

Abstract—In order to further improve the computing

efficiency of the KNN algorithm in a cluster environment, an

improved parallelization algorithm based on the sequential

MapReduce framework was proposed. Two MapReduce

workflows were defined in sequence. The first workflow took

training data as input to parallelize the process of calculating

Euclidean distance; the second workflow took the output of the

calculation process as input to parallelize the process of

counting categories. The Experiments have verified that in a

cluster environment, compared with a single MapReduce

operation process, the sequential improvement accelerated the

operation process of counting categories and improved the

efficiency of the algorithm.

Index Terms—KNN, MapReduce, parallelization.

I. INTRODUCTION

The KNN algorithm determines the classification of

samples by measuring the Euclidean distance between

unknown data and known samples, and is often used to deal

with problems such as classification and regression [1], [2].

With the advent of the big data era, the complexity and

dimensionality of data have gradually increased, and the

KNN algorithm running on a single machine has been

unable to efficiently process large quantities of data. In

response to the above problems, Wenjin Xu and other

researchers have proposed some improvements: using

clustering algorithms to reduce the dimensionality of the

training data set, accelerating the operation process through

the CUDA computing platform and GPU, combining the

KNN algorithm with other machine learning algorithms, and

using filters to filter the data and so on [3]-[6]. Which are

based on stand-alone computing. Although the computing

efficiency is improved, the amount of data that can be

processed is also limited. With the development of

distributed clusters, Ying Ma and other researchers proposed

to use distributed clusters such as Hadoop and Spark to

parallelize the algorithm to solve the problem of

overflowing memory of single machine [7]-[12]. Whose

improved method does solve the calculation problem in the

big data environment, but only parallelizes the calculation

process of Euclidean distance, and finally generates a large

number of classification labels, which still requires time-

consuming statistics. Based on the Hadoop platform, this

 Manuscript received November 11, 2020; revised February 25, 2021.

This paper is supported by the Open-end Fund of Hubei Key Laboratory of

Intelligent Robot (Wuhan Institute of Technology) 430073, China (HBIR

201902).

Yaoshun Li and Lizhi Liu are with School of Artificial Intelligence,

School of Computer Science and Engineering, Wuhan Institute of

Technology, Wuhan, China (e-mail: liyaoshuncn@foxmail.com).

article discusses using sequential MapReduce framework to

improve the KNN algorithm for secondary continuous

parallelization. After comparing the training process before

and after the improvement, the correctness and advantages

of algorithm were verified by experiments.

II. RESEARCH BACKGROUND

The principle of the KNN algorithm is that it is assumed

that there are m known sample data are distributed in a

Euclidean feature space, and the position and data categories

of all sample in this space are known. Assuming that each

sample has n feature values, now giving a new sample X, we

need to determine the category to which the sample belongs.

The proceed as follows:

Calculating the Euclidean distance between the new

sample and all known samples, the calculation formula is as

follows:

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √∑ (𝑋𝑖
(𝑎)

− 𝑋𝑖
(𝑏)

)2𝑛
𝑖=1 ()

where 𝑋𝑖
(𝑎)

 represents the i-th feature value in the known

sample, and 𝑋𝑖
(𝑏)

 represents the i-th feature value in the new

sample.

The core idea of the KNN algorithm is to assume that the

closer the samples in the space are, the more likely it is to

belong to one class. Therefore, after sorting the m Euclidean

distances in ascending order, to select the first k category

labels corresponding to the sample data and count the

number of occurrences of each category. The category with

the highest frequency is the unknown sample category.

All training data and the test data must be counted again

each classification or regression. If the amount of data is

large, the computing power required will be amazing. In

addition, the KNN algorithm is extremely dependent on

training data. If there are some data are wrong in the training

data, just right which are placed in the periphery of the data

need to classify, which will directly lead to predict data no

accurately. With the data dimension increasing, the time and

space complexity of the algorithm will also become higher

and higher.

III. KNN ALGORITHM PARALLELIZATION

A. Feasibility Analysis

In the case of a relatively small amount of data, the

known sample data can be regarded as a two-dimensional

matrix, and the new sample data can be regarded as a one-

dimensional vector, the Euclidean distance can be easily

Improvement of Parallelization of KNN Algorithm Based

on Sequential MapReduce

Yaoshun Li and Lizhi Liu

International Journal of Computer Theory and Engineering, Vol. 13, No. 2, May 2021

56DOI: 10.7763/IJCTE.2021.V13.1290

calculated by matrix operation by the Numpy library in

Python, and the frequency of samples can also be counted

quickly by using the Counter method provided in the

collections library.

As can be seen from the prediction process of the KNN

algorithm, the two processes of formula (1) and counting

categories are the core steps of the algorithm. The number of

times to calculate the Euclidean distance is the same as the

number of sample data. The sorting statistical process in a

big data environment also means a high time and space

complexity.

It can be seen that formula (1) is a repetitive operation of

all sample data, and the process of counting labels can also

be regarded as the merging of small-scale data processing

results. The two calculation processes are in line with the

idea of dividing and conquering distributed clusters, and the

calculation and statistical processes can be parallelized

through the MapReduce workflow. From the analysis of the

algorithm running process, calculation and statistics have a

sequential relationship. Therefore, we consider defining two

sequential MapReduce workflows and the output of the

calculation process is used as the input of the statistical

process, and the final calculation result is the predicted

value of the KNN algorithm.

B. KNN Algorithm Based on Sequential MapReduce

MapReduce is a programming framework that can be

used for data processing. It adopts the "divide and conquer"

idea to distribute operations on large-scale datasets to each

child node to complete, and then integrates the intermediate

results of each node to obtain the final result. MapReduce

highly abstracts the processing process into two functions,

map and reduce. Map is responsible for decomposing the

task into multiple subtasks, and reduce is responsible for

summarizing the processing results of the multiple subtasks.

In the KNN algorithm process, the calculation process is

improved to the first MapReduce workflow, and the

statistical process is improved to the second MapReduce

workflow. The overall workflow is shown in Fig. 1.

Fig. 1. Sequential MapReduce workflow.

The steps of sequential MapReduce are as follows:

1) MapReduce workflow of calculating Euclidean

distance

a) Split

Store the training dataset in the HDFS file system. When

the job starts, MapReduce will read the data file and split it

according to the HDFS data block size, each slice will be

processed by a Map node.

b) Parse key-value pairs

The minimum unit of data processing in MapReduce is

key-value pairs. Before the data in the i-th is input into the

map function, it will be converted into the key-value pairs of

“<text start position, text content>” according to the default

rule. Each row of sample data “𝑥1
(𝑖)

, 𝑥2
(𝑖)

, … , 𝑥𝑛
(𝑖)

, 𝑦(𝑖)” will be

converted into an input key-value pair “ <

key, {𝑥1
(𝑖)

, 𝑥2
(𝑖)

, … , 𝑥𝑛
(𝑖)

, 𝑦(𝑖)} > ”. Where “𝑥𝑛
(𝑖)

” represents the

nth eigenvalue of the i-th row, and “𝑦(𝑖) ” represents the

label value of the i-th row, the key value only plays a role in

the form of a key, which is specified by the system by

default.

c) Map

Each slice is processed by a Map node, and every record

in the slice is parsed, which will call a map function. First,

the sample feature values “ 𝑥1
(𝑖)

, 𝑥2
(𝑖)

, … , 𝑥𝑛
(𝑖)

, 𝑦(𝑖) ” will be

converted to a string array. After that, the eigenvalue array

“x_train[] = [𝑥0
(𝑖)

, 𝑥1
(𝑖)

, 𝑥2
(𝑖)

, … , 𝑥𝑛
(𝑖)

]” will be extracted by the

slicing operation, where “𝑥0
(𝑖)

” is the sample deviation value,

which is designated as an integer 1 by default.

Subtract the eigenvalue array “X[] = [𝑋0 , 𝑋1, 𝑋2, … , 𝑋𝑛]”

and “x_train[]” to obtain a new array. Then calculate the

Euclidean distance 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖) of the current sample by

formula (1). And then key-value pairs “< 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖), 𝑦(𝑖) >”

will be output to intermediate results.

When all the fragmented map processes have been

processed, the entire Job Map process also ends. Finally, all

output results will overflow into the HDFS local disk and be

saved as a file.

d) Shuffle

All the key-value pairs output will be sorted and merged

in the ascending order of distance in the Shuffle process, and

then the results will be transmitted to the Reduce stage in the

form of a key-value pair “< 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖), < 𝑦(1), 𝑦(2) … . 𝑦(𝑖) >

>” for processing.

e) Reduce

Traverse and output all key-value pairs “< 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖),

𝑦(𝑖) >” to a file directly.

After the output is completed, the second Job process will

be started immediately, and the output file will be used as

the input of the next MapReduce process.

2) MapReduce workflow of counting labels

Read the first k items of data in the file.Assume that a

record is in the form of “< key, {distance(i), y(i)} >” after

segmentation and parsing.

a) Map

Adding the number 1 to the entered key is convenient for

the Reduce process to accumulate, that is, directly output

key-value pairs in the form of “< y(i), 1 >”.

b) Shuffle

After all key-value pairs are sorted and merged, they will

be output in the form of key-value pairs “< 𝑦(𝑖), < 1,1 … 1 >

>”, and the results will be transmitted to the Reduce stage

for processing.

c) Reduce

This process only needs to accumulate the records of the

same key value, and then output to the file in the form of “<

𝑦(𝑖), 𝑐𝑜𝑢𝑛𝑡(𝑖) >”.

Finally, read the output file and output the category with

the largest sum value, which is the category of new sample.

C. The Specific Implementation of the Algorithm

The algorithm implementation consists of three parts: the

first introduces the MapReduce workflow of calculating the

Inpu
t1

Split(1)

Split(2)

...

Split(s)

Map(1)

Map(2)

...

Map(s)

R
educe1

R
educe2

Split(1)

Split(2)

...

Split(s)

Map(1)

Map(2)

...

Map(s)

S
h

uffle, S
ort

Calculate Euclidean Distance, Sort Count Sample Categories

S
h

uffle, S
ort

O
utpu

t

International Journal of Computer Theory and Engineering, Vol. 13, No. 2, May 2021

57

Euclidean distance; the second introduces the MapReduce

workflow of counting labels; the third introduces the

sequential MapReduce startup process.

1) Algorithm 1: MapReduce of calculating Euclidean

distance
Function MapReduce-One(X[], data)

Input: X[]←new sample feature array, data← sample

dataset
Output: “< 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖), 𝑦(𝑖) >”
Begin

a) for line in data

b) array ← Numpy.array(line.split(“,”))

c) array ← data preprocessing

d) x_train ← generate training matrix

e) label ← y_train

f) distance ← sqrt(Numpy.sum((x_train - X) ** 2))

g) output “< 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖), 𝑦(𝑖) >”

h) shuffle, sort

i) output “< 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖), 𝑦_𝑡𝑟𝑎𝑖𝑛(𝑖) >”
End MapReduce-One

2) Algorithm 2: MapReduce of counting labels
Function MapReduce-Two(data)

Input: data ← MapReduce-One Output

Output: <𝑦_𝑡𝑟𝑎𝑖𝑛(𝑖), 𝑐𝑜𝑢𝑛𝑡(𝑖)>
Begin

a) for line in data:

b) output “< y_train(i), 1 >”

c) shuffle, sort

d) count ← 0

e) for value in values

f) count ← count + value

g) output “< 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖), 𝑐𝑜𝑢𝑛𝑡(𝑖) >”
End MapReduce-Two

3) Algorithm 3: Call sequential MapReduce process
Function Train-Data(data, result, X[])

Input: data ← sample dataset, result ← output path, X[]

← new sample feature array，

Output：New sample label

Begin

a) start MapReduce-One

b) calculates Euclidean distance and sorts

c) output1

d) start MapReduce-Two

e) count labels

f) output2

g) read output2

h) output new sample label
End Train-Data

IV. EXPERIMENT

A. Environment Configuration

The experimental server is a Lenovo Y7000P notebook,

which is configured with 1 physical CPU (Intel(R) Core(TM)

i7-9750H CPU @ 2.60GHz, CPU with 6 cores and 12

threads), 16G memory, 1T solid state drive, 1 physical

network card. The server is installed with Win10 Home

Edition operating system, and VirtualBox software is used

to create 3 virtual machines. Each virtual machine is

configured with 1 core CPU, 2G memory, 20G hard disk,

and 1 virtual network card. Each virtual machine is installed

with Ubuntu 16.04 operating system and Hadoop 2.7.3

distributed computing platform to form a distributed cluster

with 1 master node and 2 slave nodes, using Anaconda3,

Python3.6 and VSCode as development environments.

B. Experimental Data Set

1) Introduction

The experimental dataset comes from the adult dataset in

the UCI machine learning repository. The data set is a

binary classification data set, which is mainly based on the

census data to predict whether a person's income exceeds

50,000 dollars each year, in order to promote some products.

The dataset contains a total of 48,000 pieces of data, of

which contains 32,000 pieces of training data and 16,000

pieces of test data. The dataset contains a total of 12 feature

attributes, including 7 numerical features and 5 text features.

Text feature values need to be converted into corresponding

numerical forms during the training process. The description

of the adult dataset is shown in Table I.

TABLE I: ADULT DATA SET DESCRIPTION

Feature Type Remark

age Numeric

work-class Text 8 types

education-num Numeric

marital-status Text 7 types

occupation Text 14 types

relationship Text 6 types

race Text 5 types

sex Text 2 types

capital-gain Numeric

capital-loss Numeric

hours-per-week Numeric

native-country Text 41 types

2) Data preprocessing

The preprocessing process consists of two parts:

converting the text type value into a numeric value type to

participate in the calculation; normalizing the eigenvalues

with a large slope in the data set. Since all the feature values

of the adult dataset are the same dimension (within 100), the

normalizing process can be omitted.

Taking race racial characteristic values as an example,

race includes White, Asian and Pacific Islanders, American

Indian Eskimos, Black, and others five categories in total,

which are stored in a constant array. In the mapper function

for calculating the Euclidean distance, when the race value

in a row of sample data is read, the corresponding index

value in the returned array is used as the characteristic value

to participate in the operation. And the preprocessing

process of other text feature values is the same as that of

race.

C. Cluster Experimental Process

1) Verify correctness of algorithm improvement

Take 10,000 pieces of data in the training data set, and

select 1000 pieces of data each test to train in a stand-alone

machine or cluster environment, and then output the results

of calculating the Euclidean distance to a file and compare

International Journal of Computer Theory and Engineering, Vol. 13, No. 2, May 2021

58

the data in two files. After 10 tests, the corresponding

calculation results of all samples are the same.

Based on the above 10,000 training datasets, take 100

pieces of data in the test dataset to count labels results in the

stand-alone machine and cluster environments, and then

compared the output files. After 10 tests, the corresponding

counting results of all samples are the same.

Combined with the above test process, the correctness of

the improved algorithm parallelization can be verified.

2) Comparison of computing process between sequential

and single MapReduce

Sequential is the same as the MapReduce workflow of a

single MapReduce calculation of the Euclidean distance.

The difference is that the statistical process of the former is

also completed through the MapReduce workflow, while the

statistical process of the latter is completed by reading the

output file on a single machine.

Since the correctness of the algorithm has been verified,

in order to test as much data as possible, all 48,000 pieces of

data are used as training data to participate in the test.

Starting from 6,000 pieces of data, each time adds 6,000

pieces of data. Test separately in two environments, and

count the running time of the two. Taking the total amount

of training data as the abscissa, the running time ratio λ

(times) of the sequential and single as the ordinate. The

corresponding scatter plot is drawn as shown in Fig. 2.

Experimental results show that the final time ratio

stabilizes at about 1.16. Since the entire calculation process

is mainly based on the calculation of Euclidean distance, the

improvement in efficiency this time is not significant. In the

case of a small training data set at the beginning of the

experiment, the time impact of MapReduce's IO operation

on the statistical process cannot be ignored, so the efficiency

of a single MapReduce operation is slightly higher. With the

expansion of the training data set, the operational

advantages of sequential MapReduce gradually manifested.

Fig. 2. Time ratio between sequential and single MapReduce training.

V. CONCLUSION

In order to further improve the computing efficiency of

the KNN algorithm in a cluster environment, this paper is

based on the Hadoop platform and proposes a sequential

MapReduce computing framework to parallelize the KNN

algorithm in a cluster environment. The experimental results

show that the improved computational efficiency has a

certain improvement compared with the previous one. In the

actual application process, with the increase of the number

of nodes and the improvement of cluster computing

performance, the efficiency of the algorithm will be further

improved. In the later research and learning process, we will

try to combine other big data platforms and optimizing

algorithms, and I believe it can further improve the

algorithm's ability to process data.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Yaoshun Li conducted the research, analyzed the data and

wrote the paper; Lizhi Liu guided the experiment process

and participated in the revision of the paper; all authors had

approved the final version.

REFERENCES

[1] Z. Jiang, Z. Bian, and S. Wang, “Multi-view local linear KNN

classification: Theoretical and experimental studies on image

classification,” International Journal of Machine Learning and

Cybernetics, vol. 11, no. 3, pp. 525–543, 2020.

[2] A. Li, “Exploration of handwritten digit recognition based on KNN

algorithm,” Communication World, vol. 27, no. 2, pp. 37-38, 2020.

[3] W. Xu, K. Guan, Q. Xun, and Y. Xu, “Improved K-means algorithm

based on KNN algorithm,” Journal of Qingdao University of Science

and Technology (Natural Science Edition), vol. 40, no. 5, pp. 107-118,

2019.

[4] Z. Wang, S. Liu, and Q. Luo, “KNN classification algorithm based on

improved K-modes clustering,” Computer Engineering and Design,

vol. 40, no. 8, pp. 2228-2234, 2019.

[5] D. Liu, J. Zheng, and Z. Liu, “Research on parallelization of KNN

algorithm based on CUDA,” Small Microcomputer System, vol. 40,

no. 6, pp. 1197-1202, 2019.

[6] W. Zhang, T. Liu, and M. Wu, “K-value adaptive KNN algorithm

using ring filter,” Computer Engineering and Applications, vol. 55, no.

23, pp. 45-85, 2019.

[7] Y. Ma, H. Zhao, and Y. Cui, “Improved KNN classification algorithm

parallel processing based on Hadoop platform,” Journal of

Changchun University of Technology, vol. 39, no. 5, pp. 484-489,

2018.

[8] Z. Li and G. Huang, “Research on SVM_KNN classification

algorithm based on Hadoop platform,” Computer Technology and

Development, vol. 26, no. 3, pp. 75-84, 2016.

[9] J. Zou and F. Li, “Distributed accurate fuzzy KNN classification

algorithm under big data,” Computer Application Research, vol. 36,

no. 12, pp. 3701-3704, 2019.

[10] J. Wang, S. Yan, and Y. Gao, “Parallel ML-kNN algorithm based on

MPI,” Journal of Zhengzhou University (Science Edition), vol. 50, no.

3, pp. 34-38, 2018.

[11] X. B. Zou, J. Wang, and M. Zhan, “KNN-ALS model

recommendation algorithm under Spark platform,” Journal of

Huaqiao University (Natural Science Edition), vol. 40, no. 2, pp. 264-

268, 2019.

[12] L. Li, Y. Zhu, and Y. Song, “Spark-KNN parallel pattern recognition

method for leakage current data,” Journal of System Simulation, vol.

30, no. 4, pp. 1473-1481, 2018.

Copyright © 2021 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits

unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited (CC BY 4.0).

Yaoshun Li was born in Jingzhou, Hubei, China

in May 1998. He graduated from Wuhan Institute

of Technology with a bachelor's degree in

computer science and engineering in 2020. Since

2020, he has continued to complete master's

degree in the School of Artificial Intelligence,

School of Computer Science and Engineering,

Wuhan Institute of Technology, mainly engaged in

research work in the direction of deep learning.

0.94

0.98

1.02

1.06

1.1

1.14

1.18

0.6 1.2 1.8 2.4 3 3.6 4.2 4.8

Data/×104pcs

λ

International Journal of Computer Theory and Engineering, Vol. 13, No. 2, May 2021

59

https://creativecommons.org/licenses/by/4.0/

Lizhi Liu was born in Wuhan, Hubei, China in

February 1973. He graduated from Huazhong

University of Science and Technology with a

master's degree in computer application

technology. He is currently an associate professor

at the School of Artificial Intelligence, School of

Computer Science and Engineering, Wuhan

Institute of Technology. He mainly studies cloud

computing, big data, and machine learning.

International Journal of Computer Theory and Engineering, Vol. 13, No. 2, May 2021

60

