

Abstract—Nowadays, various technologies play more of a

role in our daily lives. Most people can easily access technology

via computers or mobile phones. It cannot be denied that

technology is involved in all activities in life. On the other hand,

in the world of software development, it is considered to be very

much affected by the inability of systems to accommodate a

huge amount of people who can access the website or

application due to design architecture that no longer exists in an

age where technology has evolved quickly.

In this paper, we tested and analyzed the performance

comparison between monolith and microservices using Docker

and Kubernetes by developing a simulation system based on

those concepts. This paper presents a performance comparison

of web services using the same scenarios with two different

factors: using a monolith and microservices on Docker and

Kubernetes.

The results showed that the Monolith and microservices

architecture developed with Kubernetes can reduce response

time and increase throughput in the system. Moreover, we have

explained the factors that make the system work in a more

efficient way.

Index Terms—Monolith, microservices, docker, kubernetes.

I. INTRODUCTION

In the present day, it cannot be denied that a good

architectural design has to think about the efficiency of use.

But, the design of a good architectural structure must meet

the needs of the volume of users and easily adaptable to

rapidly changing evolution of technology. Working with

distributed software application is fundamentally different

from implementing software on a single application. The

main difference is that there are lots of things that have to

concern such as availability, resilience, ease of deployment

and replaceability. The challenge to transform a single

software application to a distributed software application is

that it needs to guarantee the quality of high performance and

keep the user experience still the same. In this research, we

simulated the software application using open-source

software to present how these software impact on the

application with different factors. The following sections

describe the concepts of design architecture and the

open-source software available to manage a large number of

virtual hosts.

Monolith is a concept that combines services and business

needs into a single software application that is suitable for a

relatively small system. The advantage of this concept is that

it is easy to develop a system does not take a long time, but

Manuscript received December 29, 2020; revised March 22, 2021.

Napawit Toomwong and Waraporn Viyanon are with the

Srinakharinwirot University, Thailand (e-mail:

napawit.toomwong@g.swu.ac.th, waraporn@g.swu.ac.th).

the disadvantage of this concept is that all modules were

tightly coupled inside a single application. Moreover, they

often become very complex and difficult to implement and

slow down any user who needs to work on the system, further

increasing high impact when the project gets larger.

The definition of microservices [1] is an application

component and standalone application of their own.

Moreover, the independent application component can

communicate using Restful API or Message Queue. The

design concept of microservices is focused on service and

business boundaries, as making it obvious where the code

lives for a given piece of functionality.
Containerization [2] is a technique for simulating an

environment or a virtual operating system to manage the

software, which is similar to a virtual machine. The widely-

known software is Docker. Docker is open source software

developed to improve performance from traditional virtual

machines that used much less resources than a virtual

machine. Docker can install more than one container on a

single operating system. It is unlike a virtual machine, which

must be installed on its own operating system.
Kubernetes [3] is an open source system that helps manage,

scale, and manage containers. It is designed to manage the

container that run the applications and ensure that it is

available twenty-four hours a day. Moreover, it provides a

framework that resiliently run a distributed system.

Horizontal pod autoscaler [4] is a key feature of

Kubernetes is used to change the shape of the system by

automatically increasing or decreasing the number of pods in

response to the workload of the CPU or memory

consumption in response to the custom metrics reported by

Kubernetes. The horizontal pod autoscaler algorithm

operates using the ratio between the desired metric value and

the current metric is calculated as in (1)

 (1)

For example, if the current metric value is 200m, and the

desired value is 100m, the number of replicas will be doubled,

since 200.0 / 100.0 == 2.0. If the current value is 50m instead,

the resulting number of replicas, since 50.0 / 100.0 == 0.5. It

will skip scaling if the ratio is sufficiently close to 1.0 [5].

Autoscaling [6] is a method used in cloud computing to

adjust the resources of the system based on its needs. For

example, autoscaling allows the system to scale up or down,

and has its own resources. These increased resources

increased and were sufficient for the needs of incoming

traffic. Furthermore, when no one is using it, the system

automatically reduces it to normal size. It could reduce the

burden for people in monitoring and letting the system take

care of themselves. On the other hand, autoscaling used much

Performance Comparison between Monolith and

Microservice Using Docker and Kubernetes

Napawit Toomwong and Waraporn Viyanon

International Journal of Computer Theory and Engineering, Vol. 13, No. 3, August 2021

91DOI: 10.7763/IJCTE.2021.V13.1295

more for handling failure or reacting to load conditions. For

example, the rule are specified clearly, for there should be at

least 5 instances in a group, so if one goes down a new one is

automatically launched. It can help to increase efficiency and

reduce costs by using a platform that allows it to work

optimize the computing resources.
The remainder of this paper described a case study on

developing web services based on monolith and

microservices using Docker and Kubernetes in Section II.

Section III describes the architecture deployment on Amazon

web services. Section IV shows the results of tested

performances, such as throughput and response time. The last

section describes the factor that cause the results.

II. METHODOLOGY

In this research, the performance testing is performed by

simulating the loyalty system based on monolith and

microservices concepts of Amazon web services [7], [8]. The

system was developed by using Node.js (8.6.0), MongoDB

(3.4.0), Docker (19.0.3) and Kubernetes (1.15.0), which

consists of a browsing product list and product redemption.

The responsibility of the first service is browsing the product

list on the database and the last service uses spending to

redeem products. In this experiment the request transaction is

300 transactions per second and 20 threads usage for 10

minutes generated by Apache JMeter.

A. Monolith Architecture Using Docker

The monolith architecture of the loyalty system consists of

three parts: (1) service loyalty, (2) database, and (3) load

balancer. Each part is installed on the Docker container. This

monolith architecture is installed on Amazon EC2 T3.small

(Ubuntu 18.0.4, 2 vCPUs, 2.5 GHz, Intel Skylake P-8175, 2

GiB memory). The database consists of two collections: users

and products which stored 1,000 documents and 3 documents,

respectively. The architecture of monolith is shown in Fig. 1.

Fig. 1. Monolith architecture using Docker.

When the first service is called through nginx, the loyalty

system retrieves information from the database and responds

to a client. Points and stock items are charged by updating the

database after the client selects a product for redemption. The

sequence diagram is shown in Fig. 3.

B. Monolith Architecture Using Kubernetes

In this scenario, the system was installed in a Kubernetes

cluster consisting of four nodes, one master and three

workers. Master node is a node controlling and managing a

set of worker nodes. The worker nodes are a worker machines

in Kubernetes, previously known as a minion. The

specification of each node is Amazon EC2 T3. small (Ubuntu

18.0.4, 2vCPUs, 2.5 GHz, Intel Skylake P-8175, 2 GiB

memory). This cluster automatically increases and decreases

the number of pods across their workers to maintain an

average CPU utilization, when CPU usage is over than 50

percent. The monolith architecture is similar to the previous

one, but in this cluster the software used to manage the

request transaction is ingress-nginx, which is also installed on

the cluster. The architecture of monolith using Kubernetes is

shown in Fig. 2.

Fig. 2. Monolith architecture using Kubernetes.

Fig. 3. Sequence diagram of monolith architecture.

C. Microservices Architecture Using Docker

The loyalty system developed with microservices

architecture break the monolith architecture into small pieces

that work together. In this system, there are 3 domains,

including user, catalog, and redemption. The architecture

consists of 3 instances which run on Amazon EC2 T3. small

(Ubuntu 18.0.4, 2 vCPUs, 2.5 GHz, Intel Skylake P-8175, 2

GiB memory). The responsibility of the first instance is

managing the requests from a client using nginx [6]. The

redemption and user services were installed in the second

instance. The last instance is catalog services, which retrieve

the product list from the database. The services communicate

in this architecture using HTTP/REST protocols. The

services can be developed and deployed independently of one

another. The architecture overview is shown in Fig. 4.

The microservices was deployed as shown in Fig. 4. Each

service has its own database in order to be decoupled from

other services. The catalog database stored the record of

products that client can redeem and the user databases collect

points and user information. Both of them stored the number

of record similar to the monolith architecture.

International Journal of Computer Theory and Engineering, Vol. 13, No. 3, August 2021

92

Fig. 4. Microservices architecture using Docker.

D. Microservices Architecture Using Kubernetes

In this approach, microservices using kubernetes are used

extensively in the IT industry to handle large workloads and

services, which facilitate both declarative configurations and

automation. In this section, there were 4 instances, including

one master node and three workers. The architecture and

resources were similar to the microservices using docker but

nginx was replaced by ingress-nginx.

Fig. 5. Microservices architecture using Kubernetes.

The microservices architecture was deployed as it is shown

in Fig. 5. This cluster also implemented the horizontal pod

autoscaler, which can adjust the number of pods if the CPU

utilization more than 50 percent.

III. EXPERIMENTAL RESULTS

Apache JMeter was used in the experiment to push a 300

transactions per second load for 10 minutes. The experiment

was performed three times for the performance comparison

of the monolith and microservices architecture using Docker

and Kubernetes. The variables used to measure the usage

efficiency Fig. 6. Sequence diagram of microservices

architecture is the average response time throughout.

Response time [9] is the actual time to process the request, it

includes network delays and queuing delays. The use of

Kubernetes can increase the system performance and does

not affect the efficiency of the original system, which will

explain the results of various experiments in the next section.

A. Results of Monolith Architecture

The simulation experiment of loyalty system was

developed using monolith architecture compared with

Docker and Kubernetes on Amazon web services which all

services were embedded into the single codebase. In the

previous experiment, the monolith architecture using Docker

was summarized in Table I. The performance result of

monolith architecture using Kubernetes are summarized in

Table II. It was found that the CPU usage of monolith

architecture using Kubernetes has increased more than 50

percent of the CPU limit usage. As a result, the deployment

was resized to three replicas, as shown in Table III.

TABLE I: RESULT OF MONOLITH USING DOCKER

Services Average response time Throughput (t/s)

Catalog 18.28 149.50

Redemption 20.80 149.58

Total 19.54 298.96

TABLE II: RESULT OF MONOLITH USING KUBERNETES

Services Average response time Throughput (t/s)

Catalog 5.25 150.01

Redemption 5.71 150.00

Total 5.48 299.99

TABLE III: NUMBER OF PODS IN KUBERNETES HORIZONTAL POD

AUTOSCALER

Services Min pods Max pods Replicas

Loyalty 1 10 3

B. Results of Microservices Architecture

The microservices performance tests using Docker and

Kubernetes, the microservices using Kubernetes has a better

performance than Docker. The results of the experiment are

summarized in Table IV and Table V. It was found that the

microservices architecture using Kubernetes increased more

than 50 percent of the CPU limit usage. As a result, the

deployment of catalog services and redemption services were

resized to three replicas. The results are shown in Table VI.

TABLE IV: RESULT OF MICROSERVICES USING DOCKER

Services Average response time Throughput (t/s)

Catalog 46.29 141.27

Redemption 83.17 141.26

Total 64.73 298.96

TABLE V: RESULT OF MICROSERVICES USING KUBERNETES

Services Average response time Throughput (t/s)

Catalog 7.82 149.81

Redemption 27.99 149.81

Total 17.90 299.60

TABLE VI: NUMBER OF PODS IN KUBERNETES HORIZONTAL POD

AUTOSCALER

Services Min pods Max pods Replicas

Catalog 1 10 3

Redemption 1 10 3

User 1 10 1

C. Comparison of Monolith and Microservices Using

Docker and Kubernetes

As shown in the result tables above, when comparing the

results of the experiment, it was found that Kubernetes

improved system performance. The results of the comparison

are summarized in Fig. 6 and Fig. 7.

International Journal of Computer Theory and Engineering, Vol. 13, No. 3, August 2021

93

Fig. 6. Average response time of monolith and microservices using Docker

and Kubernetes.

Fig. 7. Throughput of monolith and microservices using Docker and

Kubernetes.

Fig. 8. Comparison of average response time between unscaling and scaling

system.

Based on the chart in Fig. 6 and Fig. 7, the response time of

the architecture that uses Kubernetes is better than Docker. It

was discovered that running scalable work-loads on

Kubernetes reduced the response time by approximately 25

percent and increased throughput in the system, which can be

used with any monolith and microservices architecture

effectively and without any impact. It can be observed that a

scaled system reduced response time and increased

throughput. Therefore, to find the root cause of this

experiment, it was tested by comparing the average response

time of monolith and microservices using Kubernetes, which

implemented the horizontal pod autoscaler, which can adjust

the number of pods if the CPU utilization is more than 50

percent and the other part developed with Kubernetes that

uses 100 percent of the CPU, but without the ability to scale.

The results of the comparison are summarized in Fig. 8.

Based on the chart in Fig. 8. It was discovered that running

scalable work-loads on Kubernetes reduced the response time

more than the system that running with full CPU without the

ability to scale.

IV. CONCLUSION

Building autoscaling allows developers to automatically

scale both monolith and microservice systems. There are 2

methods to scaling the system. First, predictive scaling can be

triggered by well-known trends. For example, the system

peak load is between 9 a.m. and 5 p.m., so developers can

plan to bring up additional instances before the peak time and

shut down the instances to reduce costs. In this method,

developers should understand the behavior of the system

workload over time. The last method is reactive scaling,

building reactive scaling by bringing up additional instances

when the system detects a higher system utilization

exceeding the upper threshold. To ensure that the threshold is

appropriate for the production environment it requires load

test to test autoscaling rules.

The definition of bounded context is a specific

responsibility enforced by explicit boundaries [10]. With

regard to microservice, developers need to understand the

bounded contexts of service. Getting service boundaries

wrong can result in having to make lots of changes in

services-to-services collaboration and expensive operation. If

the development and business teams are clearly not able to

understand the business domain that consists of multiple

bounded contexts, consider starting development from

Monolith is still a good choice.

This research was developed to find the efficiency of using

a monolith and microservice architecture with modern

technology such as Docker and Kubernetes. It presents the

scalability of a system designed to accommodate existing

customers and to prepare for new customers in the future with

less effort and cost.

CONFLICT OF INTEREST

The authors declare no conflicts of interest concerning the

content matter of this manuscript.

AUTHOR CONTRIBUTIONS

Napawit Toomwong and Waraporn Viyanon have

participated in designing and conducting research for

analysis of experimental results and manuscript writing.

ACKNOWLEDGMENT

This research was funded by the Graduate School of

Srinakharinwirot University, Thailand. We would like to

thank the instructors from the Department of Computer

Science at Srinakharinwirot University.

REFERENCES

[1] S. Newman, Building Microservices: Designing Fine-Grained Systems,

O’Reilly Media, Inc., 2015.

[2] D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging microservices

architecture by using docker technology,” in Proc. SoutheastCon,

2016.

[3] Concepts. [Online]. Available: https://kubernetes.io/docs/concepts/

International Journal of Computer Theory and Engineering, Vol. 13, No. 3, August 2021

94

[4] A. Zhao, Q. Huang, Y. Huang, L. Zou, Z. Chen, and J. Song, “Research

on resource prediction model based on kubernetes container

auto-scaling technology,” IOP Conference Series: Materials Science

and Engineering, vol. 569, issue 5, p. 052092, 2019.

[5] Horizontal pod autoscaler. [Online]. Available:

https://kubernetes.io/docs/tasks/runapplication/horizontal-pod-autosca

le/how-does-the-horizontal-podautoscaler-work

[6] J. Yang, C. Liu, Y. Shang, Z. Mao, and J. Chen, “Workload

predicting-based automatic scaling in service clouds,” in Proc. 2013

IEEE Sixth International Conference on Cloud Computing, 2013, pp.
810–815.

[7] M. Villamizar, O. Garc és, H. Castro, M. Verano, L. Salamanca, R.

Casallas, and S. Gil, “Evaluating the monolithic and the microservice

architecture pattern to deploy web applications in the cloud,” in Proc.

2015 10th Computing Colombian Conference (10CCC), 2015, pp.

583–590.

[8] M. Villamizar, O. Garces, L. Ochoa, H. Castro, L. Salamanca, M.

Verano, R. Casallas, S. Gil, C. Valencia, A. Zambrano et al.,

“Infrastructure cost comparison of running web applications in the

cloud using AWS lambda and monolithic and microservice

architectures,” in Proc. 2016 16th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2016,

pp. 179–182.

[9] M. Kleppmann, Designing Data-Intensive Applications: The Big Ideas

behind Reliable, Scalable, and Maintainable Systems, O’Reilly Media,

Inc., 2017.

[10] V. Vernon, Domain-Driven Design Distilled, Addison-Wesley

Professional, 2016.

Copyright © 2021 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Napawit Toomwong has graduated with a bachelor’s

degree in computer science from Chiang Mai

University, Thailand (2011-2015). He is currently

studying for a master’s degree in computer science at

Srinakharinwirot University. He works at an IT

company as a senior software engineer and takes part

in every stage of applications development, including

design and advanced applications.

Waraporn Viyanon got her Ph.D. in computer

science from Missouri University of Science and

Technology, formerly named University of Missouri

at Rolla, Missouri, USA. She is a faculty member at

the Computer Science Department at

Srinakharinwirot University. Her research interests

include data analytics, Artificial Intelligence (AI),

cloud computing, web, mobile technologies, and

database management.

Author’s formal

photo

Author’s formal

photo

International Journal of Computer Theory and Engineering, Vol. 13, No. 3, August 2021

95

https://creativecommons.org/licenses/by/4.0/

	1295-MT501

