
  

 

Abstract—A critical step in hypothesis testing at the 

computer theory and/or engineering decision-making stage is to 

optimally compute and use type-I (α) and type-II (β) error 

probabilities. The article’s first research objective is to optimize 

α and β errors, or producer’s and consumer’s risks, or risks of 

false positives (FP) and false negatives (FN) by employing the 

merits of a game-theoretical framework. To achieve this goal, 

the cross-products of errors and non-errors model is proposed. 

The second objective is to apply the proposed model to an 

industrial manufacturing quality control mechanism, i.e. 

sequential sampling plans (SSP). The article proposes an 

alternative technique compared to prematurely selecting the 

conventionally pre-specified type-I and type-II error 

probabilities. One studies mixed strategy, two-players and zero-

sum games’ minimax rule derived by von Neumann and 

executed by Dantzig’s linear programming (LP) algorithm. 

Further, one equation for one unknown scenario yielding simple 

algebraic roots validate the computationally-intensive LP 

optimal solutions. The cost and utility constants are elicited 

through company-specific input data management. The 

contrasts between conventional and proposed results are 

favorably illustrated by tables, figures, individual and 

comparative plots, and Venn diagrams in order to modify and 

improve the traditionally executed SSP’s final decisions. 

 
Index Terms—Cross-products of errors, minimax rule, 

accept-reject-continue-terminate, cost and utility.  

 

I. INTRODUCTION 

A. Motivations of Research Proposal and Outputs 

1) The primary innovative motivation behind this article 

lies in optimizing type-I and type-II error probabilities, α and 

β, using a game-theoretic computationally intensive LP 

algorithm to improve the accuracy and credibility of 

statistical hypothesis testing outcomes in today's quality 

control-conscious and information technology-savvy world. 

This is an alternative to the traditional assumptions of α and 

β, with no prior data-centric knowledge about hypothesis tests 

governing any design process.  

2) The secondary motivation is to introduce and implement 

the hereby optimized alpha (producer’s) and beta 

(consumer’s) risks by employing the business costs and 

utility input data to item-by-item sequential sampling plans in 

industrial quality control. The goal is to aim for company- 

specific and data-centric quality-control inspection rather 

than heuristic or predetermined. This article, therefore, 
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proposes an alternative to assuming ubiquitous producer’s 

(e.g., α=0.05) and consumer’s risk values (e.g., β=0.10). The 

implementation interface to SSP is achieved through case 

studies and input data elicitation by user-friendly, easy-to-

reproduce software algorithms with satisfactory outcomes. 

B. Literature Survey for Type I & II Errors, Game Theory 

Aside from the usual rule-of-thumb or best-guess or 

judgment-call-based choices of such as 1-out-of-20 or 1-out-

of-50 etc., there have been alternative attempts to compute 

alpha (type-I error probability) by deriving the first and 

second derivatives of the standard Normal distribution curve. 

This is performed by determining the second derivative to 

reach a maximum at z = ±1.732 which corresponds to a p-

value of 0.083. An alternative approach has been to find a 

point where the concavity in the Normal distribution curve is 

maximal to the first derivative. That is, the maximal curvature 

k(z) occurs when z = ±1.749 corresponding to a p-value of 

0.08. The p-value is used to reject H0 for a given alpha. The 

calculus-based algebraic approaches have been earlier 

studied by Kelley [1] and Grant [2]. As Kelley quoted [1], “No 

one therefore has come up with an objective statistically 

based reasoning behind choosing the now ubiquitous 5% 

level, although there are objective reasons for levels above 

and below it. And no one is forcing us to choose 5% either.” 

The history of type-I and type-II errors goes back to Neyman 

and Pearson [3] who discovered the problems associated with 

deciding whether or not a particular sample may be judged as 

likely to have been drawn from a specific population. They 

identified two sources of errors, type-I (α) and type-II (β). 

They observed that “… If the probability of obtaining a result 

as extreme as the one obtained, supposing that the null 

hypothesis were true, is lower than a pre-specified cut-off 

probability (for example, 5%), then the result is said to be 

statistically significant and the null hypothesis is rejected.” 

Fisher [4] proposed the level P=0.05 as a limit of statistical 

significance where he also originated in his book: “The value 

for which P=0.05 or 1 in 20 is 1.96 or nearly 2: it is 

convenient to take this point as a limit in judging whether a 

deviation is to be considered significant or not.” A prominent 

aspect of Neyman and Pearson’s [3] and Fisher’s [5] findings 

was that one never fully justified, or rigorously proved, as to 

why, e.g. P=0.05 or else was selected as a pre-specified cut-

off probability. Over a century of alpha and beta error–

related discussions, e.g. by Salkind [6] who wrote that no 

game-theory was recorded in plain hypothesis testing, and 

also by Hedberg [7] who recorded that the central theme for 

Type-II error, or the power, (1- β), revolves around a symbolic 

value of β=0.2, as in the SAGE Research: “…The convention 
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of the social sciences is to design studies with a power of at 

least 80% chance of detecting an effect…”  

Game theory is a branch of mathematical sciences devoted 

to the logic of decision-making in societal, physical or 

managerial interactions, and concerns the behavior of 

decision-makers who influence each other for optimal 

resource allocations at times subject to budget constraints to 

maximize utility as studied by Sahinoglu et al. [8], 

Szidarovszky and Luo [9]. The statistical decision theory is a 

one-person game theory. The LP system of equations will 

optimize producer’s and consumer’s risks by two-player, 

zero-sum and mixed-strategy-based minimax rule by von 

Neumann [10] and von Neumann et al. [11] in 1928 and 1944 

respectively. A similar algorithm was adopted in two 

proceedings by Sahinoglu et al. [12], [13] and a monogram 

[14] and a textbook by Sahinoglu [15]. The effort continued 

while minimizing COLLOSS (Column Loss) in the Eco-Risk 

article, and Oil-Drilling Spill Risk-themed article, 

respectively, in Sahinoglu et al. [16], [17]. Next comes what 

lies behind the LP problem by Dantzig [18]. The forward and 

backward proofs of a general representation theorem (GRT) 

are given by Lewis [19]. Introduction of game theory to risk 

analysis is by Cox [20].  

C. Summary of Sections I to VI 

After introduction of goals, outcomes, and an extensive 

literature survey in section I, the section II studies the game 

theory-linked LP methods to achieve the itemized goals via 

the cross-products of risks and non-risks with related 

definitions. Section III studies example 1 for statistical 

sequential sampling plans with an input data management 

scheme at large. Section IV details example 1 through a 

thematic Venn diagram in probabilistic terms. Section V 

verifies and justifies the proposed optimal method via the 

short-cut algebraic roots to lead to a simple computational 

procedure. Examples 2 and 3 are added in section V by 

diversifying the LOSS variables to show the game-theoretic 

LP method’s input data flexibility. Section VI conclusively 

summarizes the content with further research suggestions. It 

is time to compare different analytical approaches as follow. 

 

II. CROSS-PRODUCTS OF ERRORS WITH CASES 

The cross-products of errors and non-errors will be 

proposed and utilized to construct the LP algorithm to apply 

to statistical sequential sampling plans employed in industrial 

quality control.  

A. LP Algorithm with Composite-, Partial- and Non-Risk 

Errors’ Cross-Products 

The issue with the classical approaches to hypothesis 

testing in terms of alpha and beta errors is that the hand-

picked ubiquitous assumptions such as α=0.01 or 0.05, and 

β=0.10 or 0.20 may be detached from the prevalent data-

centric sources. Costs or utility (profit) associated with 

varying error values: (α and β), or non-error values: (1-α, and 

1-β) and their cross-products: [α β], [α (1-β)], [(1- α) β] and 

[(1-α) (1-β)] in the form of partial producer’s or consumer’s 

risks, or both, or none, are not hitherto considered. No such 

errors may have incurred with no whatsoever financial loss 

for the producers and consumers with a complete market 

satisfaction due to the error-free pair: (1-β) and (1-α). A 

common routine as Neyman and Pearson and Fisher practiced, 

is to select type-I error probability (alpha) by an existing best-

judgement call for H0, and then, given an alternative set of Ha 

values, to compute a set of type-II error probabilities (beta).  

Note a critical detail here is such that the utility is a 

negative cost effect working versus the positive cost effect in 

the opposite direction, or vice-versa.  For cost and utility 

concepts, which date back to Nicholas Bernoulli, a good 

argument is laid by Singpurwalla and Wilson [21]. However, 

game-theoretic LP methods have not been studied in 

hypothesis testing educational curricula. This is mainly 

because the applications to routine hypothesis tests with 

pertinent costs associated with type-I (α) and type-II (β) errors 

and their cross products, including utility or profit with 

respect to non-errors (i.e. confidence=1-α, and power =1-β), 

are not up to date rigorously formulated. In hypothesis testing, 

this article associates a variety of costs (income lost due to 

errors) or a utility (revenue profited due to non-error) and 

observes where the optimal α and β will unfold by employing 

the basic principles of the game-theoretic minimax rule. This 

is an alternative computational technique to the usual rule-of-

thumb choices, such as α ≈ 0.05 or α ≈ 0.08 etc. or those by 

calculus algebra, as critiqued by Kelley [1] and Grant [2]. The 

proposed empirical and market-friendlier way is an objective 

approach compared to the previous subjective rule-of-thumb 

lacking cost and utility inputs. The hypothesis testing 

literature as in, e.g. Ostle and Mensing [22], lays two types of 

errors in Table I and Fig. 1:  

1) Type-I error: This is when the analyst rejects a true null 

hypothesis. The probability of a type-I error is α, the 

significance level; also known as producer’s risk or false 

positive risk when H0: Good quality versus Ha: Bad quality.    

2) Type-II error: This is when the analyst fails to reject a 

false null hypothesis for an identical hypothesis as above, i.e.  

H0 vs. Ha. The probability of committing a Type-II error, β, is 

also known as consumer’s risk or false negative risk. 

The truth (reality) vs decision (test) of traditional 

hypothesis testing is conventionally framed as follows:  

 
TABLE I: TRUTH (REALITY) VS DECISION (TEST) ELEMENTS OF TEST 

 Decision 

Truth Reject Ho Accept Ho 

True Ho Producer’s Risk=α error=FP No Error=Confidence=1-α=TN 

False Ho No Error=Power=1-β=TP Consumer’s Risk=β error=FN 

 

 
Fig. 1. Hypothesis testing plots of type-I (α) and II (β) errors by Neyman 

and Pearson [3] and Fisher [4], [5]; false positives (α=FP), false negatives 

(β=FN), true positives (TP) and true negatives (TN) according to Table I. 
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A. System of Equations to Optimize Type-I & Type-II 

Error Probabilities 

The following subsections will demonstrate the setup of a 

LP system of equations to optimize type-I (α) and type-II (β) 

errors, i.e. producer’s and consumer’s risks, via the game 

theory as follow: 

 

      α = P {Type-I error = P{reject H0 |H0 is true (1) 

 

β =P {Type-II error} = P{fail to reject H0 |H0 is false} (2) 

 

The probability of not committing Type-I error and Type-

II errors are defined as confidence or test specifity, and power 

or test sensitivity, all respectively. The power is given in (3). 

 

Power = (1-β) = P {reject H0 | H0 is false} (3) 

 

Sharma et al. extensively studied these two test concepts, 

known as test specifity and test sensitivity [23]. 

The power of hypothesis testing is also represented as [1- 

β(Ɵ)], where Ɵ denotes the true parameter value, e.g., 

population mean: μ or population proportion: P. The β(Ɵ), the 

complement of power, is known as the operating 

characteristics (OC) function used in quality control. The 

cross-products of errors and non-errors will be coupled with 

their associated costs. If the cost is negative, this denotes 

utility. Let P11 = αβ, P12 = α(1- β), P21 = (1-α)β, P22 = (1-α)(1-

β) where α = P11 + P12  and β = P11 + P21.  Note, C11, C12, and 

C21 are the corresponding costs due to cross-products of 

errors. C22 is the constant due to non-errors while the cross-

products in (4) sums to unity. Let α =.05, β =.10 such that 

Confidence = 1-α = 1-.05 = .95, and Power = 1-β = 1-.10 = .90. 

Then it follows:  

 

{αβ}+{α(1-β)}+{(1-α)β}+{(1-α)(1-β)}=1;  0<α, β<1 (4) 

 

FP(=α) + TN(=1-α) + FN(=β)+TP(=1-β) = 2;  0<α, β<1 (5) 

 

The cross-products of cubicles from Table I sums to unity 

in (4) as follows here: (.05)(10)+(.05)(.9)+(.10)(.95) 

+(.95)(.9)=.005+ 045+.095+.855 = 1, whereas (5) yields 2. 

Let the cross-products obtained via Table I in (6) to (9) to be:  

 

                Composite riskiness (CoR) =P11=αβ  (6) 

 

Partial riskiness (PRI) due to purely α error=P12= α(1- β) (7) 

 

Partial riskiness (PRII) due to purely β error=P21=(1- α)β (8) 

 

Composite non-riskiness (CoNR)=P22=(1-α)(1-β) (9) 

 

Nonlinear implies not necessarily linear but includes such 

functions by Rapcsak [24] for a smooth optimization. 

 

III. SSP AND QUANTITATIVE EXAMPLE 1 

The entwined goals of this article are set (i) to optimize 

alpha and beta errors by von Neumann’s LP-enabled 

minimax rule to the statistical hypothesis testing of good 

quality of a given lot versus bad quality, and (ii) to apply the 

preceeding approach to an attributes-type item-by-item SSP. 

The test-statistics algorithm in a sequential sampling plan 

is different than a single-stage sampling by Montgomery [25] 

and Jamkhaneh and Gildeh [26] such that:  

i) When plotted points stay within the limiting boundaries 

of a single-stage sampling plan, i.e. AQL (Acceptable Quality 

Level) and RQL (Rejectable Quality Level), continue-

sampling decision takes over and another sample must be 

drawn for continued testing.  

ii) When plotted points fall on or above the upper limiting 

level, RQL, the lot is rejected.  

iii) When plotted points fall on or below the lower limiting 

level, AQL, the lot is accepted. 

iv) When a threshold sample size (=3n) is reached, and no 

accept or reject action taken, and continue-sampling prevails, 

terminate. 

Gaus et al. [27] rather than making an absolute decision of 

accept or reject, refer to lot acceptance/rejection with a 

confidence interval. However, statistically, a more popular 

approach is a sequential sampling plan when the analyst 

keeps testing items from the batch (or lot) and render a 

decision to either i) continue sampling after each item is 

inspected, ii) reject, or iii) accept, or iv) finally terminate SSP. 

The distinction of multiple sampling from SSP is that the 

maximum number of samples for SSP is prespecified. With 

sequential sampling, one could end up conducting 100% 

inspection on the entire batch. The SSP are truncated after the 

number inspected reaches three times the count with single 

sampling plan by Beasley [28]. See Theorem 1: Sequential 

Probability Ratio Test (SPRT) under Wald’s lemma [29] for 

the SSP and by Roussas [30]. Graphically, SSP can be plotted 

in Fig. 5 to 9 in subsections III.B and III.C where the 

cumulative sample size is n and the cumulative number of 

defects is X in the Engineering Statistics Handbook by NIST 

[31] and textbook by Montgomery [25].  

Acceptance (single-stage) sampling plans were historically 

first proposed by Dodge and Romig [32]. The producer’s and 

consumer’s risks occur due to the draw of an unrepresentative 

sample for either wrongly rejecting a lot containing an 

acceptably small amount of detectives, or accepting a lot 

containing an unacceptably large amount of detectives, 

respectively. Here, single-stage acceptance plans are not in 

focus, but SSP are. Briefly, type-I error of the producer’s risk 

(5% is common) is the probability of rejecting a good lot or 

batch. Type-II error of the consumer’s risk (10% is typical), 

whereas, is the probability of not-rejecting a bad lot. The 5% 

(=α) or 10% (=β) cited are subjective takes per standard 

assumptions adopted by MIL-STD-1916 [33]. 

A. Example 1: Input Data Management of Cost and 

Utility Constants, and LOSS Variable 

Take an illustrative example 1 regarding a hypothetical 

EAP (Electric Auto Production) plant as follows with SSP on 

attributes. Critically embedded chips for electric cars are 

purchased on item-by-item sampling with n(sample 

size)=100 per batch delivery. Let p1=AQL=Acceptable 

Quality Limit=.01, and p2=RQL=Rejectable Quality 

Limit=.10 with α=.05 and β=.1 for producer’s and 

consumer’s risks to revisit in section III.B. 

How to collect the Cij = [C11, C12, C21, C22] costs, or the 

input constants by an enterprise, poses several challenging 
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limitations. From the corporate world’s sales accounting logs 

about this hypothetical example 1, this article suggests 

practical ways to meet the input data demand challenges. 

Many of the larger merchandisers will break the returns down 

into four distinct groups, according to a detailed accounting 

analysis by Hoare [34] as follows in random order.    

1) C12: This first group reflects solely the consumer’s faults 

or customer-based mistakes. This is attributed to producer’s 

risk experienced by the producer due to an accrued financial 

loss, $C12. As a merchandiser, one needs to monitor the 

growth rate for this group.  If this unwanted trend begins to 

rise, it might be a sign that the sales staff is unethically forcing 

the wrong product onto the market, hence ending up with the 

consumers who are clueless of what they actually purchased 

and how best to use it. 

2) C21: The other form of a return is a type of merchandise 

that is broken, or has a quality issue. That is, it’s not the 

consumer’s fault but that of the producer. This is attributed to 

the consumer’s risk experienced by the consumer due to an 

accrued financial loss, $C21. If the issue is brand-related, the 

producer or manufacturer may consider discontinuing the 

brand to substitute it with a higher quality product. Popular 

examples are recall actions in the automotive industry. Class-

actions favoring the consumers have recently become a 

commonplace event. 

3) C11: The two adjustments above in the business world 

are followed by another elusively described item as 

allowance, discount or incentive, or occasionally a write-off. 

These vague adjustments to normal sales reflecting defective 

items or courtesy calls for failure in delivering the product or 

service in a timely fashion cause issues. Re-education of the 

sales representatives may be required if customers’ erroneous 

returns increase since this relates to a wrong kind of purchase. 

Consumers may not be educated for what they purchased. 

They claim, the product is defective but it truly is not. This is 

both consumer’s (β) and producer’s (α) risks merged and 

compounded, bearing an accrued financial loss, $C11.  

4) C22: This is the uncontested utility, not returned, with 

100% customer satisfaction and no serious issues intercepted.  

Revisiting the EAP-themed example 1 with Hoare [34] 

taken as a guide, where Total Sales subtracted by Adjustments 

(Returns + Allowances + Discounts) denotes the Net + Other 

Sales. Expressed otherwise, let’s define elements as follow: 

SUM{Cij} = Total Sales: $X,XXX,XXX.  

C12 = Customer-based returns (due to consumer’s 

unjustified faults): $XX,XXX. 

C21 = Producer-based returns (such as recalls due to 

company-generated faults): $XX,XXX. 

C11 = Allowances and Discounts (such as write-offs 

released by the company after an arbitration process, or else, 

in case the court case costs more for the ambiguous and non-

explicit issues due to consumer bad-debt or vendor’s partially 

unusable bad merchandise, which may not be worth extra re-

shelving or re-stocking costs): $X,XXX. 

C22 = Net Sales (trouble-free) + other revenues, like 

insurance or warranty agreements: $XXX, where this utility 

quantity when input into the game-testing software of Table 

III, is taken as a negative cost (since it is a utility):  -$ [XXX, 

XXX + XXX].       

Covering LOSS = $5K (or $3K) in example 1, the following 

arguments are in place: If the LOSS variable constraint is 

taken as –LOSS ≤-$5K (or $3K) or LOSS≥$5K (or $3K); 

LOSS denotes a tolerance and a company-sponsored 

minimum indemnity to intercept the damage incurred after 

deductibles due to each of the risk-related constraints per 

equations (12) to (15). Pij*Ci j<LOSS for i,j=1,2 where each 

of these four constraints are bound not to exceed LOSS=$5K 

(or $3K), including equation (15) where the utility constant 

readily obeys. LOSS, akin to a company-paid compensation, 

is a variable different than Cij.  The LOSS variable is 

minimized by the LP’s objective function of Min LOSS. 

B. Proposed Method Applied to Attributes-Type 

Sequential Sampling in Example 1 

To recap, let the Cij vector to be the most recent averages 

from the Electric Automobile Production (EAP) plant of 

subsection III-A as a set of hypothetical input data: 

Total Sales Revenue = $1,000,000 or $1,000K where 

K=1,000.  

No Adjustments Sale = $800K. Uncontested and suspicion-

free non-returned income.  

Adjustments Returns = $150K. Revenue lost from 

producers’ wrong-doings (consumer’s risk) and consumers’ 

non- compliance (producer’s risk) are broken down:     

Customer-Based = $110K. Consumer’s noncompliance 

may cause civil penalties. 

Producer-Based = $40K. Producer’s wrongdoing causes, 

e.g., recall or class actions.          

Allowances or Write-Offs = $50K. Consumer’s non-

adherence can overlap with producer’s errors leading to an 

inseparable blend of producer’s and consumer’s risks, 

yielding arbitration.     

Based on this breakdown, one examines what kind of a SSP 

which the CFO (Company Financial Officer) in charge of 

managerial finances, will risk while the EAP operates 

optimally lucrative. Select as preceded, Cij = [C11=$50K, 

C12=$110K, C21=$40K, C22 =-$800K] for EAP’s input set is 

used in Tables II to VIII. The EAP case study uses LOSS≥$3K 

or LOSS≥$5K after deductibles akin to a company’s 

indemnities to meet any unexpected or emergency rainy-day 

funds. Table II displays the action-loss based game-theoretic 

LP formulation of the SSP: 

 
TABLE II: EXPECTED LOSSES (EL) FOR ACTIONS TAKEN BY PLAYER1 

(CONSUMER) INCURRED UPON PLAYER2 (PRODUCER) 

Actions Taken by Player1 

(Return Policy) 

EL for action ai given Cij 

incurred on Player2 

a1(Actn 1: Ambigious Fault-based Rtrn) EL(a1) = $ P11C11 ≤ LOSS 

a2 (Actn 2: Consumer’s Fault-based Rtrn) EL(a2) = $ P12C12 ≤ LOSS 

a3 (Actn 3: Producer’s Fault-based Rtrn) EL(a3) = $ P21C21 ≤ LOSS 

a4 (Actn 4: No Fault No Rtrn Ideal Sale) EL(a4) = $ P22C22 ≤ LOSS 

 

Table II shows how Player2 can find its optimal mixed 

strategy. The goal here is to calculate probabilities Pij to 

minimize the expected loss in the SSP process incurred upon 

Player2 regardless of the strategy executed by Player1. In 

essence, Player2 will protect itself from any strategy selected 

by Player1 by making sure its expected market loss is as small 

as possible even if Player1 selects its own optimal strategy to 

maximize gain. Given the probabilities, Pij  for i, j = 1,2 and 

the expected losses in Table II, the game theory assumes that 

Player1 will select a strategy that causes the maximum 

expected loss incurred upon Player2 based on equation (10):  
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Max {EL(a1), EL(a2), EL(a3), EL(a4)} (10) 
 

However, when Player1 selects its strategy, the value of the 

game will be the expected maximum gain such that this will 

maximize Player2’s expected loss as well. On the other hand, 

Player2 will select its optimal mixed strategy using a minimax 

strategy to minimize the maximum expected loss based on 

(11) to yield the objective function by Anderson et al. in [35]:  
 

Min [Max {EL(a1), EL(a2), EL(a3), EL(a4)] (11)  
 

Finally, (11) identifies the Neumann’s MINIMAX rule. In 

case the players are reversed, and GAIN replaces LOSS. Then 

the MAXIMIN rule will replace the MINIMAX rule. The LP 

system of equations are governed by an objective function. 

The following spreadsheets show the input and output with 

an LP algorithm, whereas (19) denoting total cost ($) units 

accrued is constrained for a maximum net profit. If the LOSS 

variable is as such:  LOSS ≥ $5 with (12) to (15) and (17); one 

completes the LP system of equations given the binding 

constraints to minimize the objective function of Min LOSS 

(or MAX GAIN) subject to constraints of (12) to (19) with a 

solution vector Pij = [P11, P12, P21, P22], LOSS variable, Cij = 

[C11, C12, C21, C22] as inspired by Table II:  
 

P11 C11 – LOSS ≤ 0 (12) 
 

P12 C12 – LOSS ≤ 0 (13) 
 

P21 C21 – LOSS ≤ 0 (14) 
 

P22 C22 – LOSS ≤ 0 (15) 
 

0 ≤  Pij  ≤ 1, i,j=1, 2 (16) 
 

LOSS ≥ LOSSmin (17) 
 

P11 + P12 + P21 + P22  = 1 (18) 
 

ΣΣ {Pij Cij} = P11 C11 + P21 C21 + P12 C12 + P22 C22 ≤ 0 (19)  

 
TABLE III: INPUT COST VECTOR CIJ = [C11=50, C12=110, C21=40, C22= -800] 

USED AS INPUT VECTOR BY APPENDIX A 

 
 

Assume Cij = [C11=$50, C12=$110, C21=$40, C22= -$800], 

and observe the input and output for Player2’s optimal mixed 

strategy in Table III (input), Table IV (Pij for various LOSS), 

Table V (LOSS≥3) and Table VI (LOSS≥5). If Player2 uses 

this optimal mixed strategy, Player2’s expected loss for each 

Player1 strategy follows in Table VII for LOSS≥3 and Table 

VIII for LOSS≥5 with constraints regarding (12) to (15). The 

vector Pij is defined as a minimax mixed-strategy solution.  
 

TABLE IV: SOLUTION VECTOR Pij = [P11, P12, P21, P22] GENERATED BY 

APPENDIX A FOR LOSS = 3, 4, 5 

  
 

TABLE V: FEASIBLE LP SOLUTION IN EXAMPLE 1 WITH LOSS≥3 

 
 

TABLE VI: FEASIBLE LP SOLUTION IN EXAMPLE 1 WITH LOSS≥5 

 
 
TABLE VII: EXAMPLE 1 FOR Cij, i,j=1,2; LOSS≥3} WITH EXCEL SOLVER LP  

 
 
TABLE VIII: EXAMPLE 1 FOR Cij, i,j=1,2; LOSS≥5 WITH EXCEL SOLVER LP  

 
 

Fig. 2 and Fig. 3 yield the minimax rule-based α and β 

errors and expected total cost following Table III to VIII. 
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Fig. 2. LP solutions: i) Alpha ≈ .145 and Beta ≈ .225 vs LOSS=$5, and ii) 

Alpha ≈ .087 and Beta ≈ .135 vs LOSS=$3 for Example 1. 

 

  
Fig. 3. Total Cost ≈ -$569, -$661 vs LOSS=$5, $3 for Example 1. 

 

  
Fig. 4. Representative SSP plot of #d effectives (x) vs #items by NIST [31]. 

No such action exists other than accept-reject-continue-terminate. 

 

Note in the EXCEL SOLVER of Table VII and Table VIII, 

the (non)linear engine serves for constrained minimization 

problems with differentiable (where partial derivatives of 

order k are continuous) nonlinear and convex functions, 

smooth of order k by Rapcsak [24]. This includes the case 

where all functions are linear, i.e. the LP problem.  Revisit 

section III.A’s example 1 regarding the previously outlined 

hypothetical EAP (Electric Auto Production) industrial 

enterprise, which refers to an item-by-item SSP on attributes. 

Let p1 or AQL=Acceptable Quality Limit=.01, and let p2 or 

RQL=Rejectable Quality Limit=.10, and α=.05 and β=.10 

given for the classical producer’s and consumer’s risks. Wald 

[29], Roussas [30] and NIST [31] give the SSP equations 

regarding the SPRT (Sequential Probability Ratio Test) for 

testing H0: p=p1 vs Ha: p=p2. The equations for the limit lines 

with parameters p1, p2, α, and β for Exp#1 (Note, Exp#1 short 

for Experiment#1) follow in (20) to (25). Table IX’s Exp#1 

to Exp#5 are plotted individually and pairwise in Fig. 5 to 9. 

Slope is s and intercepts are h1 and h2 of Fig. 4. Enter inputs: 

 

k = log[(p2(1-p1))/(p1(1-p2))] = 1.041 (20) 

 

h1 (accept)= (1/k)[log((1-α)/β)] = 0.939 ≈ 0.94  (21) 

 

h2 (reject) = (1/k)[log((1-β)/α)] =1.206 ≈ 1.21 (22) 

 

s = (1/k)log[(1-p1)/(1-p2)] = 0.039747 ≈ 0.04 (23) 

 

XA (acceptance line) = sn - h1 = 0.04n - 0.939 (24) 

 

XR (rejection line) = sn + h2 = 0.04n + 1.206 (25) 

 

Apply the solutions to the SSP for Exp#1, Exp#2, Exp#3, 

Exp#4 and Exp#5 by varying type-I and type-II errors in 

Table IX from Fig. 2 and Fig. 3 and Table III to Table VIII.   

C. Numerical Results of Attributes-Type Sequential 

Sampling Plans: Experiments #1 to #5 

The solution vector for LOSS=$5 based on Tables III, IV, 

VI, VIII and Fig. 3, as plotted to follow up are, α = P11 + P12 

=.1+.045=.145, β = P11 + P21 = .1 +.125 = .225 for Exp#2. 

Also, α’(disjoint pure alpha) = P12 = .045 and β’(disjoint pure 

beta) = P21 = .125 for Exp#3. For LOSS=$3 by Tables III, IV, 

V, VII and Fig. 2, the aggregate α = P11 + P12 = .06 + .027 

= .087 and the aggregate β = P11 + P21 = .06 + .075= .135 are 

for Exp#4. Also α’(disjoint pure alpha) = P12= .027 and 

β’(disjoint pure beta) = P21 = .125 for Exp#5.  

The individually plotted sequential sampling plans in Fig. 

5 to Fig. 9, respectively, as revealed by Tables IX to XI such 

that the number of accepts or rejects when continue-sampling 

ends at n=100 is differing from that of the classical Exp#1 in 

Fig. 5. The proposed Exp#3 and Exp#5 with varying LOSS, 

such as $5K and $3K in Tables IX to XI show that as LOSS 

value decreases, the aggregate α and β while reduced to 

disjoint α’ and β’ lift h1 and h2  to mark the difference. 

Observe Table X with h1=.848→1.069, h2=1.238→1.474. 
 

 
Fig. 5. Conventional Exp#1 in Tables IX to XI, #defects turns (+) @ n=24, 

continue sampling for n<24.  
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Fig. 6. The aggregate (LOSS=5K)’s Exp#2 in Tables IX to XI, #defects 

turns (+) @ n=14, continue sampling for n<14. 

 

 
Fig. 7. The disjoint (LOSS=5K)’s Exp#3 in Tables IX to XI, #defects turns 

(+) @ n=22, continue sampling for n<22. 

 

 
Fig. 8. The aggregate (LOSS=3K)’s Exp#4 in Tables IX to XI, #defects 

turns (+) @ n=20, continue sampling for n<20. 

 

 
Fig. 9. The disjoint (LOSS=3K)’s Exp#5 in Tables IX to XI, #defects turns 

(+) @ n=27, continue sampling for n<27.  

TABLE IX: THE INPUT AND OUTPUT PARAMETERS FOR THE INDIVIDUAL 

AND COMPARATIVE PLOTS IN FIG. 5 TO 9 WHERE α and α’ = α – α*β ARE 

AGGREGATE AND DISJOINT TYPE-I ERRORS, AND β and β’ = β – α*β ARE 

AGGREGATE AND DISJOINT TYPE-II ERRORS, RESPECTIVELY  

 
 

TABLE X: INPUT ENTRIES AND OUTPUT VALUES FROM TABLE IX ARE 

PLOTTED IN FIG. 5 TO 9; EXP#1’S ACCEPTANCE VALUE IS THE FIRST 

INTEGER ≤ XA= 0.04n-0.94 FOR n=1 TO 100 (TABLE X’S 1ST
 COLUMN FOR  

h1≈.94). ALSO, THE REJECTION VALUE IS THE NEXT INTEGER ≥ XR= 0.04n 

+1.21 (THE 6TH
 COLUMN OF TABLE X FOR h2 ≈1.21). FOR n=1, THE 

ACCEPTANCE, -1, IS IMPOSSIBLE. THE REJECTION, 2, IS IMPOSSIBLE. AT 

LAST AT n=24, AS IN FIG. 5 AND TABLE X, XA IS 0 AND XR IS 3. IN TABLE XI, 

X MEANS CONTINUE-SAMPLING WHEN NO ACCEPTANCE OR REJECTION 

OCCURS. {ninspect=100, nA=3, nR=6} IS FOR THE CONVENTIONAL EXP#1  

WHILE {ninspect=100, nA=2, nR=6} IS FOR THE PROPOSED EXP#5 IN TABLES X 

AND XI. EXP#1 & EXP#3 ARE SAME 

 

 
 

TABLE XI: EXP#1(α=.05, β=.1), EXP#3 (LOSS=5K) AND EXP#5 

(LOSS=3K) BY TABLES IX AND X WHILE DECISION-MAKING DIFFERENCES 

ARE MARKED IN ROWS 24, 22, 27 FOR EXP#1, #3 AND #5 RESPECTIVELY 

n(#1) n(#1) n(#1) n(#3) n(#3) n(#3) n(#5) n(#5) n(#5) 

(inspect) (accept) (reject) (inspect) (accept) (reject) (inspect) (accept) (reject) 

1 x 2 1 x 2 1 x 2 

2 x 2 2 x 2 2 x 2 

3 x 2 3 x 2 3 x 2 

4 x 2 4 x 2 4 x 2 
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5 x 2 5 x 2 5 x 2 

6 x 2 6 x 2 6 x 2 

7 x 2 7 x 2 7 x 2 

8 x 2 8 x 2 8 x 2 

9 x 2 9 x 2 9 x 2 

10 x 2 10 x 2 10 x 2 

11 x 2 11 x 2 11 x 2 

12 x 2 12 x 2 12 x 2 

13 x 2 13 x 2 13 x 2 

14 x 2 14 x 2 14 x 3 

15 x 2 15 x 2 15 x 3 

16 x 2 16 x 2 16 x 3 

17 x 2 17 x 2 17 x 3 

18 x 2 18 x 2 18 x 3 

19 x 2 19 x 3 19 x 3 

20 x 3 20 x 3 20 x 3 

21 x 3 21 x 3 21 x 3 

22 x 3 22 0 3 22 x 3 

23 x 3 23 0 3 23 x 3 

24 0 3 24 0 3 24 x 3 

25 0 3 25 0 3 25 x 3 

26 0 3 26 0 3 26 x 3 

27 0 3 27 0 3 27 0 3 

28 0 3 28 0 3 28 0 3 

29 0 3 29 0 3 29 0 3 

30 0 3 30 0 3 30 0 3 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

95 2 6 95 2 6 95 2 6 

96 2 6 96 2 6 96 2 6 

97 2 6 97 3 6 97 2 6 

98 2 6 98 3 6 98 2 6 

99 3 6 99 3 3 99 2 6 

100 3 6 100 3 6 100 2 6 

 

A. Optimal Solutions’ Interpretations: Aggregate 

(Composite) and Disjoint (Pure) Risks 

With LOSS=$3K (in Exp#5) of Table IX if the plotted 

points stay within the limiting boundaries (AQL and RQL), 

the sequential sampling plan continues and hence, another 

sample to be drawn by {1.0–(α’=.027)– (β’=.075)}*100% = 

89.8% for the percentage of the continue-sampling decision. 

This results from example 1’s input in Table III per SSP under 

scrutiny. The expected total cost [(=alpha * relative cost of 

alpha error + beta * relative cost of beta error + (1-alpha-

beta) * relative utility of no errors)] is -$712K. Note, C12 

(=relative cost of alpha) = $110K and C21 (=relative cost of 

beta) = $40K, C12 (=relative cost of the cross-product or 

intersection of alpha and beta errors) = $50K and C22 

(=relative utility of no errors, denoting complete satisfaction 

with no erroneous returns) = -$800K. Disjoint total cost is 

thus -$712K ≈ α’C12 + β’C21 + (α’β’)C11 + (1-α’-β’)C22 = .027 

* $110 +.075 * $40 + 0 + .898*-$800 since (α’β’) overlap of 

disjoint α’ and β’ changed to 0 in Fig. 10.c (Venn diagram) 

from a non-zero in Fig. 10.b (Venn diagram).  

For LOSS=$5K (in Exp#3), disjoint total cost is .045*$110 

+ .125*$40 + 0 + .83*(-$800) ≈ -$654K. See Champerowne 

[36] on the SSP costings for accept, reject and continue-

sampling, and Würlander [37] on the SPRT performance such 

as the average sample size (ASN). 

The company-specific input cost data produces the 

aggregate alpha (α) ≈ .145, and the aggregate beta (β) ≈ .225 

for LOSS = $5 in Exp#2 per Tables IX to XI. Likely, the 

aggregate alpha (α) ≈.087 and the aggregate beta(β) ≈ .135 

are for LOSS = $3 in Exp#4. The proposed α’(disjoint pure 

alpha) = P12 = .045 and β’(disjoint pure beta) = P21 = .125 in 

Exp#3 are for LOSS = $5K. Also, α’(disjoint pure alpha) = 

P12 = .027 and β’(disjoint pure beta) = P21 =.125 in Exp#5 are 

for LOSS=$3K. The deviations between Exp#1 (classical) 

and Exp#3 (proposed with LOSS = $5), and likely Exp#1 

(classical) and Exp#5 (proposed with LOSS = $3) are what 

the article draws attention to by using Cij, i=1,2, j=1,2 and a 

LOSS variable.  

 

IV. VENN DIAGRAMS TO VERIFY OPTIMIZATION 

In Fig. 10, Venn diagrams constituting all four sample sets 

of V are studied; where V stands for vulnerability, which 

points out to an erroneous decision-making set. Note that [αβ 

+ α(1-β) + (1-α)β + (1-α)(1-β)] =1 via (4) and (18). The 

composite sample V1, which aggregates the common-errors 

intersection V1∩V2, has elements due to the producer’s risk, 

such as consumers misusing the vehicle and returning e.g. a 

hybrid vehicle to the dealership due to customers’ user faults 

per example 1. The composite sample V2 too contains the 

common-errors intersection V2∩V1, and denotes the 

consumer’s risk such as factory-recalls or class actions due to 

the producer’s faults. The discontent consumer returns e.g. 

the vehicle, to the vendor as in example 1 of section 3. 

 

 

 

International Journal of Computer Theory and Engineering, Vol. 14, No. 1, February 2022

34



  

 
Fig. 10. a, b, c. Venn diagrams: a) Generalized Venn diagram representation 

of samples.  b) Aggregates α and β intersected, P(α∩β) = P(FP∩FN) =P11 

≠0. c) Disjoints (mutually exclusive with no ambiguous intersections) α’ and 

β’ with P(α’∩β’) = P(FP’∩FN’) =P11=0.  

 

One proceeds to V1∩V2, the intersection of V1 and V2 

comprising both error regions, α and β, in the realm of an 

ambiguous or controversial decision described in section III. 

For the adjustments option, this was classified as allowances 

or write-offs, which are explained in-depth in subsection 

III.A. The Venn diagram’s blank error-free region is V1
’∩V2

’ 

for none of α and β errors involved. V1
’ and V2

’ are 

complements for V1
’ and V2

’, respectively. See Sahinoglu [15] 

where V1 and V2 are dependent, i.e. not independent, since 

P(V1∩V2) ≠ P(V1)P(V2). Why? Because .1≠.145*.225 =.033, 

since in the preceding example 1: P(V1∩V2)=P11=.1, P(V1) 

=P12+P11=.145, P(V2)=P21+P11=.225. Thus, P(V1∩V2)≠ 

P(V1)P(V2), is equivalent to expressing α*β ≠ α times β. 

Conditionally dependent samples V1 and V2 are not 

independent, but P(V1∩V2)=P(V1 |V2)P(V2)=P(V2 |V1)P(V1). 

Fig. 10a, 10b, and 10c are the Venn diagram samples.  

Let P(FP∩FN)=P(α∩β)≠0; let P(FP’∩FN’)=P(α’∩β’) = 

0, and d = Disjoint. Let the l.h.s in Fig. 10.b, the light-blue 

V1
d =Disjoint producer’s risk with P(V1∩V2

’)=.045=P12=α’. 

Let the r.h.s. light-blue V2
d = Disjoint consumer’s risk with 

P(V2∩V1
’)=.125=P21= β’. Let the middle dark-blue (V1∩V2) = 

Intersection of producer’s and consumer’s risks, and 

P(V1∩V2) =.1=P11. Let the blank V1
’∩V2 

’= error-free region 

with no producer’s and no consumer’s risks for P(V1
’∩V2

’) 

= .73 = P22.  Note, Also, P(V1UV2) + P(V1’∩V2’’) = 1 is 

identical to P(V1
d ) + P(V2

d) + P(V1∩V2} + P(V1
’∩V2’)} = 1 or 

by (18), P12 + P21  +  P11 +  P22  = 1.0 or {αβ} +{ α(1-β)} + {(1-

α)β} + {(1-α)(1-β)} = 1. Note P(α∩β)=P11 ≠0 in Fig. 10.b is 

related to Exp#2 and Exp#4, while P(α’∩β’) = P11 = 0 in Fig. 

10.c is per Exp#3 and Exp#5. The blank is P22=(1-α)(1-

β)=1+(α*β)–α–β or P22=1-α–β+α∩β per Fig. 10.b for P11 = 

P(α*β) ≠0; α, β are aggregates. The blank: P22=1–α’–β’ in Fig. 

10.c; α’, β’ are disjoints and P11 = P(α*β) = 0. 

 

V. ALGEBRAIC ROOTS TO VERIFY LP VECTOR SOLUTION  

There exists a favorable shortcut technique to serve as an 

optimality verification tool without using the software 

programs so as to validate the LP-based feasible solution 

vector, Pi,j  given Cij and LOSS variable(s). What plays a 

crucial role here is actually the LOSS variable constraint. 

Once the LOSS variable is accurately constrained by the 

financial analyst in (17), it is a simple algebraic task to 

compute the �̂� ij roots. That is, �̂� ij = LOSS/Cij given the 

constant Cij for all i and j excluding i=2, j=2. Once �̂�11, �̂�12 

and �̂�21 are calculated, one finds �̂�22 = 1 - �̂�11 - �̂�12 - �̂�21 by 

subtraction per equation (18) i.e., �̂�11 + �̂�12 + �̂�21 + �̂�22 = 1 

with α (aggregate or composite) = �̂�11 + �̂�12 and  β (aggregate 

or composite) = �̂�11+�̂�21. Fig. 4 clarifies the 3 disjoint actions. 

A. Simple Algebraic Root Solutions Applied to Example 1 

by Four-Operations Arithmetic 

Example 1 delineates that given input vector, [Cij] = [C11= 

$50K, C12=$110K, C21=$40K, C22 = -$800K] with LOSS≥$5K 

and LOSS≥$3K, respectively; the solution vectors are [Pij] = 

[P11=.1, P12=.045, P21=.125, P22=.73] for LOSS=$5K and 

[Pij]=[P11=.06, P12=.022, P21=.075, P22=.84] for LOSS=$3K. 

Table VIII for LOSS=5K, displaying the EXCEL Solver input 

and output shows that the three constraints (#3, #4 and #5) 

referring to (12) to (14) yield ≈0. �̂� ij=LOSS/Cij. Then, 

�̂� 11=$5/$50=.1, �̂� 12=$5/$110=.045, �̂� 21=$5/$40=.125, and 

�̂�22 = 1- �̂�11 - �̂�12 - �̂�21 =.73 by subtraction per (18). They all 

concur with the software solution vectors shown in section III. 

Subsequently, 𝛼 ̂ = �̂�11 + �̂�12 = .1 + .045 = .145, and �̂� = �̂�11 

+ �̂�21 = .1 +.125 = .225 as composite errors in Tables III, IV, 

VI, VIII and Fig. 3. For LOSS=$3K in Table VIII, 

�̂� ij=LOSS/Cij → �̂�11=$3/$50=.06, �̂�12=$3/$110=.027, �̂�21= 

$3/$40=.075, and �̂� 22 = 1- �̂� 11 - �̂� 12 - �̂� 21 =.838 through 

subtraction per (18). These concur with the software solution 

vectors in section III’s Tables III, IV, V, VII and Fig. 2. 

Similarly, �̂�  = �̂�11 + �̂�12 =.087, �̂�= �̂�11 + �̂�21 =.135 are the 

composite errors.  

B. The Analytical Verification with Simple Algebraic 

Roots, and Examples 2 and 3 

The LP-based algorithm implemented to SSP demonstrates 

that the feasible solution produced by the three different 

software algorithms, i.e. i) Microsoft’s EXCEL SOLVER, ii) 

Author’s JAVA-coded Game-Testing of Appendix A and iii) 

LP Software by Anderson et al. [35] are validated by the 

algebraic roots formulated in the preceding subsection V.A. 

The three simple algebraic roots, �̂�11, �̂�12, �̂�21 were calculated 

and the fourth, �̂�22, by subtraction of the first three from 1.0 

per (18). The algebraic roots verify that �̂� ij=LOSS/Cij are 

identical to the optimal solutions obtained in section II’s Fig. 

2 and Fig. 3 and Tables III to VIII. Shortcut algebraic roots 

are, too, optimally best estimates. Generalizations on LOSS 

input variables are given in APPENDIX B and C. That is, for 

all Cij, LOSSij can be assigned upon need.  

Appendix B (i.e. example 2) uses a new set of LOSSij=$5, 

$6, $7, $8 validating Exp#2’s roots, such as �̂�11=$5/$50=.1, 

�̂� 12=$6/$110=.055, �̂� 21=$7/$40=.175, and �̂� 22=.67. Total 

Cost (disjoint) = .055*$110 + .175*$40 + (1-.055-.175) (-

$800) ≈ -$603 in Table XII of Appendix B.  

Appendix C (i.e., example 3) replicates Tables III and IV 

solution for LOSSij=$5, i,j=1,2 to replicate subsection V.A’s 

�̂� =.145, �̂�=.225, 𝜶′̂ =.045, �̂�′=.125 and Total Cost (disjoint) 

= .045 *$110 +.125*$40 + (1-.045-.125)(-$800) ≈ -$654 in 

Table XIII of Appendix C.  

 

VI. CONCLUSIVE SUMMARY, FUTURE RESEARCH 

This article studies an LP-based, and further, simpler linear 

root-finding solutions, and pertinent industrial applications so 

to optimize type-I (alpha) and type-II (beta) error 

probabilities in response to employing related cost and utility 
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parameters from input data. These probabilities are otherwise 

known as producer’s and consumer’s risks, or risks of false 

positive and false negative. Tables IX to XI and Fig. 5 to Fig. 

9 epitomize the tangible differences between the old 

ubiquitous and newly proposed ways. This is in contrast to 

the prespecified cut-off values of alpha and beta (e.g. α≈.05, 

β≈.10) that have been traditionally practiced. Kelly [1] and 

Grant [2] therefore urged attention to this impasse. The choice 

for LOSS variable(s) and Cij, i,j=1,2, i.e., C11, C12  and C21 costs 

and utility constant C22, are dictated by the company-savvy 

historical data per Sahinoglu [15] to [18] and Hoare [34]. 

Game theory’s extended and value-added approach serves 

here to contribute to a feasible output vector solution as 

detailed in example 1 of subsections III.A to III.D. This is 

why the optimized alpha and beta errors are objective and 

data-centric rather than the subjectively popular judgment-

call selections, usually prespecified as e.g., α=.05 and β=.10. 

The apparent limitation of this research topic may involve the 

data-scientific challenge of estimating Cij constants and 

LOSS variables’ constraints. These essentially econometric 

parameters can be estimated either through data mining, and 

time series modelling, or any viable computationally 

intensive approach by the analyst to reflect the actual market 

realities for a profitable sequential sampling plan solely 

specific to that company.  
In the SSP, the producer establishes a sequential sampling 

plan for a continued supply of components with reference to 

AQL, which represents the acceptable upper limit of quality 

for the supplier’s process that the consumer would consider 

acceptable as a process average at one end. The consumer 

may also be interested at the other end, i.e. RQL, to denote the 

poorest limit of quality that the consumer is willing to accept 

with a low probability of acceptance in an individual lot by 

Montgomery [25]. If both rules do not work, the continue-

sampling decisive action is adopted to call for a new sample 

to test. One terminates the SSP after 3n many samples as a 

rule of thumb. The author reasons that the proposed technique 

with attributes-type item-by-item sampling is applicable to 

the variables-type by Roussas [30]. The proposed method is 

to upgrade the hypothesis tests from a subjective to an 

objective stance; while improving industrial control-savvy 

item-by-item sequential sampling plans. Example 1 of the 

attributes-type item-by-item SSP’s steps are outlined as 

follow from i), i’) to vii), vii’) in sequence. Note, e.g. for 

LOSS=$3K; i), i’) to vii), vii’) show tasks and outcomes 

respectively. The numerical outcomes are subject to change 

for a new set of the specific firm’s input Cij constants and 

LOSS variable constrained for each case. The step by step 

algorithm is as follows: 

 

i) Set H0: p1(=AQL) vs Ha: p2 (=RQL), and n = lot sample size.  

i’) p1(=AQL) = 0.01 vs Ha: p2 (=RQL) =0.10, and n =100.  

 

ii) Select Cij= [C11, C12, C21, C22] and provide LOSS 

constraint(s) for numerical examples.  

ii’) Cij= [$50K, $110K, $40K, -$800K] and LOSS=$3K 

prespecified at the onset.  

 

iii) Optimize the aggregate α and β, and the aggregate total 

cost, either by game-theory (Section III) or identical algebraic 

roots (Section V).  

iii’) α=.087 and β=.135 from Tables III to V. Total Cost 

(aggregate)=$661 from Fig. 3 and Table IV for LOSS=$3K. 

 

iv) Compute the disjoint pure α’ = producer’s risk due to α - 

α*β, and the disjoint pure β’= consumer’s risk due to β - α*β 

and whatsoever no risk due to {1- α’- β’}. 

iv') α’=α-α*β=.087-.06=.027, β’=β-α*β=.135-.06=.075 and 

{1-α’-β’}=1-.027-.075 = .898 for LOSS=$3K.  

 

v) Adopt the optimal α’ and β’ to calculate the parameters: h1, 

h2, k, s by (20) to (25) to plot the SSP (Fig. 5 to 9) to accept, 

reject or continue-sampling by Table IX to Table XI.  

v’) XA (acceptance line) = sn - h1 = 0.04n – 1.07; XR (rejection 

line) = sn + h2 = 0.04n + 1.47 for LOSS=$3K.  

 

vi) Mark the SSP decision rules, given: Cij, LOSS, AQL, RQL 

and disjoint α’ and disjoint β’.  

vi’) See Tables IX to XI to compare Exp#3 with Exp#5. 

Accept if plotted points fall below XA as in {n=100, nAccept =3, 

nReject=6} per Exp#1. Reject if plotted points fall above XR as 

in {n=100, nAccept=2, nReject=6} per Exp#5. Table XI marks the 

differences between the usual or conventional Exp#1 and 

proposed Exp#3 for LOSS=$3K. 

 

vii) The SSP running cost, i.e. α’C12 + β’C21 +(1- α’- β’)C22, 

incurred by adopting the proposed algorithm will be authentic 

based on the nature of inputs, i.e. Cij= [C11, C12, C21, C22] and 

LOSS constraint. Intersection of pure estimates: (α’)*(β’) = 

(α’)∩(β’) = 0 in Fig. 10.c. 

vii’) TC=Total Cost (disjoint Exp#5 in Table IX) 

=.027*$110K + .075*$40 + (1-.027-.075) * (-$800K) ≈ -

$712K is authentic for Example 1, whereas the same TC=-

$613K for Example 2 in APPENDIX B and finally TC=-

$654K for Example 3 APPENDIX C. The fact that smaller the 

running total cost becomes, poses no concern. The author’s 

take is that the proposed Exp#5 uses its proper SSP’s LP-

based alpha and beta, optimized to α’≈2.7%, β’≈7.5%; not 

the prespecified alpha and beta errors for LOSS=$3K.  

 

VII. FINAL REMARKS 

Readers’ take per Table XI is such that in the classical 

approach with the prespecified alpha=.05 and beta=.10 

referring to Exp#1 of Table IX at the end of n=100 samples; 

the testing analyst decides to accept 3 and reject 6; i.e. 

{ninspect=100, nA=3, nR=6}. Whereas, per Exp#5 of Table IX 

with an assumed LOSS=$3K, the testing analyst decides to 

accept 2 (instead of 3 in the classical approach) and reject 6, 

saving monetary funds while not accepting one more item out 

of a lot size of n=100, i.e. {ninspect=100, nA=2, nR=6}. Results 

may amply change if the analyst varies the input parameters.  

 

APPENDIX A: CYBERRISKSOLVER TO RUN THE GAME 

TESTING APPLET 

1. Click www.areslimited.com and type in the login user 

name: mehmetsuna, password: Mehpareanne, click OK. 

2. Go to DOWNLOAD on www.areslimited.com for l.h.s. 

menu’s 4th from the top. 

3. Click on the CyberRiskSolver v3.0 in red and download 

the application which a ZIP file. Unzip or extract the 
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downloaded application into C:\myapp folder. See 

C:\myapp\dist. Open a Command Prompt and go to 

C:\myapp\dist folder and run the following command: //For 

Cyber Risk Solver, java –jar twcSolver.jar. Use license code: 

EFE28SEP1986 for twcSolver.jar.   

 

4. Click GAME TESTING Applet (checked). Click Open. 

 

 

 

 

 
 

APPENDIX B 

 
TABLE XII: EXAMPLE 2: LOSS11=$5, LOSS12=$6, LOSS21=$7, LOSS22=$8, CI J 

= [$50, $110, $40, -$800];  

DISJOINTS: 𝜶′̂ = .055 =P12,  �̂�′ = .175 = P21, TOTAL COST = -$603 

 

APPENDIX C 

 

TABLE XIII: EXAMPLE 3: LOSS11 = LOSS12= LOSS21 = LOSS22 = $5,  

CIJ = [$50, $110, $40, -$800];  

DISJOINTS: 𝜶′̂ = .045 = P12, �̂�′=.125 = P21, TOTAL COST = -$654 
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