
  

  

Abstract—Spark SQL uses SQL to describe the task of data 

analysis and optimizes it according to the theory of query 

optimization, which effectively improves the efficiency of 

execution. However, the query optimization of Spark SQL still 

has the following shortcomings at present. It requires the 

operator to collect statistics information explicitly through the 

collection commands of statistics information. In addition, 

because the collected statistics information is not accurate 

enough, the optimization effect will be poor. To solve the above 

problems, this paper proposes an algorithm that collects 

statistics at runtime and optimizes the query adaptively. The 

algorithm uses Bloom Filter Pruning to prune data that does 

not meet the join conditions before a join operation is executed. 

In order to estimate the cardinality of the intermediate 

relationship of the join more accurately, the algorithm uses 

AMS Sketch and Bloom Filter to estimate the cardinality. 

Finally, the algorithm generates an optimization algorithm of 

the join based on the connection of graph. Experiments have 

proven that the BFP algorithm can prune the input of join by up 

to 12% without considering the join order. The algorithm for 

join plan generation can produce the optimal plans in 14 out of 

18 queries without pre-collecting statistics data and save 

execution time by up to 31%, and the time spent on the 

collection of statistics information is no more than 5% of the 

total execution time. 

 
Index Terms—Query optimization, spark SQL, bloom filter, 

sketch.  

 

I. INTRODUCTION OF SPARK SQL AND QUERY 

OPTIMIZATION THEORY 

Spark SQL uses SQL-like syntax as a high-level data 

manipulation API, which greatly narrows the difficulty of 

data analysis. Trummer et al. proposed a method for credible 

estimation of the cardinality of the relationship within a 

certain cost range, and proposed a query optimization 

algorithm based on accurate estimation of cardinality [1]. 

Literature [2] proposed an algorithm named APPROXJOIN 

based on Spark, which uses Bloom Filter and stratified 

sampling algorithm to reduce data transmission and collects 

statistics information of output data. Avnur et al. proposed an 

adaptive runtime query optimization algorithm named eddies 

[3]. Agarwal et al. proposed an adaptive optimizer named 

RoPE for parallel data computing systems. RoPE is the first 

optimizer proposed collecting statistics information such as 

the number of unique values in a column and hotspot data 

during the execution of parallel computing tasks [4]. 

Literature [5] proposed a query optimizer named Optimus. 

Optimus runs on the parallel computing framework Dryad [6], 
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and realizes adaptive query optimization by dynamically 

modifying the execution plan based on statistics information. 

Literature [7] proposed a method called Universe Sampling 

to solve the problem of a decrease in the estimation of ratio 

while using a general sampling method to estimate the 

predicate selection rate during join. Karanasos et al. proposed 

an optimization algorithm called pilot run. Experiments show 

that this idea has at least twice the performance improvement 

compared to the optimal left deep tree query written manually. 

But the algorithm cannot improve the efficiency of the query 

when the columns used for the join are not primary keys or 

foreign keys, when the query contains complex predicates or 

custom functions, and when there is a correlation between the 

joined columns [8]. To sum up, since Spark SQL currently 

requires users to explicitly execute statistics information 

collection commands according to their needs [9], there is 

still a large space for exploration in optimization of join 

algorithm, estimation of intermediate cardinality of join, 

generation of join plan and other aspects. 

The query execution process in a database system based on 

the relational model consists of three steps: syntax analysis, 

logical plan generation and physical plan generation. Query 

optimization mainly occurs in two steps: logical plan and 

physical plan. As to physical query optimization, Selinger et 

al. proposed a cost-based model, estimating the CPU and IO 

costs of several physical execution plans according to the 

collected statistics, and selecting the physical execution plan 

with the lowest cost as the final execution plan [10]. 

 

II. RUNTIME QUERY OPTIMIZATION ALGORITHM DESIGN 

This section introduces the runtime query optimization 

algorithm proposed in detail. The algorithm includes three 

aspects. 1) Using Bloom Filter to prune the input of the join 

before the join is executed. 2) Using statistics collected by 

AMS Sketch and Bloom Filter to replace existing statistics 

information about Spark SQL, and this goes for a more 

accurate estimation of the cardinality of the intermediate 

relations of the join. 3) Using a graph-based runtime 

algorithm for join plan generation. 

A. Prune the Input of Join Based on Bloom Filter 

In this section, a join algorithm named BFP Join is 

proposed. The Bloom Filter is used to prune the input data 

during the execution of the join, so as to decrease the amount 

of data transferred between nodes during the shuffle process 

and improve the efficiency of the execution. Due to its 

distributed characteristics, Spark SQL needs to redistribute 

the data on both sides of the join to several nodes through 

shuffle operation before performing the join operation, so 

that the data with the same key value falls into the same node, 
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and the join of two large tables is decomposed into the join of 

several small tables. 

BFP Join can be divided into unilateral pruning and 

bilateral pruning according to different pruning methods. 

1) Unilateral pruning. In unilateral pruning, the smaller 

table in the join is used to construct a Bloom Filter. The filter 

is used to prune the larger table. The specific execution 

process can be divided into the following steps. a) Comparing 

the sizes of the two tables participating in the join, and setting 

the smaller table as R and the larger table as S. Use the value 

of the join attribute column in R to construct a Bloom Filter. b) 

Using the join attributes of each partition of R to construct 

Bloom Filter partitions. c) Converging the Bloom Filter 

partitions to the master node and merge them into a single 

Bloom Filter. d) Sending the merged Bloom Filter to all 

partitions where S is located. e) Using the Bloom Filter to 

prune the data of each partition of S. After completing the 

construction of the Bloom Filter, when the Bloom Filter is 

used to prune the large table, the merged Bloom Filter needs 

to be distributed to each partition where the large table is 

located. 

2) Bilateral pruning. When the two sides participating in 

the join are large, we can consider establishing a Bloom Filter 

on both sides separately, and pruning both sides of the join at 

the same time. The execution steps of bilateral pruning are 

similar to that of unilateral pruning. Let relations 

participating in the join to be R and S respectively. The 

specific steps are as following. a) Constructing Bloom Filter 

partition in each partition based on join properties for R and S 

in parallel. b) Combining the Bloom Filter partitions in each 

partition of R and S into the final Bloom Filter and 

converging it to the Driver node, which is called BF_R and 

BF_S. c) Broadcasting BF_R and BF_S to all partitions 

where S and R are located respectively. d) Using BF_R and 

BF_S to prune the input of S and R respectively. 

3) Join algorithm selection. Spark SQL uses the table size 

estimated based on statistics to identify which join method to 

use. When the size of the party participating in the join is less 

than the size of broadcast Join limit, Broadcast Join can be 

used to avoid shuffling of larger data sets. When the 

conditions of Broadcast Join are not met, Shuffle Hash Join 

will be tried. The Shuffle Sort Merge Join algorithm is used 

as the ultimate default join strategy. After pruning the input 

of join using Bloom Filter, the size of input data of the join 

will change. At this time, the size of the table participating in 

the join can be re-estimated, and a more efficient join method 

can be selected. 

B. Method for Estimating Intermediate Result Cardinality 

of Join 

1) Estimation of intermediate result cardinality based on 

AMS sketch. AMS Sketch is mainly used to estimate the F2 

value of the data stream frequency vector [11]. There is a zero 

matrix C in the figure. After inputting a data 1 into this AMS 

Sketch, the update operation of AMS Sketch is triggered, so 

that the elements in the red box are updated. Then calculating 

the inner product of the row vector and itself for each row of 

the matrix, and taking the median of all inner products as an 

estimation of the frequency vector F2. 

2) Estimation of intermediate result cardinality based on 

bloom filter. Bloom Filter can not only prune the joined input 

but also estimate the size of the intermediate result. Assume 

that each discrete value of the attribute is uniformly 

distributed, that is, the number of records for each discrete 

value is the same. Therefore, it is only necessary to obtain the 

number of discrete values in the result and the average 

number of records corresponding to all discrete values. Eq. (1) 

expresses the estimated value of the number of discrete 

elements in the Bloom Filter. 
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muniq count n
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−
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Suppose that when the Bloom Filter is used to perform 

bilateral pruning on R∞kS, the total data of R and S are size(R) 
and size(S), respectively, and after pruning, they are 

size(R_pruned) and size(S_pruned). uniq(R) is the number 

of unique values in R, uniq(R_prune) is the number of 

unique values in R pruned, which satisfies Eq. (2) and Eq. 

(3). 
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Finally, the number of records Avg(R) and Avg(S) 
corresponding to each unique value in R and S is used as the 

number of discrete values, and the final estimation for the 

intermediate result is Eq. (4): 
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C. Runtime Join Plan Generation Algorithm 

Unlike the join plan based on dynamic programming [10], 

the following requirements need to be met to generate the 

join plan at runtime. 1) Collecting statistics information 

according to requirements during the execution process 

without relying on statistics information obtained in advance. 

2) Traversing all its possible joins, when there are multiple 

joins in a relationship, and estimating the cost of each join 

method. 3) Minimizing the time cost of collecting statistics 

information as much as possible, so as not to cause a longer 

time than the wrong join plan. Based on the above 

requirements, this paper proposes a graph-based runtime join 

plan generation algorithm based on greedy algorithm. The 

algorithm uses a graph to represent the join plan selection 

problem that needs to be solved, uses the end of the graph to 

represent the relationship to be joined, and uses the edge of 

the graph to represent a join that needs to be executed. Each 

join is about to merge the two endpoints. When the algorithm 

is executed, the graph will shrink to an isolated point, which 

is the result of the join. The execution of the algorithm is 

divided into the following two steps. 

1) Initialization process. Initializing all relations as nodes 

of the graph and all join operations as edges between nodes.  

2) Plan generation process. This is an iterative process, 

which can be divided into the following three steps. a) When 

estimating the size of the result of the join between the two 
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endpoints of each edge in the graph, if the two tables 

corresponding to this edge have not changed during the last 

join and the cost has been calculated, there is no need to 

recalculate. b) Selecting the edge with the smallest estimated 

join result to perform the join operation, and joining the edges 

associated with the two nodes before the join to the node after 

the merge. c) Updating the joined nodes and edges. First, the 

node list needs to be updated to remove the joined nodes, and 

then the join cost needs to be recalculated for the 

corresponding edges before the two nodes participating in the 

join. 

 

III. EXPERIMENT DESIGN AND RESULT ANALYSIS 

The experiment uses TPC-DS data set [12]. 

A. Experiment Design and Analysis of BFP Join 

The experiment based on BFP Join consists of two 

experiment groups and a control group. Experiment group 1 

uses the smaller relation to the input of the join to construct 

the Bloom Filter, and uses the constructed Bloom Filter to 

filter the larger relations in the join. In experiment group 2, 

we generate Bloom Filter for both datasets participating in 

the join, and the Bloom Filter is used to filter both sides of the 

join simultaneously. For control group, we use unmodified 

Spark SQL to execute the query. Sizes of 1GB, 5GB and 

20GB data are generated built on the TPC-DS dataset for the 

query. This article designs three custom query statements to 

analyze the cost of the join process separately, as showed in 

Table I. The three custom queries are executed 10 times, the 

one that consumes the most time and the one that consumes 

the least time are removed, and the average of the remaining 

8 times is taken as the final result. 

 
TABLE I: THREE CUSTOM QUERY STATEMENTS 

Cutom Query Describtion 

Custom Query 1 The total amount of returned goods sold in the store 

Custom Query 2 The 10 highest-selling products sold in the store 

Custom Query 3 

The number of items that are returned through the 

store 

after purchasing items from catalog shopping 

channels 

 

From Fig. 1, it can be seen that experiment group 1 has a 

certain performance improvement when running Custom 

Query 1 on data sets 1GB, 5GB, and 20GB.  
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Fig. 1. Comparison of execution results of Custom Query 1. 

 

The increases are 6%, 20%, and 12% respectively. 

Compared with experiment group 1, the execution time of 

experiment group 2 is slightly long, but there is still a certain 

improvement compared to the control groups. From Fig. 2, in 

Custom Query 2, the control groups perform better than the 

experiment groups in all cases. Since Custom Query 2 uses 

table store sales and table item to join, the intersection of the 

two tables is large, so most of the data cannot be pruned in the 

pruning stage. As a result, the experiment groups are slower 

than the control groups because of the cost of collecting 

statistics. Among them, the performance loss of experiment 

group 2 is the largest when using 20GB data, reaching 7%.  
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Fig. 2. Comparison of execution results of Custom Query 2. 

 

From Fig. 3, the experiment groups in Custom Query 3 has 

a better optimization effect than the control groups. When 

1GB of data is used, the performance is improved by 22%. 

After analysis, it is found that the original Shuffle Hash Join 

is small enough after pruning to call the Broadcast Join to 

join, which directly avoids shuffle for larger data sets and 

brings a greater performance improvement.  
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Fig. 3. Comparison of execution results of Custom Query 3. 

 

When using 5GB of data to execute Custom Query 2, the 

optimization effect of experiment group 2 slightly exceeds 

that of experiment group 1. This is because as the data set 

becomes larger, the bilateral pruning algorithm eliminates 

most of the data, which significantly reduces the time cost of 

the join process. The above three sets of experiments 

respectively perform the BFP Join algorithm test for the cases 

where there is a small intersection between the two joined 

parties and a large intersection between the two joined parties, 

and the two joined parties have a small intersection and both 

joined parties can be effectively filtered by the Bloom Filter. 

Experiment results show that when the intersection of the two 

sides of the join is small, using the BFP Join algorithm can 

smoothly reduce the execution time of the join. When there is 

a large intersection between the two joined parties and the 

input data cannot be effectively cut, the time cost of BFP Join 

can also be tolerated. In the last case, the use of bilateral 

pruning can more effectively prune the input data of the join, 

and the optimization effect is better than that of unilateral 

filtering. 
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B. Experiment Design and Analysis of Runtime Query 

Optimization Algorithm 

The experiment of runtime query optimization algorithm is 

intended to verify that a better execution plan can be 

generated without pre-collection of statistics information, 

and the time cost of collecting statistics information and 

making plan selection is controllable. Based on the above 

purpose, four groups of control experiments are set up. 

Control group 1 uses the order in the From clause of the 

query to execute joins. This is the default behavior of Spark 

SQL when the query optimizer is not enabled. Control group 

2 uses the optimal join order based on the dynamic 

programming algorithm, control group 2 will be used as a 

benchmark to compare whether the experiment groups can 

obtain the optimal execution order. Experiment group 1 uses 

AMS Sketch to estimate the cardinality of the intermediate 

relationship of the join, and uses the graphbased join plan 

generation algorithm to select the order of join. Experiment 

group 2 uses Bloom Filter to estimate the cardinality of the 

intermediate relations of the join, and also uses the 

graph-based join plan generation algorithm to select the order 

of join. The running time comparison of each group in Query 

7 is shown in Fig. 4. 
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Fig. 4. The execution time comparison for Query 7. 

 

In Query 7, the execution time of control group 1 is the 

longest, and control group 2 with the adjusted join order 

achieves the highest execution efficiency, which is 17% 

faster than control group 1. Compared with control group 1, 

the performance of experiment group 1 and experiment group 

2 increase by 14% and 16% respectively. 
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Fig. 5. The execution time comparison for Query 17. 

 

Query 17 is more complicated than Query 7, from Fig.5, 

the average performance improvement of control group 2 has 

reached 32% compared to control group 1. Experiment group 

1 and control group 2 produce the same join plans, and 

compared with control group 1, the average optimization 

effect has reached 27%. Compared with control group 1, 

experiment group 2 has an average optimization effect of 

only 21%. Because the collected statistics information is not 

accurate enough, Broadcast Join cannot be used to perform 

the join between table date_dim and store_returns. In query 

25, the join plan for control group 2 is the same as query 17. 

From Fig. 6, in query 25, the performance improvement of 

control group 2 reaches 34% compared to control group 1, 

and the performance improvements of experiment group 1 

and experiment group 2 are 29% and 20% compared to 

control group 1, respectively. Experiment group 1 accurately 

generates the best join plan again, while experiment group 2 

generates the correct join sequence when the data is 1GB and 

5GB, and the optimization effect reaches 31%. 
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Fig. 6. The execution time comparison for Query 25. 

 

The above experiments show that the query optimization 

algorithm based on runtime statistics information collection 

proposed in this article has a certain optimization effect. On 

the one hand, it can spend less time collecting statistics 

information to generate the optimal join plan, on the other 

hand, as the amount of data increases, the proportion of time 

spent on statistics information collection becomes smaller 

and smaller, and the optimization effect becomes more and 

more obvious. It should be pointed out that in this experiment, 

control group 2 directly uses the best join order to compare 

with the runtime query optimization algorithm proposed in 

this article. This can only be used as the upper limit of the 

optimization effect of all optimizers, and does not represent 

the effect of the query optimizer integrated by the current 

Spark SQL. 

C. Analysis of Comparative Experiment Results of Related 

Work 

This section compares the query optimization algorithm 

proposed in this article with the optimization method in 

literature [8], and uses it as control group 3. 

As can be seen from Fig. 7, in all three queries, compared 

with control group 1 without any optimization, the two 

experiment groups and control group 3 have a significant 

performance improvement. At the same time, there is a 

certain performance loss compared with control group 2 that 

directly executes the best join plan without any additional 

cost. In query 7, experiment group 1 and experiment group 2 

have a very small performance improvements compared to 

control group 3. Through analysis of the execution plan, it is 

found that the three experiment groups all produce the 

optimal execution plans. The execution time of the three 
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groups is also slightly different because of the different costs 

of the optimization processes. In query 17, the optimization 

effect of experiment group 2 has obvious advantages over 

experiment group 1 and control group 3. Compared with 

control group 1, the performance of experiment group 2 has 

increased by 25% and the performance improvements of 

experiment group 1 and control group 3 are only 17% and 

15%, respectively. In query 25, the optimization effects of 

experiment group 1, experiment group 2, and control group 3 

are 29%, 26%, and 20%, respectively. Among them, 

experiment group 1 and control group 3 have generated 

correct join plans. 
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Fig. 7. Comparison of related work results. 

 

Through these experiments, it can be seen that the runtime 

query optimization algorithm proposed in this paper overall 

has lower optimization cost while it can generate the optimal 

join plan compared with the algorithm in literature [8]. In 

addition, while the method in [8] can produce wrong 

execution plans, the proposed Bloom Filter-based method 

can still generate the correct plans. 

 

IV. CONCLUSION 

Combining runtime adaptive query optimization theory 

and Spark SQL implementation principles, this paper 

proposes an optimized prototype that collects statistics 

information at runtime and adaptively generates a query plan 

iteratively, removing the dependence on the user’s 

pre-executed statistics information. 1) Using Bloom Filter to 

prune the input of join. Before the join is executed, the 

disjoint part of the data is pruned by Bloom Filter, thus 

reducing the network cost of data transmission in the shuffle 

process and the cost of subsequent sorting and hash table 

construction. 2) Using AMS Sketch and Bloom Filter to 

estimate the intermediate cardinality of join, and the 

algorithm process and execution cost are set out in detail. 3) 

Proposing a graph-based join optimization algorithm based 

on the above two strategies, collecting statistics information 

and adaptively adjusting the execution plan during the 

execution of a query, and converting the execution process of 

the join into a process of graph shrinkage. This paper uses 

TPC-DS dataset to test the algorithms above. The 

experiments prove the effectiveness of the statistics 

information collection algorithm proposed in this article. For 

future work, we look at ways to develop global optimal 

solutions.  
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