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Abstract—One of the key factors related to assessing the
spreading speed of a given disease is to determine the peak
of infections, the point after which a wave starts to mitigate
as the daily number of cases goes down. This issue has
attracted the attention of scientists for the last two years
in relation to the COVID-19 pandemic. At the present time,
since several waves have affected most countries, there is
plenty of information at our disposal: date and magnitude
of contagion peaks; country-related data such as population
density, gdp per capita, etc.; among other relevant status
metrics at the dates of peaks, like vaccination, mobility,
use of mask, occupied hospital beds, etc. Thus, finding
which of those attributes are relevant and ranking them
becomes an interesting field for research. In this work, we
apply a filtering technique to identify peaks on the reported
data and then perform feature selection algorithms with
the peak magnitude as output. A comparative ranking of
the attributes is thus obtained for several countries and
for different waves in the same country. As pre-processing
tasks, we performed a normalization and a conversion from
numerical to categorical values on the output variable. As a
result, a grouping of countries and waves is obtained, from
where important information can be extracted. Our results
contribute with knowledge for predicting and monitoring
the spreading of diseases and become a relevant tool for
health institutions and authorities.

Index Terms—COVID-19, peak of infections, feature
selection,  clustering,  machine  learning, K-means,  random
forest, Boruta

I. INTRODUCTION

In the recent years, many mathematical models have
been proposed to monitor and predict the evolution
of the COVID-19 outbreak (see for example [1] and
references therein). One large class of those are the
Machine  Learning  prediction  models.  In [2,3], surveys
of Machine Learning techniques applied to COVID-19
pandemic are introduced. In [4] the author analyzed
several Machine Learning methods that allow to predict
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risk factors such as age, social habits, location, and
climate.

Among Machine Learning tools, feature selection
algorithms are important in order to select the most
relevant characteristics related to the prediction of a

work  with  less attributes (see for example [5, 6]  and
references therein). Random Forest [7] and Boruta [8]
algorithms are examples of these. In epidemics, a feature
selection process can be applied in order to determine
which characteristics contribute the most to the viru-
lence of a given disease. The aim of this work is to
apply feature selection algorithms to find which country
attributes are the most relevant in order to determine
the magnitude of COVID-19 peaks of infections and
deaths. Our proposal is to apply a classical feature
selection procedure where the output variable is the
magnitude of the peak of infections on the one hand,
and the magnitude of the peak of deaths on the other.
As input attributes, we take several characteristics of the
analyzed countries, in order to detect which of those
are most relevant to determine the magnitude of those
peaks. It is clear that knowing the most important factors
that affect the impact of the disease can be helpful to
control outbreaks. We have an available dataset where
the list of attributes involving both static variables such
as life expectancy, median age, quantity of smokers, etc.,
and dynamic variables like mask use, vaccination, and
mobility. Those dynamic variables are taken at the date
of each identified peak. In this analysis, we have taken
advantage of the fact that every country has gone through
several waves and, consequently, there are various peaks
of both infections and deaths in every country. We have
analyzed the attributes of a total of 129 countries, though
after adding several waves for each country (between 3
and 5) the dataset is composed by 423 records. Table
I shows the complete list of input attributes with their
descriptions.

We then chose an output variable, the peak of in-
fections on the one hand and the peak of deaths on
the other, and analyzed which attributes determine those
outputs best. Since the positive rate was far away from
the optimum values recommended by the World Health
Organization (less than 5%), it is reasonable to consider

or to simplify the prediction procedure by allowing to
given variable, either to understand a given domain
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TABLE I
FULL LIST OF INPUT ATTRIBUTES

Attribute name Description Experiment

total cases norm Total cases Deaths
total deaths norm Total deaths Cases
icu patients norm ICU patients Deaths

hosp patients norm Hospital patients Both
total tests norm Cumulative nº of tests Both
new tests norm Daily nº of tests Both

mask use % of mask usage Both
mobility % of social mobility Both

vaccination 1 dose Nº of first doses applied Both
vaccination full Nº of fully vacc. people Both

reproduction rate Effective reproduction rate (R) Both
positive rate COVID-19 tests that are positive,

given as a rolling 7-day average
(this is the inverse of

tests per case)

Both

tests per case Tests conducted per new
confirmed case of COVID-19,

given as a rolling 7-day average
(this is the inverse of

positive rate)

Both

stringency index Government Response Stringency
Index: composite measure based

on 9 response indicators including
school closures, workplace

closures, and travel bans, rescaled
to a value from 0 to 100 (100 =

strictest response)

Both

population density Population density Both
median age Median age Both

aged 65 older Share of the population that is 65
years and older, most recent year

available

Both

aged 70 older Share of the population that is 70
years and older in 2015

Both

gdp per capita Gross domestic product at
purchasing power parity (constant
2011 international dollars), most

recent year available

Both

extreme poverty Share of the population living in
extreme poverty, most recent year

available since 2010

Both

cardiovasc death rate Death rate from cardiovascular
disease in 2017 (annual number
of deaths per 100,000 people)

Both

diabetes prevalence Diabetes prevalence (% of
population aged 20 to 79) in 2017

Both

female smokers Share of women who smoke,
most recent year available

Both

male smokers Share of men who smoke, most
recent year available

Both

handwashing facilities Share of the population with basic
handwashing facilities on

premises, most recent year
available

Both

life expectancy Life expectancy at birth in 2019 Both
human development index A composite index measuring

average achievement in three
basic dimensions of human

development—a long and healthy
life, knowledge and a decent
standard of living. Values of

2019, imported from [9]

Both

that the reported data of COVID-19 cases (and, in a
lower magnitude, deaths) are not exact, and are subject to
additive noise. This assertion is supported by the inspec-

tion of the reported cases curves, where a sharp variation
(characteristic of a high frequency additive noise) is
clearly perceived, and more accurately, by frequency
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domain analysis (see Fig. 2). In order to determine the
location of peaks in each curve, a smoothing filtering
process must be applied. Despite quite complex filtering
techniques can be considered, since the spectrum shows
mainly an additive noise component at the frequency of
1/7 a day; a straightforward low-pass  filter is enough to
smooth the curves in order to clearly identify the peaks.
Another necessary task was to change the output variable
from numerical to categorical, to improve the perfor-
mance of the algorithms on the one hand, and to identify
groups of countries and waves on the other. In order
to achieve this, a clustering procedure was performed
prior to the feature selection. The number of clusters was
selected according to the Freedman-Diaconis criterion
[10], and two grouping algorithms were considered:
Jenks-Fisher [11] and K-Means [12]. This arrangement
of countries and waves shows an interesting assembly
of sets, where important information can be extracted
from and is itself a relevant data analysis. Silhouette
[13], Calinski-Harabasz [14] and Davies-Bouldin [15]
coefficients were obtained to measure the efficiency
of the clustering procedure. Fig. 1 depicts a graphical
summary of the whole process 1.

Selection of the
optimum number

of clusters 

Filtering 
Identifying the

real peaks 

Missing values
imputation 

Attribute
normalization 

Categorization 

Feature selection 

Fig. 1. Flowchart showing the complete feature selection procedure,
including all preprocessing steps.

The results we obtained are aligned with those es-
tablished by the scientific community for identifying the
factors that contribute to the disease virulence. However,
our work is useful since a measure of their relative
importance and order is introduced. As an example of
application of Machine Learning tools, this work is also
of interest for the data analysis community.

This work is organized as follows. In Section II the
data preprocessing, including the signal filtering, peak
detection and data preparation, is described. In Section
III we explain the feature selection process and show the

main results. In Section IV, a discussion is presented.
Finally, in Section V, some conclusions are drawn.

II. DATA PREPROCESSING

A. Filtering and Peak Detection

Since the number of tests do not cover the total
population, and the sampling is not performed uniformly
over time, we can consider that the daily data curves
are highly contaminated with noise, which must be
suppressed in order to properly detect peaks. By ob-
serving the data spectrum (Fig. 2 shows the USA’s;
which exhibits the same shape in almost every country),
significant components can be clearly distinguished at
frequency 1/7 day−1 and its harmonics. This is ex-
plained by the weekly periodic variations in the number
of tests (as it is known, there are fewer COVID tests
performed on weekends). An analogous behaviour can
be seen in the deaths dataset, since a smaller number of
deaths is reported during weekends. Since we are looking
for a smooth curve of data, we just need to keep the low
frequency components; hence, we preferred low-pass
filtering instead of band-suppress or notch. Among these,
we used moving-average (MA) filters, which are the
simplest low-pass finite impulse response (FIR) filters
(see [16]).
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Fig. 2. USA data displayed in the frequency domain (spectrum).
Vertical axis shows the amplitude of the Fourier transform, computed
via the FFT algorithm. Since the data is reported in cases per days,
the frequency axis has units of day−1. Significant peaks can be
appreciated at the harmonics of 1/7 day−1, as expected.

Since we need at least to remove the 1/7 frequency
component, L (the length of the filter kernel) must be
chosen to be L ≥ 7. In order to avoid harming the signal
too much, we chose to fix L = 7 and apply the same
filter n times in a sequence. As stated in [16], this kind
of arrangement approximates a Gaussian filter, which is
smoother than a single MA, and hence less likely to harm
the signal.

Once we obtain a smooth curve, maximums and mini-
mums detection can be done by straightforward methods.
Hyper-parameters must be carefully chosen by the user
(typically, values of L = 7 and n ≥ 7 achieve good
enough results, except in some pathological cases). Since
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filtering is not perfect, user interpretation is necessary
to decide which peaks are “false” (product of persistent
noise) and which are the real ones. The result is shown
in Fig. 3 for the United States (Fig. 3a), India (Fig. 3b)
and China (Fig. 3c), where the fake peaks are shown
with red dots and the real peaks with green dots. After
deleting the fake peaks from the datasets, we kept a total
of 422 peaks of cases and 464 peaks of deaths.
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(a) Filtered and real data with fake and real peaks (USA).
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(b) Filtered and real data with fake and real peaks (India).
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(c) Filtered and real data with fake and real peaks (China).

Fig. 3. Filtered and real data curves and detected peaks taken from
USA, India and China data.

B. Dataset Preparation

The next step in the process is the preparation of a full
dataset in an adequate format. We obtained both the daily

cases and daily deaths reports and the country attributes
from Our World In Data [17], with a few exceptions:
the social mobility, mask use, and vaccination data,
which we took from the Institute of Health Metrics and
Evaluation [18]. The data covers from January 2020,
the beginning of the epidemic, to June 15, 2022. From
these data we produced two different datasets, one to
be used with the peaks of cases as the output variable,
and the other to be used with the peaks of deaths as
output. Then, some attributes needed to be normalized to
take the population into account. Thus we divided their
values by their country’s population. The complete list of
attributes taken for each experiment is shown in Tables
V, VI (feature selection on the peak of cases), Tables VII
and VIII (feature selection on the peak of deaths). Note
in Tables V and VII that the input attributes are slightly
different for each experiment: in Table V the peak of
cases is taken as the output variable, and the total number
of deaths appears as an attribute, whereas in Table VII
the output variable is the peak of deaths and the total
number of reported cases is an input variable. Also, ICU
occupation was not considered as an input for the peak
of cases, though it is certainly important when explaining
the deaths, which is why it appears only in Table VII.
Variables such as these, whose names end with “norm”,
take normalized values relative to the population. Finally,
it was necessary to fill the blanks in the dataset (a
18.14% of the data were missing). Vaccination columns
had a lot of blanks because some peaks happened before
the vaccines were available. We filled these column with
zeros. For the rest of the variables, the blank spaces were
filled according to a register proximity rule by using the
kNN imputation method [19].

C. Converting the Output Variable from Numerical to
Categorical

Since exact numerical values are not of particular
importance, but macro tendencies are, we aimed for a
classification instead of a regression. Thus, the output
variables (relative peak of cases in one experiment,
relative peak of deaths in the other one) needed to be
categorized into discrete classes.

Discretization can be done in several ways. We first
chose an “optimal” number of clusters, or bins, accord-
ing to some criterion. We considered three different
estimates for the number of bins: Freedman-Diaconis
[10], Sturges [20] and Scott [21], three well-known rules
in the theory of histograms. Overall, Freedman-Diaconis
performed better, so we discarded the rest. It must be
remarked that these three methods are generally used to
choose an optimal number of bins in a histogram, where
each bin has an uniform length. However, for the purpose
of discretization, this estimation can be greatly improved
if one chooses non-uniform bins. Therefore, we just used
the rules to determine the number and then assigned the
data by other methods.
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Once the number of bins is chosen, the next step is to
place every peak into a class, which can be done by
any grouping or clustering algorithm. We tested four
methods: uniform binning (“base” Freedman-Diaconis
estimate), agglomerative (hierarchical) clustering [22],
[23], K-Means clustering [12] and Jenks-Fisher rule [11].
Clustering performance was evaluated by the Silhouette
[13], Calinski-Harabasz [14] and Davies-Bouldin [15]
metrics; results are shown in Tables II and III.

TABLE II
METRICS OF CLUSTERING PERFORMANCE FOR THE PEAKS OF

CASES. NUMBER OF CLUSTERS: 39

Algorithm Silhouette C-H D-B

Uniform binning 0.5738 5525 0.3295
Agglomerative clustering 0.5534 29345 0.3830

K-Means 0.5626 30771 0.3909
Jenks-Fisher 0.5779 33037 0.3912

TABLE III
METRICS OF CLUSTERING PERFORMANCE FOR THE PEAKS OF

DEATHS. NUMBER OF CLUSTERS: 22

Algorithm Silhouette C-H D-B

Uniform binning 0.5872 4231 0.4119
Agglomerative clustering 0.5708 10605 0.4144

K-Means 0.5744 11158 0.4087
Jenks-Fisher 0.5821 11640 0.4154

Overall, Jenks-Fisher and K-Means methods are the
most consistent, so we chose these two sets of clus-
ters as our categorical outputs for the feature selection
experiments. Interesting information can be obtained
by analyzing the output of the clustering procedure.
For example, taking into account the normalization we
performed, different waves from different countries are
grouped together, the first peak of the United States is
grouped together with peaks other than No. 1 of different
countries. Clusters are of quite different sizes. Despite
India had attracted the attention due to the number of
infected people and deaths, it belongs to the group of
not so noticeable countries and waves. All datasets are
available for further use [24].

III. FEATURE SELECTION

We performed four experiments on both infected and
deaths datasets, all of them based on Random Forest
classifiers. Two standard Random Forest classifications
were applied to the two chosen output variables (Jenks-
Fisher and K-Means sets of clusters). Then, two ex-
periments were made applying the Boruta algorithm
to a base Random Forest estimator to obtain a first
estimate of the attribute importance; then, attributes
marked as non important were discarded and another
Random Forest was trained with only the important
variables. The Boruta experiment was also performed on
the two output columns. Finally, the attribute importance

in each experiment was estimated by the mean decrease
in impurity (MDI) within all the trees in the forest. We
also considered using the feature permutation method
to estimate importance. However, since the results were
quite similar, they are not shown here.

All the processing described in this work (prepro-
cessing and feature selection) was done in the Python
language; the source code is available at [25] for public
use. Feature selection methods were performed using
the algorithm implementations present in Scikit-Learn
[26] and BorutaPy [27] libraries. The hyper-parameters
were fixed in all the experiments as it is indicated
in Table IV. Performance of each experiment (dataset
+ algorithm + output variable) was evaluated by four
metrics: accuracy on the training set, accuracy on the
testing set, out-of-bag error and mean cross-validation
score. These experiments, applied to both the infections
and deaths datasets, gave us eight sets of results, which
are summarized on Tables V, VI, VII and VIII. The
accuracy metrics listed on these tables show that the
model exhibits overfitting (over 90% accuracy on the
training set versus around 20−30% accuracy on the test
set). In our experiments, we found that different choices
of hyperparameters produced a decrease in accuracy on
the training set, while that of the test set remained
constant, and without relevant changes in the order of
importance of attributes. Since we are mainly concerned
on fitting the present data instead of predicting new ones,
in order to determine the best features for the actual
data, we set the hyperparameters so as to obtain the
best fitting on the training set. The choice of a small
percentage as test set, was intended in order to quantify
how such a predictive model could perform. Algorithm
1 summarizes the whole process.

Algorithm 1 Step by step description of our methodol-
ogy.
1-Filtering
2-Actual peak detecting
3-Data preparation
4-Selection of the optimum number of clusters
5-Categorization
6-Feature Selection

TABLE IV
FEATURE SELECTION HYPER-PARAMETERS

Hyper-parameter Value

Size of training set 90%
Number of trees 30
Impurity function Shannon’s entropy

Max. bootstrap samples per tree 80%
Max. distinct attributes per tree 70%

Min. Nº of samples to divide a node 5
Min. Nº of samples to mark a leaf 3

Boruta threshold 70% percentile
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RESULT OF APPLYING RANDOM FOREST ALGORITHM FOR
FEATURE SELECTION ON THE PEAK OF CASES. THE COLOURING IS
A VISUAL INDICATOR OF THE IMPORTANCE; GREEN MEANS MORE

IMPORTANT, RED MEANS LESS IMPORTANT

Variable K-Means Jenks-Fisher

hosp patients norm 2.35% 2.57%
total tests norm 8.88% 8.96%
new tests norm 7.81% 7.29%

total deaths norm 23.60% 23.18%
mask use 2.92% 3.95%
mobility 2.57% 2.39%

vaccination 1 dose 2.26% 2.16%
vaccination full 2.00% 1.73%

reproduction rate 4.54% 4.89%
positive rate 2.74% 2.15%

tests per case 3.25% 2.62%
stringency index 2.86% 2.97%

population density 2.02% 1.73%
median age 7.61% 7.57%

aged 65 older 2.22% 2.12%
aged 70 older 1.79% 1.93%
gdp per capita 1.02% 1.02%

extreme poverty 1.48% 2.04%
cardiovasc death rate 2.67% 3.10%
diabetes prevalence 2.41% 2.52%

female smokers 2.88% 3.43%
male smokers 1.51% 2.32%

handwashing facilities 1.14% 1.67%
life expectancy 5.71% 3.99%

human development index 1.76% 1.71%

Performance metric

Accuracy on the training set 93.14% 94.20%
Accuracy on the testing set 37.21% 20.93%

Out-of-bag error 0.2375 0.277
Mean cross-validation score 0.2321 0.2876

TABLE VI
RESULT OF APPLYING BORUTA ALGORITHM FOR FEATURE
SELECTION ON THE PEAK OF CASES. THE COLOURING IS A

VISUAL INDICATOR OF THE IMPORTANCE; GREEN MEANS MORE
IMPORTANT, RED MEANS LESS I

Variable K-Means Jenks-Fisher

total tests norm 11.02% 9.72%
new tests norm 9.29% 9.56%

total deaths norm 24.11% 26.16%
mask use 4.79% 6.26%
mobility 4.64% -

vaccination 1 dose 5.55% 5.88%
stringency index 5.84% 6.05%

median age 12.57% 9.79%
aged 65 older 4.87% -

cardiovasc death rate - 5.31%
female smokers 5.25% 5.89%
life expectancy 6.26% 7.60%

Performance metric

Accuracy on the training set 92.08% 92.35%
Accuracy on the testing set 30.23% 27.91%

Out-of-bag error 0.2375 0.285
Mean cross-validation score 0.2374 0.2717

TABLE VII
RESULT OF APPLYING RANDOM FOREST ALGORITHM FOR

FEATURE SELECTION ON THE PEAK OF DEATHS. THE COLOURING
IS A VISUAL INDICATOR OF THE IMPORTANCE; GREEN MEANS

MORE IMPORTANT, RED MEANS LESS IMPORTANT

Variable K-Means Jenks-Fisher

hosp patients norm 4.58% 3.90%
icu patients norm 3.69% 7.02%
total tests norm 2.55% 2.32%
new tests norm 2.08% 1.78%

total cases norm 12.39% 12.17%
mask use 2.94% 2.47%
mobility 3.31% 3.76%

vaccination 1 dose 1.81% 1.72%
vaccination full 2.85% 1.54%

reproduction rate 3.43% 3.20%
positive rate 3.50% 3.45%

tests per case 3.79% 3.77%
stringency index 3.15% 2.30%

population density 3.58% 3.37%
median age 3.65% 3.22%

aged 65 older 5.54% 7.14%
aged 70 older 6.82% 4.44%
gdp per capita 3.47% 4.28%

extreme poverty 2.70% 2.75%
cardiovasc death rate 2.24% 2.71%
diabetes prevalence 3.06% 4.12%

female smokers 5.92% 5.18%
male smokers 3.15% 2.42%

handwashing facilities 2.66% 2.95%
life expectancy 2.45% 2.86%

human development index 4.69% 5.18%

Performance metric

Accuracy on the training set 94.96% 93.53%
Accuracy on the testing set 42.55% 31.91%

Out-of-bag error 0.3094 0.2686
Mean cross-validation score 0.3286 0.3068

TABLE VIII
RESULT OF APPLYING BORUTA ALGORITHM FOR FEATURE

SELECTION ON THE PEAK OF DEATHS. THE COLOURING IS A
VISUAL INDICATOR OF THE IMPORTANCE; GREEN MEANS MORE

IMPORTANT, RED MEANS LESS IMPORTANT

Variable K-Means Jenks-Fisher

hosp patients norm 6.46% 7.53%
icu patients norm 5.17% 6.98%
total cases norm 14.99% 14.32%

mobility 5.93% 7.38%
vaccination full 5.11% -

positive rate 4.27% 4.95%
tests per case 6.46% 5.70%

population density 5.42% 5.99%
median age 4.45% 6.73%

aged 65 older 8.21% 7.75%
aged 70 older 5.65% 7.75%
gdp per capita 4.22% 5.37%

extreme poverty 5.22% 5.92%
female smokers 8.61% 7.70%
life expectancy 5.58% -

human development index 4.24% 5.94%

Performance metric

Accuracy on the training set 92.33% 88.49%
Accuracy on the testing set 29.79% 27.66%

Out-of-bag error 0.307 0.2878
Mean cross-validation score 0.2973 0.295

TABLE V
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IV. DISCUSSION

We have presented a workflow to find the most influ-
encing attributes in order to explain the peak magnitude
of infectious cases and deaths by COVID-19 disease.
We can highlight that our results show that, by using
any of the mentioned estimation methods, the variable
describing the total deaths is by far the most influential
one. This shows the existence of a strong correlation
and justifies using the amount of deaths to predict the
number of infections, as some models propose. This
is obviously the result of a cause-effect relation: more
cases imply more deaths. Fig. 4 shows the (filtered) daily
cases and deaths curves of our three selected countries
(United States, India and China). It is clear that both
curves follow the same pattern, with the deaths curve
delayed by around 14 days (the infectious period). This
can be a useful tool to produce good estimates of the
”real” number of cases when the testing procedures
are weak or non existent, but the number of deaths is
known. Correlation metrics are shown in Table IX; the
correlation coefficients values along with the extremely
small p-values, prove that this correlation, though not
extremely strong, is statistically significant with a very
high probability, as we expected. The other important
variables, the second, third and fourth are not unanimous.
The most voted variables are those related to median
age, new tests and total amount of tests. Median age
contributes more to the model than age groups over 65
and over 70. An interesting and quite surprising result is
that the incidence of female smokers is superior to that
of male smokers, which can be seen not only by their
importance but also in the Boruta algorithm choosing
to keep it (see Tables VI and VIII). Life expectancy
is another attribute that contributes over most of them.
To sum up, we conclude that static variables related to
median age and life expectancy are more relevant than
hand-washing facilities, mask use or mobility, which are
generally used to control the disease. It can be observed
that the variables median age and life expectancy have
strong influence in the peak of cases, which in terms of
public policies, shows the importance of protecting the
senior population.

On the other hand, the variables age 65 older and
female smokers have greater influence in the peak of
death. This is in coincidence with the article [28],
where the author shows that there are changes in the
contribution of smoking to the sex differences in life
expectancy in Europe, along 1950-2014, and that the
life expectancy of female smokers is greater than male
smokers. Then, the importance of this variable is related
to the life expectancy.

A remark on the contribution of the mobility factor
must be pointed out: the effect of lockdown actions
appears several days afterwards. These actions are dif-
ficult to be taken on time and were generally taken too
late, like in European countries during the first wave,
or too early, like the case of Argentina, where strong

20
20

-0
2-

29

20
20

-0
7-

17

20
20

-1
2-

04

20
21

-0
4-

22

20
21

-0
9-

09

20
22

-0
1-

26

20
22

-0
6-

15

0

100000

200000

300000

400000

500000

600000

700000

N
um

be
r o

f c
as

es

United States

Cases

0

500

1000

1500

2000

2500

3000

N
um

be
r o

f d
ea

th
s

Deaths

(a) Filtered daily cases and deaths curves (USA).
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Fig. 4. Filtered daily cases and deaths data from USA, India and
China. The scale of the cases curves is shown on the left side axis,
whereas the scale of the deaths curves is shown on the right side axis.

TABLE IX
PEAK OF CASES VS TOTAL DEATHS, CORRELATION METRICS

Metric Coefficient P-value

Pearson r 0.4632 7.88× 10−24

Spearman ρ 0.8089 6.26× 10−99

Kendall τ 0.6152 1.74× 10−79

restrictions were decided when a small number of cases
were being reported. As a consequence, a high and sharp
peak is obtained in the first case as well as a low value in
mobility, and a low and wide peak with a higher mobility
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value is obtained in the second. Consequently, at the
date when the peak occurs, the mobility value does not
correlate with the peak magnitude. The mobility should
then be correlated to the slope of the curves, instead of
a particular value at a given date.

The death cases variable shows similar results, though
with more importance of the attributes related to aged
population, as expected, and a low contribution of me-
dian age. In this case, female smokers are quite more
important than male smokers, and contributes even more
to deaths than to infections. The contribution of hand-
washing facilities, mask use and mobility are similar to
that obtained in the dataset of infectious cases.

It is noticeable that all the important variables are
extremely related to cause and effect, for example, if the
population has a high rate of people older than 70, then
it corresponds to a population with high life expectancy.
In the same sense, if the total number of deaths from a
disease is very large, there must have been many infected
people. And therefore, the results are consistent.

Machine Learning methods provide us, not only with
predictive model development, but also essential knowl-
edge that defines the relationships between variables,
which is the first step in very important tasks such as
dimensional reduction. This specific knowledge can be
used in a wide variety of applications as public policies
design or establish strategic priorities.

V. CONCLUSIONS

A feature selection analysis on COVID-19 datasets
was performed. We identified the most relevant attributes
that determine the peak magnitude of both infections
and deaths on several countries. From our procedure,
we demonstrated that life expectancy and median age
have more influence than other variables generally used
to control the outbreak. A filtering procedure in order
to smooth the reported curves and easily detect peaks
and waves was introduced. Clustering algorithms were
also performed in order to group countries and waves
of infections and deaths, which also showed important
information. This work contributes to identify the main
factors that determine the COVID-19 disease virulence.
A metric to measure the relative importance of the
attributes was obtained.

As future work, we observed that the data sets related
to COVID-19 contain information that should be further
investigated, with the aim of designing better public
policies, then we want to direct our efforts to research
that point. In addition, we want to measure the impact
of vaccination in the waves of the disease [29]. The
two statistical methods popularly used prior to modern
Machine Learning methods specified in this research
would be:

I. Principal Components (by Hottelling’s principal
component technique).

II. Factor Analysis (by Galton and Pearson/Spearman)
[30, 31].

One would expect the principal component to be the
total deaths norm or the total cases norm, as evident
from tabulated findings unanimously in this article. Last
but not the least, the authors also anticipate an alternative
non-analytical future method with which to conduct (as
related to Fig. 1 and Fig. 2, and Table I to Table
IX) certain selected Discrete Event Simulation (DES)
analyses [32], where ”the number of COVID-19 cases”
could be the random variable of pivotal interest in order
to compare and contrast with the proposed analytical
findings to ensure flexibility and versatility.
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