuracy was not

improved by the designed system.

Deep Learning-Based Stacked Sparse Autoencoder 

(DSSAE) was introduced in [4] for forecasting the marine 

weather condition of a specific area. It was employed for 

attaining necessary data for enhancing speed. Scalable 

Parallelizable Induction of Decision Tree (SPRINT) 

algorithm was introduced in [5] with decision tree principles. 

Depending on climate parameters, data gets categorized. 

However, time consumption during pre-processing was not 

reduced by the SPRINT algorithm. Marine weather 

Research and Forecasting (WRF) scheme was introduced in 

[6] for attaining horizontal effects on small-range of marine

weather predictions. But, the computational cost was not

reduced by WRF model.

A classifier approach was designed in [7] for marine 

weather prediction. The designed approach used parameters 

to predict the marine weather after examining the input 

information in a database. The zero-mean normalization 

method was designed in [8] with a Particle Swarm 

Optimizer of Support Vector Machine (PSO-SVM) for 

selecting the optimal one. The data pre-processing method 

was chosen for performing the landslide displacement. But, 

the pre-processing time was not reduced by the PSO-SVM 

method. 

The Machine Learning (ML) method termed Support 

Vector Regression (SVR), as well as Gradient Boosting 

Regression Trees (GBRT), was introduced in [9] for 

increasing the accuracy of wind power. The data 

investigation method was employed for visualizing data 

collected over Supervisory Control and Data Acquisition 

(SCADA). But, the error rate was not minimized by ML-

based method. Deep Gaussian Processes (DGP) were 

introduced in [10] to examine the forecasting scheme. An 

optimizer depending on geometric alteration was employed 

for achieving simulated data. However, the computational 

cost was not reduced by the learning method. 

A hybrid model was introduced in [11] with a 
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decomposition module. Raw wind speed series was 

developed within many subseries. But, the error rate was not 

reduced by the designed hybrid model. 

A hybrid forecasting framework was designed in [12] 

with Improved Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise (ICEEMDAN) based 

convolution Bidirectional Long Short-Term Memory (Bi-

LSTM) auto encoder to predict the wind speed. But, the 

forecasting accuracy was not improved by the designed 

framework. 

A combined forecasting system was designed in [13] to 

perform deterministic and probabilistic forecasts. Data-

denoising algorithms were employed to enhance wind speed 

forecasting. However, the accuracy was not enhanced by a 

combined forecasting system. 

Hybrid ultra-short-term Wind Power Forecasting (WPF) 

structure was designed in [14] to attain the WPF. Multi-

sourced as well as multi-dimensional wind power plant 

information was pre-processing and Feature Selection (FS) 

eliminated the unnecessary features. But, the designed 

method of pre-processing time was not reduced. 

The prediction of time series termed as Group Least 

Square Support Vector Machine (GLSSVM) was designed 

in [15] to join Least Square Support Vector Machines (LS-

SVM) as well as Group Method of Data Handling (GMDH). 

But, computational complexity was not reduced by 

GLSSVM. 

A forecasting algorithm was introduced in [16] for 

forecasting the Photovoltaic (PV) power generation with 

long Short-Term Memory (LSTM) Neural Network (NN). 

The synthetic prediction of marine weather was carried out 

to identify PV plant position by combining numerical 

information with sky forecast. However, the computational 

cost was not reduced by the forecasting algorithm. 

Short-term prediction of wind power method was 

introduced in [17] through data mining of numerical Marine 

Weather Prediction (NWP). The short-term weather 

prediction was based on NWP to contribute to WPF error. 

But, the pre-processing accuracy was not improved by the 

designed approach. 

An efficient parallelization was carried out [18] through 

many integrated cores. Intel Many-Integrated Core (MIC) 

architecture was constructed for achieving the higher-

performance of computing. However, the pre-processing 

time was not reduced by efficient parallelization. 

A forecasting framework was introduced in [19] to 

discover information from NWP with wind as well as solar 

energy. Gradient boosting tree using feature engineering 

technique extracted the maximum information from NWP 

grid. The clearness index was designed in [20] with input 

data for the LSTM model to increase the prediction 

accuracy on cloud days. K-means were employed to 

categorize the marine weather types through data processing. 

The cloudy days were classified into cloudy and mixed ones. 

But, the pre-processing accuracy was not minimized by the 

clearness-index. 

Data pre-processing as well as hybrid machines were 

introduced in [21] for predicting water-level. The designed 

method of time and error was minimized. However, the 

accuracy was not enhanced. Yet, another hybrid model was 

investigated in [22] with higher accuracy for water quality 

prediction. 

Marine weather forecasting is a vital issue to measure the 

situation of the marine weather for a particular area. 

Numerous data pre-processing methods were developed to 

forecast the marine weather data. But, the robustness and 

accuracy were not superior when considering the vast 

volume of data. Next, the amount of time and space utilized 

to pre-process the marine weather data was very higher. In 

order to overcome the issue, efficient marine weather data 

pre-processing are required with higher performance of 

marine weather forecasting. The main objective of the 

Ridge Regularized-Imputed-Scaled Clipping Normalization-

based (RRISCN) Method is to eliminate noisy data and fill 

in the missing values with minimal minimize time and space. 

The novelty and contribution of the proposed Ridge 

Regularized-Imputed-Scaled Clipping Normalization-based 

Deep Learnt Data Pre-processing (RRISCN-DLDP) Method 

are given below.  

• RRISCN-DLDP Method is used to remove the noisy 

data and to fill in the missing values for classification 

performance enhancement. It comprises six layers, 

namely one input layer, four hidden layers and one 

output layer for efficient pre-processing.  

• The RRISCN Method applies Ridge regularization to 

perform the data quality assessment through the 

mismatched data types, mixed data values, and data 

outliers. The multiple-regression coefficient is 

identified and multicollinearity issues are avoided also, 

it minimizes the marine weather forecasting time. 

• Imputed nearest neighbor interpolation is utilized in the 

data cleaning task to fill the missing data (i.e., zonal 

value) and remove duplicate data in corresponding 

columns. In this way, the space-time complexity is said 

to be diminished.  

• Pointwise Mutual Tanimoto similarity coefficient is 

employed in the data reduction to discover the input 

into two parts (i.e., marine weather data point and 

neighboring marine weather data point) according to 

the similarity value. Next, the duplicate marine weather 

data values are identified and removed. In this way, the 

time complexity is said to be reduced.  

• Scaled clipping normalization applies a data 

transformation process to normalize the range of 

independent feature values of marine weather data 

points for precise forecasting. 

The article is categorized: Section II discusses the 

RRISCN Method for the pre-processing task. Section III 

provides a detailed analysis of conducted experiment and 

results. Section IV explains the discussion of proposed and 

existing methods. Section V describes the conclusion of the 

current work. 

 

II. METHODOLOGY 

Forecasting is to create predictions depending on past as 

well as present data by fashion analysis. Weather 

forecasting is employed to predict the environment in the 

assured region with diverse weather metrics. Weather 

forecasting is performed with information on the present 

state of the environment. It is a tricky process for 
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meteorologists as well as investigators. To address the issue, 

the marine weather forecasting approach was introduced  

in [25] considering dissimilar research by using big data.  

Marine forecasting has done more difficult issues with 

require of information, limited entrée, as well as reporting 

irregularity. Accessibility is a difficult issue with both 

detecting enough examination sources as well as access the 

data. The size of our oceans creates it very tricky to gather 

data at scale. The incapability to access huge swaths of 

ocean territory constructs it hard to obtain sufficient data to 

create precise predictions. Therefore, the three ways such as 

diversifying data sources, incorporating wave data, and 

including more data sources used to improve marine 

weather forecasts. 

Data pre-processing is used to transform the raw marine 

weather data points into structural data points. Raw data is 

deficient, partial, and not consistent with many errors. 

Consequently, data pre-processing is required before 

sending it through the classification process. The data 

quality is used for training and classification purposes. The 

marine weather data contains many numbers. The irrelevant 

one increases the dimensionality and makes the 

classification process a more difficult one. Consequently, it 

increases the computational complexity of the classification 

process. In order to address, these problems, RRISCN 

Method is introduced.  

The current RRIPSCN Method is introduced for 

enhancing the marine weather forecast performance. The 

main aim of the RRIPSCN Method is to perform efficient 

marine weather data pre-processing with lesser space 

complexity and time complexity. On contrary to existing 

works, Ridge Regularized data quality assessment is 

employed for mismatched data, mixed data, as well as data 

outliers. Imputed nearest neighbor interpolation is utilized to 

fill in missing data values. Next, the Pointwise Mutual 

Tanimoto similarity coefficient is applied to eradicate 

duplicate data. Lastly, the scaled clipping normalization 

process is for performing data transformation. Therefore, 

the time and space consumption is decreased. 

The architecture diagram of the RRISCN Method is given 

in Fig. 1. 

 

 
Fig. 1. Structural design of RRISCN method. 

 

Fig. 1 describes the diagrammatic representation of the 

RRISCN Method. It comprises five layers, namely one input 

layer, three hidden layers, and one output layer for 

performing marine weather data pre-processing. The 

number of marine weather data points is collected from the 

El Nino dataset at the input layer. The input dataset 

comprises twelve features. After that, the proposed RRISCN 

Method performs the pre-processing of features through 

four different processes namely data quality assessment, 

data cleaning, data reduction, and data transformation in the 

four consecutive hidden layers. Finally, the pre-processed 

marine weather data is sent to the output layer. The block 

diagram of the RRISCN Method is illustrated in Fig. 2. 
 

 
Fig. 2. Block diagram of pre-processing. 

 

Fig. 2 illustrates the block diagram of marine weather 

data pre-processing. The input marine weather data are 

collected from the marine weather database and sent to the 

input layer. In RRISCN Method, the deep neural network 

includes the number of neurons that are connected from one 

layer to other consecutive layers in a feed-forward manner 

with variable weights. The neuron activity at an input layer 

at time ‘𝑡’ is given as, 

 𝐼𝑛𝑝𝑢𝑡(𝑡) = ∑ 𝑀𝑊𝐷𝑖
𝑛
𝑖=1   𝑤𝑖𝑛𝑝𝑢𝑡 + 𝐵 (1) 

From Eq. (1), an input layer joined the input marine 

weather data ‘𝑀𝑊𝐷𝑖 ’ with initial weight ‘ 𝑤𝑖𝑛𝑝𝑢𝑡 ’. ‘𝐵 ’ 

symbolizes the bias value. After that, input marine weather 

data is sent to hidden layer 1. 

A. Ridge Regularized Data Quality Assessment 

In RRISCN Method, data quality assessment is carried 

out by identifying the mismatched data types, mixed data 

values, and data outliers. After collecting the marine 

weather data, it comes in a different format. The objective 

of the entire process is to reformat marine weather data, to 

begin with, formatted data. The different marine weather 

data sources use different descriptors for features. The value 

descriptors are made uniform. Data outliers have large 

impacts on data analysis results. Ridge regularization 

process is used in RRISCN Method for determining 

the multiple-regression coefficients where linearly 

independent variables (i.e., marine marine weather data 

points) are highly associated. Ridge regularization avoids 

the multicollinearity issues in linear regression with large 

numbers of parameters. Ridge regularization is formulated 

as, 

 𝛼𝑝 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛼𝑝

∑ (𝑦𝑀𝑊𝐷𝑖
− 𝛼 ′𝑥𝑀𝑊𝐷𝑖

)
2

𝑖  (2) 
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From Eq. (2), the ‘ 𝑎𝑟𝑔𝑚𝑖𝑛 ’ represent the argument 

minimum function. ‘ 𝑦𝑀𝑊𝐷𝑖
’ denotes the marine weather 

data points at ‘ 𝑖𝑡ℎ ’ column and ‘ 𝑦𝑡ℎ ’ row. ‘ 𝑥𝑀𝑊𝐷𝑖
’ 

Represent the marine weather data points at ‘𝑖𝑡ℎ’ column 

and ‘𝑥𝑡ℎ’ row. ‘𝛼 ′’ symbolizes the ridge estimator. ‘𝛼𝑝 ’ 

denotes feature value. Let us consider the input features as 

zonal winds. Normally, the zonal wind feature value is 

obtained in the negative value. When the positive value is 

seen in that particular feature column, it is considered as the 

mismatched feature value. In this way, mismatched marine 

weather data is identified and replaced as negative values 

for enhancing the data quality in the hidden layer 1. 

B. Imputed Nearest Neighbor Interpolation Data 

Cleaning 

In the second hidden layer of the RRISCN Method, the 

data cleaning process is performed. Missing data includes 

missing data fields, blank spaces in the text, or unanswered 

questions. The data cleaning task includes the filling of 

missing values and smoothing and removing the noisy data 

by resolving the inconsistencies. The missing data is 

identified and removed the duplicate data in the row and 

column of the dataset. The imputed Nearest Neighbor 

Interpolation method in RRISCN Method searches the 

whole dataset to show the features with missing data. 

Imputed nearest neighbor interpolation is carried out by 

approximating the neighbor value of the feature for a non-

given point in corresponding columns. Let us consider the 

feature name as zonal winds. In that particular feature 

column, some zonal wind data gets missed. So, the missed 

value is approximated through neighbor values. Likewise, 

all missing data values are filled in the input database at 

hidden layer 2. By filling in the missed data values, the error 

rate during pre-processing process gets minimized. After 

filling in the missing value, duplicate data in the particular 

columns are removed through the data reduction process.    

C. Pointwise Mutual Tanimoto Correlated Data 

Reduction 

In the third hidden layer, the correlation function is used 

in RRISCN Method to find the duplicate marine weather 

data through Pointwise Mutual Tanimoto similarity analysis. 

Pointwise Mutual Tanimoto analysis is employed to find the 

linear relationship between two data points. Pointwise 

Mutual Tanimoto similarity coefficient [23] is used for 

finding the relationship between the marine weather data 

points to perform data reduction. It is formulated as below: 

 𝛼𝑃𝑀𝑇𝐶𝐷𝑅 =
𝛼𝑝𝑖

 · 𝛼𝑝𝑗

∑ 𝛼𝑝𝑖
+∑ 𝛼𝑝𝑗

−𝛼𝑝𝑖
∩𝛼𝑝𝑗

  (3) 

From Eq. (3), ‘𝛼𝑃𝑀𝑇𝐶𝐷𝑅’ denotes the Pointwise Mutual 

Tanimoto correlated data reduction. ‘ 𝛼𝑝𝑖
’ denotes the 

marine weather data point, ‘ 𝛼𝑝𝑗
’ symbolizes the 

neighboring marine weather data point. ‘∑ 𝛼𝑝𝑖
’ represents 

the sum of the score of ‘𝛼𝑝𝑖
’. ‘∑ 𝛼𝑝𝑗

’ represents the sum of 

the score of ‘ 𝛼𝑝𝑗
’. ‘ 𝛼𝑝𝑖

 ·  𝛼𝑝𝑗
’ represents the mutual 

dependence between the marine weather data point and 

neighboring marine weather data point. Tanimoto similarity 

coefficient provides the similarity value ranges between 0 

and 1. Depending on the similarity value, the duplicate 

marine weather data values are identified and removed in 

the hidden layer 3. The duplicate marine weather data is 

removed to reduce space consumption and time 

consumption for pre-processing.  

D. Scaled Clipping Normalized Data Transformation 

The data transformation process is performed in the 

hidden layer 4 through scaled clipping normalization. 

Scaled clipping normalization is carried out in RRISCN 

Method for normalizing the range of independent feature 

values of marine weather data points. The scaled clipping 

normalization of the marine weather data point [24] is given 

as below: 

 𝑁𝑠𝑐 = [
𝛼𝑃𝑀𝑇𝐶𝐷𝑅−𝑚𝑖𝑛(𝛼)

𝑚𝑎𝑥(𝛼)−𝑚𝑖𝑛(𝛼)
] (4) 

From Eq. (4), ‘ 𝑁𝑆𝐶 ’ represents the scaled clipping 

normalization process. ‘ 𝑚𝑎𝑥(𝛼) ’ denotes the maximum 

feature value. ‘𝑚𝑖𝑛(𝛼) ’ represents the minimum feature 

value. In this way, data transformation is carried out for the 

entire marine weather database in the hidden layer 4. The 

hidden layer result of the RRISCN Method is formulated as 

below: 

 𝐻𝑖𝑑𝑑𝑒𝑛(𝑡) = [∑ 𝑀𝐷𝑖
𝑛
𝑖=1  𝑤𝑖𝑛𝑝𝑢𝑡] + [𝑤𝑖ℎ   𝑁𝑠𝑐]  (5) 

From Eq. (5), ‘ 𝐻𝑖𝑑𝑑𝑒𝑛(𝑡) ’ represent an output of a 

hidden layer. ‘𝐻𝑖𝑑𝑑𝑒𝑛(𝑡 − 1)’ symbolizes the output from 

the previously hidden layer. ‘ 𝑤𝑖ℎ ’ denotes the weight 

between the hidden layer and the input layer. The pre-

processed marine weather data output of the RRISCN 

Method is obtained at an output layer. It is given as below: 

 𝑂𝑢𝑡𝑝𝑢𝑡(𝑡) = [𝑤𝑜ℎ   𝐻𝑖𝑑𝑑𝑒𝑛(𝑡)] (6) 

From Eq. (6), ‘𝑂𝑢𝑡𝑝𝑢𝑡(𝑡)’ symbolizes the output of the 

recursive deep neural network. ‘𝑤𝑜ℎ’ denotes the weight. In 

this way, marine data get pre-processed in RRISCN Method 

to perform efficient dimensionality reduction. The 

algorithmic process of RRISCN is explained as, 

 
Algorithm 1: Ridge Regularized Imputed Pointwise Scaled Clipping 

Normalization based Deep Learnt Data Pre-processing 

Input: El Nino Dataset  

Output:   Pre-processed marine weather data 

Begin 

Step 1: Collect the number of marine weather data points at the input 
layer 

Step 2:          For each marine weather data in dataset  

Step 3:       Perform marine weather data quality assessment through 

ridge regularization at hidden layer 1 

Step 4:                Perform marine weather data cleaning using Imputed 

nearest neighbor interpolation at the hidden layer 2 
Step 5:                Find missing feature of marine weather data  

Step 6:                If missing feature value in respective column feature 

then 

Step 7:                    Approximate neighbor value of particular feature 

Step 8: End if 

Step 9:              Perform Data reduction through tanimoto similarity at 
the hidden layer 3 

Step 10:            If duplicate value in the dataset then 

Step 11:                    Remove the feature value  
Step 12:              End if 

Step 13:            Apply scaled clipping normalization for data 

transformation at the hidden layer 4 

Step 14:            Return (pre-processed marine weather data) at the 

output layer 

Step 15:     End for  

End  
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Algorithm 1 explains data pre-processing. Initially, 

marine weather data points are collected at an input layer. 

After that, the data quality is accessed via mismatched data 

types, mixed data values, and data outliers. Then, the 

missing data values are filled in the marine weather data 

cleaning process by approximating the neighbor value in 

corresponding columns. After that, the data duplication is 

removed in the data reduction process. Finally, the data 

transformation is performed through the scaled clipping 

normalization process. In this way, efficient marine weather 

data pre-processing is performed by using RRISCN Method 

to minimize the pre-processing time and space consumption. 

 

III. RESULT  

In this section, RRISCN Method, existing multi-objective 

grasshopper optimization [1], and Extended UNet 

architecture [2] are implemented using JAVA with E1 Nino 

dataset taken from https://www.kaggle.com/uciml/el-nino-

dataset. It comprises the oceanographic as well as surface 

meteorological readings collected over a sequence of buoys 

through the equatorial Pacific Ocean. The main aim of the 

dataset is to forecast the seasonal-to-inter-annual climate 

variations like air temperature, surface temperatures, and 

Humidity. The dataset comprises 178,080 instances and 12 

different attributes like observation, year, month, day, and 

so on. The latitude, as well as longitude, represents buoys 

shifted around dissimilar locations of the equatorial Pacific 

Ocean. The latitude values are recognized through degrees 

from an approximate location. The longitude values are 

gathered with five degrees of approximate location. The 

zonal and meridional winds were change among −10 m/s as 

well as 10 m/s. The relative humidity values are normally 

observed between 70% and 90%. The air temperatures well 

as sea surface temperature varied between 20 and 30 

degrees Celsius. All meteorological readings are collected at 

the same time of day. To conduct the experiments, the 

different performance metrics namely pre-processing 

accuracy, pre-processing time, and space complexity is 

utilized.  

The proposed method is designed by using Eqs. (1)−(6). 

The accuracy, time, and space complexity metric (i.e.,  

Eqs. (7)−(9) used to analyze the performance of the 

proposed method. Hence, these equations are tabulated and 

compared with proposed and existing methods.  

A. Analysis on Pre-processing Accuracy 

The climate change risk such as greenhouse gases, ocean 

currents, Non use of Renewable energy sources is 

considered in the ecosystem. The oceanic risk such as sea 

level, rise, acidification, critical habitat loss, oil spills, and 

other non-biodegradables is taken for eco-risk assessment.  

Atmospheric variability and variability in ocean conditions, 

such as sea surface temperature, salinity, and sea ice cover 

and thickness are major effects on human behaviors as well 

as ecosystems both at sea and on land. Seasonal and sub-

seasonal forecasts of ocean temperature were a vital part of 

managing marine ecosystems. Prediction of marine heat 

waves at sub-seasonal timescales are permit marine 

industries as well as managers to fine-tune operational 

strategies as well as employ strategies to reduce impacts on 

their businesses and resources. 

In our work, weather is tricky to forecast, especially on 

waterways, however good forecasting are assist ships, as 

well as their crews, navigate and creating decisions that 

minimize risks. In E1 Nino dataset, estimating 

oceanographic as well as the surface meteorological variable 

is important for increasing prediction through the equatorial 

Pacific Ocean. Hence, accuracy is most important. 

Pre-processing accuracy is referred by proportion of 

marine weather data that are pre-processed accurately to the 

total number of marine weather data. Pre-processing 

accuracy is computed as below: 

𝑃𝑃𝑎 =

∑
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑚𝑎𝑟𝑖𝑛𝑒𝑤𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑎𝑡𝑎𝑝𝑟𝑒−𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒𝑙𝑦

𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑚𝑎𝑟𝑖𝑛𝑒𝑤𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑎𝑡𝑎
  100𝑛

𝑖=1

  (7) 

From Eq. (7), ‘ 𝑃𝑃𝑎 ’ symbolizes the pre-processing 

accuracy. It is calculated by percentage (%). The pre-

processing accuracy values for proposed and existing 

methods are calculated and it is shown in Table I. 

 
TABLE I: COMPARISON OF PRE-PROCESSING ACCURACY FOR RRISCN 

METHOD, MULTI-OBJECTIVE GRASSHOPPER OPTIMIZATION, AND 

EXTENDED UNET ARCHITECTURE  

Number of 

Marine 

weather Data 

(Number) 

Pre-processing Accuracy (%) 

Multi-Objective 

Grasshopper 

Optimization 

Extended 

UNet 

architecture 

Proposed 

RRISCN 

Method 

10,000 84.41 85.48 88.79 

20,000 82.74 84.94 85.86 

30,000 80.56 82.33 86.29 

40,000 79.99 80.54 83.97 

50,000 79.40 81.32 83.97 

60,000 78.31 79.83 81.60 

70,000 77.67 78.94 80.39 

80,000 76.44 77.96 79.49 

90,000 75.78 77.30 78.30 

100,000 74.15 75.69 77.59 

 

Table I explains the performance result of pre-processing 

accuracy versus the number of marine weather data 

collected from the input dataset varying from 10,000 to 

100,000. The performance of pre-processing accuracy of 

three different methods namely the proposed RRISCN 

Method and existing multi-objective grasshopper 

optimization [1] and Extended UNet architecture [2] are 

given in Table I. The table values reveal that the pre-

processing accuracy of the proposed RRISCN Method is 

enhanced by two existing techniques. Let us consider that 

number of marine weather data is 20,000 in the second 

iteration. Consequently, the pre-processing accuracy of the 

proposed RRISCN Method is observed as 85.86%, and the 

pre-processing accuracy of existing multi-objective 

grasshopper optimization [1] and Extended UNet 

architecture [2] is 82.74% and 84.94% correspondingly. Ten 

different pre-processing accuracy results of the proposed 

RRISCN Method are compared to the existing techniques.  

Fig. 3 illustrates pre-processing accuracy versus the 

number of marine weather data. As described in Fig. 3, the 

green color bar indicates the pre-processing accuracy of the 

proposed RRISCN Method. The blue color and red color 

present the pre-processing accuracy of existing multi-

objective grasshopper optimization [1] and Extended UNet 
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architecture [2]. 

 
Fig. 3. Measurement of pre-processing accuracy. 

 

Based on the comparison, the pre-processing accuracy of 

the proposed RRISCN Method is found to be increased. The 

ridge Regularized data quality is assessed through 

mismatched data types, mixed data values, and data outliers. 

The missing data values are filled in the data cleaning 

process through Imputed nearest neighbor interpolation for 

non-given points in corresponding columns. After that, the 

data duplication is eliminated in the data reduction process 

through Pointwise Tanimoto correlation analysis. The data 

transformation is carried out through a scaled clipping 

normalization process. The ten comparison results of the 

proposed RRISCN Method increase the pre-processing 

accuracy by 5% when compared to [1] and 3% when 

compared to [2] respectively. 

B. Analysis on Pre-processing Time 

Pre-processing time is described by the number of time 

consumed to pre-process marine weather data. It is 

calculated as below: 

 𝑃𝑃𝑡𝑖𝑚𝑒 =  ∑ 𝑛  𝑇𝑖𝑚𝑒[𝑠𝑖𝑛𝑔𝑙𝑒𝑀𝑊𝐷𝑖]𝑛
𝑖=1  (8) 

From Eq. (8), ‘𝑃𝑃𝑡𝑖𝑚𝑒 ’ symbolizes the pre-processing 

time. ‘𝑛’ symbolizes the number of marine weather data. 

‘𝑀𝑊𝐷𝑖’ represents the marine weather data. It is calculated 

in milliseconds (ms). The values of pre-processing time for 

three methods by marine weather data are determined in 

Table II. 

 
TABLE II: COMPARISON OF PRE-PROCESSING TIME FOR RRISCN METHOD, 

MULTI-OBJECTIVE GRASSHOPPER OPTIMIZATION, AND EXTENDED UNET 

ARCHITECTURE  

Number of 

Marine 

weather Data 

(Number) 

Pre-processing Time (ms) 

Multi-objective 

Grasshopper 

Optimization 

Extended 

UNet 

architecture 

Proposed 

RRISCN 

Method 

10,000 2500 2300 1900 

20,000 2650 2450 2100 

30,000 2800 2600 2250 

40,000 2950 2785 2350 

50,000 3010 2860 2500 

60,000 3160 2955 2700 

70,000 3250 3100 2920 

80,000 3400 3250 3100 

90,000 3650 3400 3300 

100,000 3850 3700 3450 

 

Table II describes the performance result of pre-

processing time versus the number of marine weather data 

gathered from the input dataset varying from 10,000 to 

100,000. The performance of pre-processing time of three 

different methods namely the proposed RRISCN Method 

and existing multi-objective grasshopper optimization [1] 

and Extended UNet architecture [2] are given in Table I. 

The table values reveal that the pre-processing time of the 

proposed RRISCN Method is reduced than two existing 

techniques. Let us consider that number of marine weather 

data is 40,000 in the fourth iteration. Consequently, the pre-

processing time of the proposed RRISCN Method is 

observed as 2350 ms and the pre-processing time of existing 

multi-objective grasshopper optimization [1] and Extended 

UNet architecture [2] is 2950ms and 2785ms 

correspondingly. Ten different pre-processing time results 

of the proposed RRISCN Method are evaluated by the 

existing techniques. 

 
Fig. 4. Measurement of pre-processing time. 

 

Fig. 4 describes pre-processing time versus a number of 

marine weather data. As described in Fig. 4, the green color 

bar indicates the pre-processing time of the proposed 

RRIPSCN Method. The blue color and red color bar 

represent the pre-processing time of existing multi-objective 

grasshopper optimization [1] and Extended UNet 

architecture [2]. Based on the assessment, the pre-

processing time of the proposed RRISCN Method is found 

to be minimized. The ridge Regularized data quality 

eliminates mismatched data, mixed data, and data outliers. 

After that, the data cleaning process is carried out through 

Imputed nearest neighbor interpolation in corresponding 

columns. The data duplication performed the data reduction 

process by using Pointwise Tanimoto correlation analysis. 

Finally, data transformation performs the scaled clipping 

normalization. In this way, the pre-processing time of the 

proposed RRISCN Method gets reduced. The ten 

comparison results of the proposed RRISCN Method reduce 

the pre-processing time by 16% when compared to [1] and 

10% when compared to [2] respectively. 

C. Analysis on Space Complexity 

Space complexity is defined by number of memory space 

utilized to marine weather data pre-processing. It is 

determined by: 

 𝑆𝑐𝑜𝑚 ∑
𝑀𝑊𝐷𝑖  𝑀𝑒𝑚𝑜𝑟𝑦𝑠𝑝𝑎𝑐𝑒𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

[𝑠𝑖𝑛𝑔𝑙𝑒𝑀𝑊𝐷𝑖]
𝑛
𝑖=1   (9) 

From Eq. (9), ‘ 𝑆𝑐𝑜𝑚 ’ denotes the space complexity. 

‘ 𝑀𝑊𝐷𝑖 ’Denotes the marine weather data. The space 
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complexity is determined by megabytes (MB).  

 
TABLE III: COMPARISON OF SPACE COMPLEXITY FOR RRISCN METHOD, 

MULTI-OBJECTIVE GRASSHOPPER OPTIMIZATION, AND EXTENDED UNET 

ARCHITECTURE  

Number of 

Marine 

weather Data 

(Number) 

Space Complexity (MB) 

Multi-objective 

Grasshopper 

Optimization 

Extended 

UNet 

architecture 

Proposed 

RRISCN 

Method 

10,000 143 120 75 

20,000 168 135 102 

30,000 189 156 128 

40,000 205 180 152 

50,000 224 205 180 

60,000 271 239 202 

70,000 304 258 230 

80,000 318 290 248 

90,000 339 301 268 

100,000 362 358 308 

 

Table III explains the performance result of space 

complexity versus a number of marine weather data 

collected from the input dataset ranging from 10,000 to 

100,000. The performance of space complexity of three 

different methods namely the proposed RRISCN Method 

and existing multi-objective grasshopper optimization [1] 

and Extended UNet architecture [2]. Table values illustrate 

the space complexity of the proposed RRISCN Method is 

reduced than two conventional techniques. Let us consider 

that number of marine weather data is 50,000 in the fifth 

iteration. Consequently, the space complexity of the 

proposed RRISCN Method is attained as 180MB and the 

pre-processing time of existing multi-objective grasshopper 

optimization [1] and Extended UNet architecture [2] is 

224MB and 205MB correspondingly. Ten different space 

complexity results of the proposed RRISCN Method are 

determined with respect to the existing techniques. 

 
Fig. 5. Measurement of space complexity. 

 

Fig. 5 illustrates space complexity versus number of 

marine weather data. As described in Fig. 5, the green color 

bar indicates the space complexity of the proposed RRISCN 

Method. The blue color and red color bar represent the 

space complexity of existing multi-objective grasshopper 

optimization [1] and Extended UNet architecture [2]. Based 

on the observation, the space complexity of the proposed 

RRISCN Method is found to be minimized. The ridge 

Regularized data quality eliminates mismatched data, mixed 

data, and data outliers. After that, the data cleaning process 

is carried out through Imputed nearest neighbor 

interpolation in corresponding columns. This in turn 

minimizes the space complexity of the proposed RRISCN 

Method. The ten comparison results of the proposed 

RRISCN Method reduce the space complexity by 27% 

when compared to [1] and 17% when compared to [2] 

respectively. 

 

IV. DISCUSSION  

In this section, the result of RRISCN Method and existing 

multi-objective grasshopper optimization [1] and Extended 

UNet architecture [2] are discussed with different 

performance metrics namely pre-processing accuracy, pre-

processing time, and space complexity. First, the three pre-

processing methods were applied to the E1 Nino dataset. 

The obtained result of the proposed and existing methods 

for each of the configurations is shown in Tables I−III. For 

considering 10,000 marine weather data, the pre-processing 

accuracy, pre-processing time, as well as space complexity 

was measured as 85.86%, 2100 ms and 102 MB with the 

proposed RRISCN method, 82.74%, 2650 ms, and 168 MB 

by using multi-objective grasshopper optimization and 

84.94%, 2450 ms and 135MB with Extended UNet 

architecture respectively. 

The experiments also proved the same situation. With 

increasing levels of marine weather data, i.e., 10,000, 

20,000, 30,000….100,000, the percentages of accuracy 

decreased. It can be observed that for the three methods the 

pre-processing time increases as the number of marine 

weather data decreases. Therefore, the overall results of the 

RRISCN method perform better than the other conventional 

methods in almost all the scenarios. The outcome shows that 

the RRISCN method performs better with an improvement 

in accuracy by 4%, a reduction of time by 13%, as well as 

space complexity by 22% for accurate prediction than the 

existing works. 

 

V. CONCLUSION 

A new method termed RRISCN-DLDP removes the noisy 

data and fills in missing values for enhancing the 

classification performance. In RRISCN-DLDP Method, 

ridge Regularized data quality assesses the mismatched data, 

mixed data, and data outliers. The missing data values are 

filled in the data cleaning process with help of Imputed 

nearest neighbor interpolation through approximating the 

value for non-given points in corresponding columns. Then, 

the data duplication is removed by using Pointwise 

Tanimoto correlation analysis. Finally, the data 

transformation is carried out by using the scaled clipping 

normalization process. This, in turn, efficient data pre-

processing is carried out to minimize time and space 

consumption. The performance of the RRISCN Method and 

existing classification techniques is determined with three 

different metrics such as pre-processing accuracy, pre-

processing time, and space complexity. The observed results 

demonstrate that the higher pre-processing accuracy is 

achieved using the RRISCN Method and minimize the time 

consumption and space complexity when compared to 

conventional pre-processing methods.In the future, the 

proposed method is further extended to reduce the 

dimensionality by using a feature selection process for 
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identifying relevant or redundant features for accurate 

prediction. 

APPENDIX 

TABLE A: LIST OF ABBREVIATION 

Abbreviation Description 

RRISCN-DLDP  (RRISCN) based Deep Learnt Data Pre-
processing 

DSSAE Deep learning-based Stacked Sparse Auto 

encoder 

WRF Marine weather Research and Forecasting 

PSO-SVM Particle Swarm Optimizer of Support 

Vector Machine 

ML MACHINE LEARNING 

SVR Support Vector Regression 

GBRT Gradient Boosting Regression Trees 

SCADA Supervisory Control and Data Acquisition 

ICEEMDAN Improved Complete Ensemble Empirical 

Mode Decomposition with Adaptive Noise 

Bi-LSTM Bidirectional long short-term memory 

WPF Wind Power Forecasting 

FS Feature Selection 

GLSSVM Group Least Square Support Vector 

Machine 

LS-SVM Least Square Support Vector Machines 

GMDH Group Method of Data Handling 

PV Photovoltaic 

LSTM Long Short-Term Memory 

NN Neural Network 

NWP Numerical Marine weather Prediction 

MIC Many Integrated Core 

LSTM Long Short-Term Memory 
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