

Abstract—Spark SQL uses SQL to describe the task of data

analysis and optimizes it according to the theory of query

optimization, which effectively improves the efficiency of

execution. However, the query optimization of Spark SQL still

has the following shortcomings at present. It requires the

operator to collect statistics information explicitly through the

collection commands of statistics information. In addition,

because the collected statistics information is not accurate

enough, the optimization effect will be poor. To solve the above

problems, this paper proposes an algorithm that collects

statistics at runtime and optimizes the query adaptively. The

algorithm uses Bloom Filter Pruning to prune data that does

not meet the join conditions before a join operation is executed.

In order to estimate the cardinality of the intermediate

relationship of the join more accurately, the algorithm uses

AMS Sketch and Bloom Filter to estimate the cardinality.

Finally, the algorithm generates an optimization algorithm of

the join based on the connection of graph. Experiments have

proven that the BFP algorithm can prune the input of join by up

to 12% without considering the join order. The algorithm for

join plan generation can produce the optimal plans in 14 out of

18 queries without pre-collecting statistics data and save

execution time by up to 31%, and the time spent on the

collection of statistics information is no more than 5% of the

total execution time.

Index Terms—Query optimization, spark SQL, bloom filter,

sketch.

I. INTRODUCTION OF SPARK SQL AND QUERY

OPTIMIZATION THEORY

Spark SQL uses SQL-like syntax as a high-level data

manipulation API, which greatly narrows the difficulty of

data analysis. Trummer et al. proposed a method for credible

estimation of the cardinality of the relationship within a

certain cost range, and proposed a query optimization

algorithm based on accurate estimation of cardinality [1].

Literature [2] proposed an algorithm named APPROXJOIN

based on Spark, which uses Bloom Filter and stratified

sampling algorithm to reduce data transmission and collects

statistics information of output data. Avnur et al. proposed an

adaptive runtime query optimization algorithm named eddies

[3]. Agarwal et al. proposed an adaptive optimizer named

RoPE for parallel data computing systems. RoPE is the first

optimizer proposed collecting statistics information such as

the number of unique values in a column and hotspot data

during the execution of parallel computing tasks [4].

Literature [5] proposed a query optimizer named Optimus.

Optimus runs on the parallel computing framework Dryad [6],

Manuscript received May 20, 2021; revised August 14, 2021.

The authors are with the University of Electronic Science and

Technology of China, Chengdu, 611731, China (e-mail:

yongzhao1@qq.com).

and realizes adaptive query optimization by dynamically

modifying the execution plan based on statistics information.

Literature [7] proposed a method called Universe Sampling

to solve the problem of a decrease in the estimation of ratio

while using a general sampling method to estimate the

predicate selection rate during join. Karanasos et al. proposed

an optimization algorithm called pilot run. Experiments show

that this idea has at least twice the performance improvement

compared to the optimal left deep tree query written manually.

But the algorithm cannot improve the efficiency of the query

when the columns used for the join are not primary keys or

foreign keys, when the query contains complex predicates or

custom functions, and when there is a correlation between the

joined columns [8]. To sum up, since Spark SQL currently

requires users to explicitly execute statistics information

collection commands according to their needs [9], there is

still a large space for exploration in optimization of join

algorithm, estimation of intermediate cardinality of join,

generation of join plan and other aspects.

The query execution process in a database system based on

the relational model consists of three steps: syntax analysis,

logical plan generation and physical plan generation. Query

optimization mainly occurs in two steps: logical plan and

physical plan. As to physical query optimization, Selinger et

al. proposed a cost-based model, estimating the CPU and IO

costs of several physical execution plans according to the

collected statistics, and selecting the physical execution plan

with the lowest cost as the final execution plan [10].

II. RUNTIME QUERY OPTIMIZATION ALGORITHM DESIGN

This section introduces the runtime query optimization

algorithm proposed in detail. The algorithm includes three

aspects. 1) Using Bloom Filter to prune the input of the join

before the join is executed. 2) Using statistics collected by

AMS Sketch and Bloom Filter to replace existing statistics

information about Spark SQL, and this goes for a more

accurate estimation of the cardinality of the intermediate

relations of the join. 3) Using a graph-based runtime

algorithm for join plan generation.

A. Prune the Input of Join Based on Bloom Filter

In this section, a join algorithm named BFP Join is

proposed. The Bloom Filter is used to prune the input data

during the execution of the join, so as to decrease the amount

of data transferred between nodes during the shuffle process

and improve the efficiency of the execution. Due to its

distributed characteristics, Spark SQL needs to redistribute

the data on both sides of the join to several nodes through

shuffle operation before performing the join operation, so

that the data with the same key value falls into the same node,

Research on Runtime Query Optimization Technology of

Spark SQL

Yong Zhao and Rong Chen

15

International Journal of Computer Theory and Engineering, Vol. 14, No. 1, February 2022

DOI: 10.7763/IJCTE.2022.V14.1305

and the join of two large tables is decomposed into the join of

several small tables.

BFP Join can be divided into unilateral pruning and

bilateral pruning according to different pruning methods.

1) Unilateral pruning. In unilateral pruning, the smaller

table in the join is used to construct a Bloom Filter. The filter

is used to prune the larger table. The specific execution

process can be divided into the following steps. a) Comparing

the sizes of the two tables participating in the join, and setting

the smaller table as R and the larger table as S. Use the value

of the join attribute column in R to construct a Bloom Filter. b)

Using the join attributes of each partition of R to construct

Bloom Filter partitions. c) Converging the Bloom Filter

partitions to the master node and merge them into a single

Bloom Filter. d) Sending the merged Bloom Filter to all

partitions where S is located. e) Using the Bloom Filter to

prune the data of each partition of S. After completing the

construction of the Bloom Filter, when the Bloom Filter is

used to prune the large table, the merged Bloom Filter needs

to be distributed to each partition where the large table is

located.

2) Bilateral pruning. When the two sides participating in

the join are large, we can consider establishing a Bloom Filter

on both sides separately, and pruning both sides of the join at

the same time. The execution steps of bilateral pruning are

similar to that of unilateral pruning. Let relations

participating in the join to be R and S respectively. The

specific steps are as following. a) Constructing Bloom Filter

partition in each partition based on join properties for R and S

in parallel. b) Combining the Bloom Filter partitions in each

partition of R and S into the final Bloom Filter and

converging it to the Driver node, which is called BF_R and

BF_S. c) Broadcasting BF_R and BF_S to all partitions

where S and R are located respectively. d) Using BF_R and

BF_S to prune the input of S and R respectively.

3) Join algorithm selection. Spark SQL uses the table size

estimated based on statistics to identify which join method to

use. When the size of the party participating in the join is less

than the size of broadcast Join limit, Broadcast Join can be

used to avoid shuffling of larger data sets. When the

conditions of Broadcast Join are not met, Shuffle Hash Join

will be tried. The Shuffle Sort Merge Join algorithm is used

as the ultimate default join strategy. After pruning the input

of join using Bloom Filter, the size of input data of the join

will change. At this time, the size of the table participating in

the join can be re-estimated, and a more efficient join method

can be selected.

B. Method for Estimating Intermediate Result Cardinality

of Join

1) Estimation of intermediate result cardinality based on

AMS sketch. AMS Sketch is mainly used to estimate the F2

value of the data stream frequency vector [11]. There is a zero

matrix C in the figure. After inputting a data 1 into this AMS

Sketch, the update operation of AMS Sketch is triggered, so

that the elements in the red box are updated. Then calculating

the inner product of the row vector and itself for each row of

the matrix, and taking the median of all inner products as an

estimation of the frequency vector F2.

2) Estimation of intermediate result cardinality based on

bloom filter. Bloom Filter can not only prune the joined input

but also estimate the size of the intermediate result. Assume

that each discrete value of the attribute is uniformly

distributed, that is, the number of records for each discrete

value is the same. Therefore, it is only necessary to obtain the

number of discrete values in the result and the average

number of records corresponding to all discrete values. Eq. (1)

expresses the estimated value of the number of discrete

elements in the Bloom Filter.

ln(1)

_

n

muniq count n
k

−

= − (1)

Suppose that when the Bloom Filter is used to perform

bilateral pruning on R∞kS, the total data of R and S are size(R)
and size(S), respectively, and after pruning, they are

size(R_pruned) and size(S_pruned). uniq(R) is the number

of unique values in R, uniq(R_prune) is the number of

unique values in R pruned, which satisfies Eq. (2) and Eq.

(3).

() ()

(_) (_)

uniq R size R

uniq R pruned size R pruned
= (2)

(_) (_)

 (_)

uniq R pruned uniq S pruned

uniq Join result

=

=
 (3)

Finally, the number of records Avg(R) and Avg(S)
corresponding to each unique value in R and S is used as the

number of discrete values, and the final estimation for the

intermediate result is Eq. (4):

(_) ()

()
()

size R pruned size S
size result

uniq S

= (4)

C. Runtime Join Plan Generation Algorithm

Unlike the join plan based on dynamic programming [10],

the following requirements need to be met to generate the

join plan at runtime. 1) Collecting statistics information

according to requirements during the execution process

without relying on statistics information obtained in advance.

2) Traversing all its possible joins, when there are multiple

joins in a relationship, and estimating the cost of each join

method. 3) Minimizing the time cost of collecting statistics

information as much as possible, so as not to cause a longer

time than the wrong join plan. Based on the above

requirements, this paper proposes a graph-based runtime join

plan generation algorithm based on greedy algorithm. The

algorithm uses a graph to represent the join plan selection

problem that needs to be solved, uses the end of the graph to

represent the relationship to be joined, and uses the edge of

the graph to represent a join that needs to be executed. Each

join is about to merge the two endpoints. When the algorithm

is executed, the graph will shrink to an isolated point, which

is the result of the join. The execution of the algorithm is

divided into the following two steps.

1) Initialization process. Initializing all relations as nodes

of the graph and all join operations as edges between nodes.

2) Plan generation process. This is an iterative process,

which can be divided into the following three steps. a) When

estimating the size of the result of the join between the two

16

International Journal of Computer Theory and Engineering, Vol. 14, No. 1, February 2022

endpoints of each edge in the graph, if the two tables

corresponding to this edge have not changed during the last

join and the cost has been calculated, there is no need to

recalculate. b) Selecting the edge with the smallest estimated

join result to perform the join operation, and joining the edges

associated with the two nodes before the join to the node after

the merge. c) Updating the joined nodes and edges. First, the

node list needs to be updated to remove the joined nodes, and

then the join cost needs to be recalculated for the

corresponding edges before the two nodes participating in the

join.

III. EXPERIMENT DESIGN AND RESULT ANALYSIS

The experiment uses TPC-DS data set [12].

A. Experiment Design and Analysis of BFP Join

The experiment based on BFP Join consists of two

experiment groups and a control group. Experiment group 1

uses the smaller relation to the input of the join to construct

the Bloom Filter, and uses the constructed Bloom Filter to

filter the larger relations in the join. In experiment group 2,

we generate Bloom Filter for both datasets participating in

the join, and the Bloom Filter is used to filter both sides of the

join simultaneously. For control group, we use unmodified

Spark SQL to execute the query. Sizes of 1GB, 5GB and

20GB data are generated built on the TPC-DS dataset for the

query. This article designs three custom query statements to

analyze the cost of the join process separately, as showed in

Table I. The three custom queries are executed 10 times, the

one that consumes the most time and the one that consumes

the least time are removed, and the average of the remaining

8 times is taken as the final result.

TABLE I: THREE CUSTOM QUERY STATEMENTS

Cutom Query Describtion

Custom Query 1 The total amount of returned goods sold in the store

Custom Query 2 The 10 highest-selling products sold in the store

Custom Query 3

The number of items that are returned through the

store

after purchasing items from catalog shopping

channels

From Fig. 1, it can be seen that experiment group 1 has a

certain performance improvement when running Custom

Query 1 on data sets 1GB, 5GB, and 20GB.

0

50000

100000

150000

200000

250000

300000

1G 5G 20G

T
im

e/
m

s

Control Group Experiment Group 1 Experiment Group 2

Fig. 1. Comparison of execution results of Custom Query 1.

The increases are 6%, 20%, and 12% respectively.

Compared with experiment group 1, the execution time of

experiment group 2 is slightly long, but there is still a certain

improvement compared to the control groups. From Fig. 2, in

Custom Query 2, the control groups perform better than the

experiment groups in all cases. Since Custom Query 2 uses

table store sales and table item to join, the intersection of the

two tables is large, so most of the data cannot be pruned in the

pruning stage. As a result, the experiment groups are slower

than the control groups because of the cost of collecting

statistics. Among them, the performance loss of experiment

group 2 is the largest when using 20GB data, reaching 7%.

0

50000

100000

150000

200000

1G 5G 20G

T
im

e/
m

s

Control Group Experiment Group 1 Experiment Group 2

Fig. 2. Comparison of execution results of Custom Query 2.

From Fig. 3, the experiment groups in Custom Query 3 has

a better optimization effect than the control groups. When

1GB of data is used, the performance is improved by 22%.

After analysis, it is found that the original Shuffle Hash Join

is small enough after pruning to call the Broadcast Join to

join, which directly avoids shuffle for larger data sets and

brings a greater performance improvement.

0

20000

40000

60000

80000

100000

120000

140000

1G 5G 20G

T
im

e/
m

s

Control Group Experiment Group 1 Experiment Group 2

Fig. 3. Comparison of execution results of Custom Query 3.

When using 5GB of data to execute Custom Query 2, the

optimization effect of experiment group 2 slightly exceeds

that of experiment group 1. This is because as the data set

becomes larger, the bilateral pruning algorithm eliminates

most of the data, which significantly reduces the time cost of

the join process. The above three sets of experiments

respectively perform the BFP Join algorithm test for the cases

where there is a small intersection between the two joined

parties and a large intersection between the two joined parties,

and the two joined parties have a small intersection and both

joined parties can be effectively filtered by the Bloom Filter.

Experiment results show that when the intersection of the two

sides of the join is small, using the BFP Join algorithm can

smoothly reduce the execution time of the join. When there is

a large intersection between the two joined parties and the

input data cannot be effectively cut, the time cost of BFP Join

can also be tolerated. In the last case, the use of bilateral

pruning can more effectively prune the input data of the join,

and the optimization effect is better than that of unilateral

filtering.

17

International Journal of Computer Theory and Engineering, Vol. 14, No. 1, February 2022

B. Experiment Design and Analysis of Runtime Query

Optimization Algorithm

The experiment of runtime query optimization algorithm is

intended to verify that a better execution plan can be

generated without pre-collection of statistics information,

and the time cost of collecting statistics information and

making plan selection is controllable. Based on the above

purpose, four groups of control experiments are set up.

Control group 1 uses the order in the From clause of the

query to execute joins. This is the default behavior of Spark

SQL when the query optimizer is not enabled. Control group

2 uses the optimal join order based on the dynamic

programming algorithm, control group 2 will be used as a

benchmark to compare whether the experiment groups can

obtain the optimal execution order. Experiment group 1 uses

AMS Sketch to estimate the cardinality of the intermediate

relationship of the join, and uses the graphbased join plan

generation algorithm to select the order of join. Experiment

group 2 uses Bloom Filter to estimate the cardinality of the

intermediate relations of the join, and also uses the

graph-based join plan generation algorithm to select the order

of join. The running time comparison of each group in Query

7 is shown in Fig. 4.

0

100000

200000

300000

1G 5G 20G

T
im

e/
m

s

Control Group 1 Control Group 2

Experiment Group 1 Experiment Group 2

Fig. 4. The execution time comparison for Query 7.

In Query 7, the execution time of control group 1 is the

longest, and control group 2 with the adjusted join order

achieves the highest execution efficiency, which is 17%

faster than control group 1. Compared with control group 1,

the performance of experiment group 1 and experiment group

2 increase by 14% and 16% respectively.

0

200000

400000

600000

1G 5G 20G

T
im

e/
m

s

Control Group 1 Control Group 2

Experiment Group 1 Experiment Group 2

Fig. 5. The execution time comparison for Query 17.

Query 17 is more complicated than Query 7, from Fig.5,

the average performance improvement of control group 2 has

reached 32% compared to control group 1. Experiment group

1 and control group 2 produce the same join plans, and

compared with control group 1, the average optimization

effect has reached 27%. Compared with control group 1,

experiment group 2 has an average optimization effect of

only 21%. Because the collected statistics information is not

accurate enough, Broadcast Join cannot be used to perform

the join between table date_dim and store_returns. In query

25, the join plan for control group 2 is the same as query 17.

From Fig. 6, in query 25, the performance improvement of

control group 2 reaches 34% compared to control group 1,

and the performance improvements of experiment group 1

and experiment group 2 are 29% and 20% compared to

control group 1, respectively. Experiment group 1 accurately

generates the best join plan again, while experiment group 2

generates the correct join sequence when the data is 1GB and

5GB, and the optimization effect reaches 31%.

0

100000

200000

300000

400000

500000

600000

700000

800000

1G 5G 20G

T
im

e/
m

s

Control Group 1 Control Group 2

Experiment Group 1 Experiment Group 2

Fig. 6. The execution time comparison for Query 25.

The above experiments show that the query optimization

algorithm based on runtime statistics information collection

proposed in this article has a certain optimization effect. On

the one hand, it can spend less time collecting statistics

information to generate the optimal join plan, on the other

hand, as the amount of data increases, the proportion of time

spent on statistics information collection becomes smaller

and smaller, and the optimization effect becomes more and

more obvious. It should be pointed out that in this experiment,

control group 2 directly uses the best join order to compare

with the runtime query optimization algorithm proposed in

this article. This can only be used as the upper limit of the

optimization effect of all optimizers, and does not represent

the effect of the query optimizer integrated by the current

Spark SQL.

C. Analysis of Comparative Experiment Results of Related

Work

This section compares the query optimization algorithm

proposed in this article with the optimization method in

literature [8], and uses it as control group 3.

As can be seen from Fig. 7, in all three queries, compared

with control group 1 without any optimization, the two

experiment groups and control group 3 have a significant

performance improvement. At the same time, there is a

certain performance loss compared with control group 2 that

directly executes the best join plan without any additional

cost. In query 7, experiment group 1 and experiment group 2

have a very small performance improvements compared to

control group 3. Through analysis of the execution plan, it is

found that the three experiment groups all produce the

optimal execution plans. The execution time of the three

18

International Journal of Computer Theory and Engineering, Vol. 14, No. 1, February 2022

groups is also slightly different because of the different costs

of the optimization processes. In query 17, the optimization

effect of experiment group 2 has obvious advantages over

experiment group 1 and control group 3. Compared with

control group 1, the performance of experiment group 2 has

increased by 25% and the performance improvements of

experiment group 1 and control group 3 are only 17% and

15%, respectively. In query 25, the optimization effects of

experiment group 1, experiment group 2, and control group 3

are 29%, 26%, and 20%, respectively. Among them,

experiment group 1 and control group 3 have generated

correct join plans.

0

10000

20000

30000

40000

50000

60000

70000

Query 7 Query 17 Query 25

T
im

e/
m

s

Control Group 1 Control Group 2 Control Group 3

Experiment Group 1 Experiment Group 2

Fig. 7. Comparison of related work results.

Through these experiments, it can be seen that the runtime

query optimization algorithm proposed in this paper overall

has lower optimization cost while it can generate the optimal

join plan compared with the algorithm in literature [8]. In

addition, while the method in [8] can produce wrong

execution plans, the proposed Bloom Filter-based method

can still generate the correct plans.

IV. CONCLUSION

Combining runtime adaptive query optimization theory

and Spark SQL implementation principles, this paper

proposes an optimized prototype that collects statistics

information at runtime and adaptively generates a query plan

iteratively, removing the dependence on the user’s

pre-executed statistics information. 1) Using Bloom Filter to

prune the input of join. Before the join is executed, the

disjoint part of the data is pruned by Bloom Filter, thus

reducing the network cost of data transmission in the shuffle

process and the cost of subsequent sorting and hash table

construction. 2) Using AMS Sketch and Bloom Filter to

estimate the intermediate cardinality of join, and the

algorithm process and execution cost are set out in detail. 3)

Proposing a graph-based join optimization algorithm based

on the above two strategies, collecting statistics information

and adaptively adjusting the execution plan during the

execution of a query, and converting the execution process of

the join into a process of graph shrinkage. This paper uses

TPC-DS dataset to test the algorithms above. The

experiments prove the effectiveness of the statistics

information collection algorithm proposed in this article. For

future work, we look at ways to develop global optimal

solutions.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Assoc. Prof. Yong Zhao proposed the idea, conducted the

research, and wrote the paper. Rong Chen reviewed the

article of whole research.

ACKNOWLEDGMENT

Thanks to Chenfei Liu for his support and contribution to

the work of this paper.

REFERENCES

[1] I. Trummer, “Exact cardinality query optimization with bounded

execution cost,” in Proc. the 2019 International Conference on

Management of Data, 2019, pp. 2–17.

[2] D. L. Quoc, I. E. Akkus, P. Bhatotia et al., “Approxjoin approximate

distributed joins,” in Proc. the SoCC ’18 ACM Symposium on Cloud

Computing, October 2018, pp. 426–438.

[3] R. Avnur and J. M. Hellerstein, “Eddies continuously adaptive query

processing,” in Proc. SIGMOD, 2000, pp. 261–272.

[4] S. Agarwal, S. Kandula, N. Bruno, et al., “Re-optimizing data-parallel

computing,” in Proc. NSDI, 2012.

[5] Q. Ke, M. Isard, and Y. Yu, “Optimus a dynamic rewriting framework

for dataparallel execution plans,” in Proc. EuroSys, 2013, pp. 15–28.

[6] M. Isard, M. Budiu, Y. Yu et al., “Dryad distributed dataparallel

programs from sequential building blocks,” SIGOPS Oper. Syst. Rev.,

vol. 41, no. 3, pp. 59–72, 2007.

[7] S. Kandula, A. Shanbhag, A. Vitorovic et al., “Quickr lazily

approximating complex adhoc queries in bigdata clusters,” in Proc.

SIGMOD, 2016, pp. 631–646.

[8] K. Karanasos, A. Balmin, M. Kutsch, F. Ozcan et al., “Dynamically

optimizing queries over large scale data platforms,” in Proc. SIGMOD,

2014 pp. 943–954.

[9] Databricks Inc., Analyze Table Command, 2019.

[10] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin et al., “Access path

selection in a relational database management system,” in Proc.

SIGMOD, 1979, vol. 79, pp. 23-34.

[11] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of

approximating the frequency moments,” Data Basis; Randomized

Algorithms; Space Complexity, pp. 20-29, 1996.

[12] R. O. Nambiar and M. Poess, “The making of tpc-ds,” in Proc. the

32nd International Conference on Very Large Data Bases (VLDB)

Endowment, 2006, pp. 1049-1058.

Copyright © 2022 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Yong Zhao is an associate professor at the University

of Electronic Science and Technology of China. He

received his Ph. D. from the University of Chicago

under the supervision of Prof. Ian Foster. His research

interests include blockchain, big data, data intensive

science and workflow.

Rong Chen received the B.E. degree from Chongqing

University of Posts and Telecommunications. She is

currently pursuing the M.E. degree in University of

Electronic Science and Technology of China. Her

research interests include cloud computing and big

data.

19

International Journal of Computer Theory and Engineering, Vol. 14, No. 1, February 2022

https://creativecommons.org/licenses/by/4.0/

	1305-T2011

