
  

Abstract—In order to further improve the computing 

efficiency of the KNN algorithm in a cluster environment, an 

improved parallelization algorithm based on the sequential 

MapReduce framework was proposed. Two MapReduce 

workflows were defined in sequence. The first workflow took 

training data as input to parallelize the process of calculating 

Euclidean distance; the second workflow took the output of the 

calculation process as input to parallelize the process of 

counting categories. The Experiments have verified that in a 

cluster environment, compared with a single MapReduce 

operation process, the sequential improvement accelerated the 

operation process of counting categories and improved the 

efficiency of the algorithm. 

 
Index Terms—KNN, MapReduce, parallelization. 

 

I. INTRODUCTION 

The KNN algorithm determines the classification of 

samples by measuring the Euclidean distance between 

unknown data and known samples, and is often used to deal 

with problems such as classification and regression [1], [2]. 

With the advent of the big data era, the complexity and 

dimensionality of data have gradually increased, and the 

KNN algorithm running on a single machine has been 

unable to efficiently process large quantities of data. In 

response to the above problems, Wenjin Xu and other 

researchers have proposed some improvements: using 

clustering algorithms to reduce the dimensionality of the 

training data set, accelerating the operation process through 

the CUDA computing platform and GPU, combining the 

KNN algorithm with other machine learning algorithms, and 

using filters to filter the data and so on [3]-[6]. Which are 

based on stand-alone computing. Although the computing 

efficiency is improved, the amount of data that can be 

processed is also limited. With the development of 

distributed clusters, Ying Ma and other researchers proposed 

to use distributed clusters such as Hadoop and Spark to 

parallelize the algorithm to solve the problem of 

overflowing memory of single machine [7]-[12]. Whose 

improved method does solve the calculation problem in the 

big data environment, but only parallelizes the calculation 

process of Euclidean distance, and finally generates a large 

number of classification labels, which still requires time-

consuming statistics. Based on the Hadoop platform, this 
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article discusses using sequential MapReduce framework to 

improve the KNN algorithm for secondary continuous 

parallelization. After comparing the training process before 

and after the improvement, the correctness and advantages 

of algorithm were verified by experiments. 

 

II. RESEARCH BACKGROUND 

The principle of the KNN algorithm is that it is assumed 

that there are m known sample data are distributed in a 

Euclidean feature space, and the position and data categories 

of all sample in this space are known. Assuming that each 

sample has n feature values, now giving a new sample X, we 

need to determine the category to which the sample belongs. 

The proceed as follows: 

Calculating the Euclidean distance between the new 

sample and all known samples, the calculation formula is as 

follows: 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √∑ (𝑋𝑖
(𝑎)

− 𝑋𝑖
(𝑏)

)2𝑛
𝑖=1  () 

where 𝑋𝑖
(𝑎)

 represents the i-th feature value in the known 

sample, and 𝑋𝑖
(𝑏)

 represents the i-th feature value in the new 

sample. 

The core idea of the KNN algorithm is to assume that the 

closer the samples in the space are, the more likely it is to 

belong to one class. Therefore, after sorting the m Euclidean 

distances in ascending order, to select the first k category 

labels corresponding to the sample data and count the 

number of occurrences of each category. The category with 

the highest frequency is the unknown sample category. 

All training data and the test data must be counted again 

each classification or regression. If the amount of data is 

large, the computing power required will be amazing. In 

addition, the KNN algorithm is extremely dependent on 

training data. If there are some data are wrong in the training 

data, just right which are placed in the periphery of the data 

need to classify, which will directly lead to predict data no 

accurately. With the data dimension increasing, the time and 

space complexity of the algorithm will also become higher 

and higher. 

 

III. KNN ALGORITHM PARALLELIZATION 

A. Feasibility Analysis 

In the case of a relatively small amount of data, the 

known sample data can be regarded as a two-dimensional 

matrix, and the new sample data can be regarded as a one-

dimensional vector, the Euclidean distance can be easily 
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calculated by matrix operation by the Numpy library in 

Python, and the frequency of samples can also be counted 

quickly by using the Counter method provided in the 

collections library. 

As can be seen from the prediction process of the KNN 

algorithm, the two processes of formula (1) and counting 

categories are the core steps of the algorithm. The number of 

times to calculate the Euclidean distance is the same as the 

number of sample data. The sorting statistical process in a 

big data environment also means a high time and space 

complexity. 

It can be seen that formula (1) is a repetitive operation of 

all sample data, and the process of counting labels can also 

be regarded as the merging of small-scale data processing 

results. The two calculation processes are in line with the 

idea of dividing and conquering distributed clusters, and the 

calculation and statistical processes can be parallelized 

through the MapReduce workflow. From the analysis of the 

algorithm running process, calculation and statistics have a 

sequential relationship. Therefore, we consider defining two 

sequential MapReduce workflows and the output of the 

calculation process is used as the input of the statistical 

process, and the final calculation result is the predicted 

value of the KNN algorithm. 

B. KNN Algorithm Based on Sequential MapReduce 

MapReduce is a programming framework that can be 

used for data processing. It adopts the "divide and conquer" 

idea to distribute operations on large-scale datasets to each 

child node to complete, and then integrates the intermediate 

results of each node to obtain the final result. MapReduce 

highly abstracts the processing process into two functions, 

map and reduce. Map is responsible for decomposing the 

task into multiple subtasks, and reduce is responsible for 

summarizing the processing results of the multiple subtasks. 

In the KNN algorithm process, the calculation process is 

improved to the first MapReduce workflow, and the 

statistical process is improved to the second MapReduce 

workflow. The overall workflow is shown in Fig. 1. 
 

 
Fig. 1. Sequential MapReduce workflow. 

 

The steps of sequential MapReduce are as follows: 

1) MapReduce workflow of calculating Euclidean 

distance 

a) Split 

Store the training dataset in the HDFS file system. When 

the job starts, MapReduce will read the data file and split it 

according to the HDFS data block size, each slice will be 

processed by a Map node. 

b) Parse key-value pairs 

The minimum unit of data processing in MapReduce is 

key-value pairs. Before the data in the i-th is input into the 

map function, it will be converted into the key-value pairs of 

“<text start position, text content>” according to the default 

rule. Each row of sample data “𝑥1
(𝑖)

, 𝑥2
(𝑖)

, … , 𝑥𝑛
(𝑖)

, 𝑦(𝑖)” will be 

converted into an input key-value pair “ <

key, {𝑥1
(𝑖)

, 𝑥2
(𝑖)

, … , 𝑥𝑛
(𝑖)

, 𝑦(𝑖)} > ”. Where “𝑥𝑛
(𝑖)

” represents the 

nth eigenvalue of the i-th row, and “𝑦(𝑖) ” represents the 

label value of the i-th row, the key value only plays a role in 

the form of a key, which is specified by the system by 

default. 

c) Map 

Each slice is processed by a Map node, and every record 

in the slice is parsed, which will call a map function. First, 

the sample feature values “ 𝑥1
(𝑖)

, 𝑥2
(𝑖)

, … , 𝑥𝑛
(𝑖)

, 𝑦(𝑖) ” will be 

converted to a string array. After that, the eigenvalue array 

“x_train[ ] = [𝑥0
(𝑖)

, 𝑥1
(𝑖)

, 𝑥2
(𝑖)

, … , 𝑥𝑛
(𝑖)

]” will be extracted by the 

slicing operation, where “𝑥0
(𝑖)

” is the sample deviation value, 

which is designated as an integer 1 by default. 

Subtract the eigenvalue array “X[ ] = [𝑋0 , 𝑋1, 𝑋2, … , 𝑋𝑛]” 

and “x_train[ ]” to obtain a new array. Then calculate the 

Euclidean distance 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖)  of the current sample by 

formula (1). And then key-value pairs “< 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖), 𝑦(𝑖) >” 

will be output to intermediate results. 

When all the fragmented map processes have been 

processed, the entire Job Map process also ends. Finally, all 

output results will overflow into the HDFS local disk and be 

saved as a file. 

d) Shuffle 

All the key-value pairs output will be sorted and merged 

in the ascending order of distance in the Shuffle process, and 

then the results will be transmitted to the Reduce stage in the 

form of a key-value pair “< 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖), < 𝑦(1), 𝑦(2) … . 𝑦(𝑖) >

>” for processing.  

e) Reduce 

Traverse and output all key-value pairs “< 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖),

𝑦(𝑖) >” to a file directly. 

After the output is completed, the second Job process will 

be started immediately, and the output file will be used as 

the input of the next MapReduce process. 

2) MapReduce workflow of counting labels 

Read the first k items of data in the file.Assume that a 

record is in the form of “< key, {distance(i), y(i)} >” after 

segmentation and parsing. 

a) Map 

Adding the number 1 to the entered key is convenient for 

the Reduce process to accumulate, that is, directly output 

key-value pairs in the form of “< y(i), 1 >”. 

b) Shuffle  

After all key-value pairs are sorted and merged, they will 

be output in the form of key-value pairs “< 𝑦(𝑖), < 1,1 … 1 >

>”, and the results will be transmitted to the Reduce stage 

for processing. 

c) Reduce 

This process only needs to accumulate the records of the 

same key value, and then output to the file in the form of “<

𝑦(𝑖), 𝑐𝑜𝑢𝑛𝑡(𝑖) >”.  

Finally, read the output file and output the category with 

the largest sum value, which is the category of new sample. 

C. The Specific Implementation of the Algorithm 

The algorithm implementation consists of three parts: the 

first introduces the MapReduce workflow of calculating the 
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Euclidean distance; the second introduces the MapReduce 

workflow of counting labels; the third introduces the 

sequential MapReduce startup process. 

1) Algorithm 1: MapReduce of calculating Euclidean 

distance 
Function MapReduce-One(X[], data) 

Input: X[]←new sample feature array, data← sample 

dataset 
Output: “< 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖), 𝑦(𝑖) >” 
Begin 

a) for line in data 

b) array ← Numpy.array(line.split(“,”)) 

c) array ← data preprocessing 

d) x_train ← generate training matrix 

e) label ← y_train 

f) distance ← sqrt(Numpy.sum((x_train - X) ** 2)) 

g) output “< 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖), 𝑦(𝑖) >” 

h) shuffle, sort 

i) output “< 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖), 𝑦_𝑡𝑟𝑎𝑖𝑛(𝑖) >” 
End MapReduce-One 

2) Algorithm 2: MapReduce of counting labels 
Function MapReduce-Two(data) 

Input: data ← MapReduce-One Output 

Output:  <𝑦_𝑡𝑟𝑎𝑖𝑛(𝑖), 𝑐𝑜𝑢𝑛𝑡(𝑖)> 
Begin 

a) for line in data: 

b) output “< y_train(i), 1 >” 

c) shuffle, sort 

d) count ← 0 

e) for value in values 

f) count ← count + value 

g) output “< 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖), 𝑐𝑜𝑢𝑛𝑡(𝑖) >” 
End MapReduce-Two 

3) Algorithm 3: Call sequential  MapReduce process 
Function Train-Data(data, result, X[])  

Input: data ← sample dataset, result ← output path, X[]

← new sample feature array， 

Output：New sample label 

Begin 

a) start MapReduce-One 

b) calculates Euclidean distance and sorts 

c) output1 

d) start MapReduce-Two 

e) count labels 

f) output2 

g) read output2 

h) output new sample label 
End Train-Data 

 

IV. EXPERIMENT 

A. Environment Configuration 

The experimental server is a Lenovo Y7000P notebook, 

which is configured with 1 physical CPU (Intel(R) Core(TM) 

i7-9750H CPU @ 2.60GHz, CPU with 6 cores and 12 

threads), 16G memory, 1T solid state drive, 1 physical 

network card. The server is installed with Win10 Home 

Edition operating system, and VirtualBox software is used 

to create 3 virtual machines. Each virtual machine is 

configured with 1 core CPU, 2G memory, 20G hard disk, 

and 1 virtual network card. Each virtual machine is installed 

with Ubuntu 16.04 operating system and Hadoop 2.7.3 

distributed computing platform to form a distributed cluster 

with 1 master node and 2 slave nodes, using Anaconda3, 

Python3.6 and VSCode as development environments. 

B. Experimental Data Set 

1) Introduction 

The experimental dataset comes from the adult dataset in 

the UCI machine learning repository. The data set is a 

binary classification data set, which is mainly based on the 

census data to predict whether a person's income exceeds 

50,000 dollars each year, in order to promote some products. 

The dataset contains a total of 48,000 pieces of data, of 

which contains 32,000 pieces of training data and 16,000 

pieces of test data. The dataset contains a total of 12 feature 

attributes, including 7 numerical features and 5 text features. 

Text feature values need to be converted into corresponding 

numerical forms during the training process. The description 

of the adult dataset is shown in Table I. 

 
TABLE I: ADULT DATA SET DESCRIPTION 

Feature Type Remark 

age Numeric  

work-class Text 8 types 

education-num Numeric  

marital-status Text 7 types 

occupation Text 14 types 

relationship Text 6 types 

race Text 5 types 

sex Text 2 types 

capital-gain Numeric  

capital-loss Numeric  

hours-per-week Numeric  

native-country Text 41 types 

 

2) Data preprocessing 

The preprocessing process consists of two parts: 

converting the text type value into a numeric value type to 

participate in the calculation; normalizing the eigenvalues 

with a large slope in the data set. Since all the feature values 

of the adult dataset are the same dimension (within 100), the 

normalizing process can be omitted. 

Taking race racial characteristic values as an example, 

race includes White, Asian and Pacific Islanders, American 

Indian Eskimos, Black, and others five categories in total, 

which are stored in a constant array. In the mapper function 

for calculating the Euclidean distance, when the race value 

in a row of sample data is read, the corresponding index 

value in the returned array is used as the characteristic value 

to participate in the operation. And the preprocessing 

process of other text feature values is the same as that of 

race. 

C. Cluster Experimental Process 

1) Verify correctness of algorithm improvement 

Take 10,000 pieces of data in the training data set, and 

select 1000 pieces of data each test to train in a stand-alone 

machine or cluster environment, and then output the results 

of calculating the Euclidean distance to a file and compare 
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the data in two files. After 10 tests, the corresponding 

calculation results of all samples are the same. 

Based on the above 10,000 training datasets, take 100 

pieces of data in the test dataset to count labels results in the 

stand-alone machine and cluster environments, and then 

compared the output files. After 10 tests, the corresponding 

counting results of all samples are the same. 

Combined with the above test process, the correctness of 

the improved algorithm parallelization can be verified. 

2) Comparison of computing process between sequential 

and single MapReduce 

Sequential is the same as the MapReduce workflow of a 

single MapReduce calculation of the Euclidean distance. 

The difference is that the statistical process of the former is 

also completed through the MapReduce workflow, while the 

statistical process of the latter is completed by reading the 

output file on a single machine. 

Since the correctness of the algorithm has been verified, 

in order to test as much data as possible, all 48,000 pieces of 

data are used as training data to participate in the test. 

Starting from 6,000 pieces of data, each time adds 6,000 

pieces of data. Test separately in two environments, and 

count the running time of the two. Taking the total amount 

of training data as the abscissa, the running time ratio λ 

(times) of the sequential and single as the ordinate. The 

corresponding scatter plot is drawn as shown in Fig. 2. 

Experimental results show that the final time ratio 

stabilizes at about 1.16. Since the entire calculation process 

is mainly based on the calculation of Euclidean distance, the 

improvement in efficiency this time is not significant. In the 

case of a small training data set at the beginning of the 

experiment, the time impact of MapReduce's IO operation 

on the statistical process cannot be ignored, so the efficiency 

of a single MapReduce operation is slightly higher. With the 

expansion of the training data set, the operational 

advantages of sequential MapReduce gradually manifested. 
 

 
Fig. 2. Time ratio between sequential and single MapReduce training. 

 

V. CONCLUSION 

In order to further improve the computing efficiency of 

the KNN algorithm in a cluster environment, this paper is 

based on the Hadoop platform and proposes a sequential 

MapReduce computing framework to parallelize the KNN 

algorithm in a cluster environment. The experimental results 

show that the improved computational efficiency has a 

certain improvement compared with the previous one. In the 

actual application process, with the increase of the number 

of nodes and the improvement of cluster computing 

performance, the efficiency of the algorithm will be further 

improved. In the later research and learning process, we will 

try to combine other big data platforms and optimizing 

algorithms, and I believe it can further improve the 

algorithm's ability to process data. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

Yaoshun Li conducted the research, analyzed the data and 

wrote the paper; Lizhi Liu guided the experiment process 

and participated in the revision of the paper; all authors had 

approved the final version. 

REFERENCES 

[1] Z. Jiang, Z. Bian, and S. Wang, “Multi-view local linear KNN 

classification: Theoretical and experimental studies on image 

classification,” International Journal of Machine Learning and 

Cybernetics, vol. 11, no. 3, pp. 525–543, 2020. 

[2] A. Li, “Exploration of handwritten digit recognition based on KNN 

algorithm,” Communication World, vol. 27, no. 2, pp. 37-38, 2020. 

[3] W. Xu, K. Guan, Q. Xun, and Y. Xu, “Improved K-means algorithm 

based on KNN algorithm,” Journal of Qingdao University of Science 

and Technology (Natural Science Edition), vol. 40, no. 5, pp. 107-118, 

2019. 

[4] Z. Wang, S. Liu, and Q. Luo, “KNN classification algorithm based on 

improved K-modes clustering,” Computer Engineering and Design, 

vol. 40, no. 8, pp. 2228-2234, 2019. 

[5] D. Liu, J. Zheng, and Z. Liu, “Research on parallelization of KNN 

algorithm based on CUDA,” Small Microcomputer System, vol. 40, 

no. 6, pp. 1197-1202, 2019. 

[6] W. Zhang, T. Liu, and M. Wu, “K-value adaptive KNN algorithm 

using ring filter,” Computer Engineering and Applications, vol. 55, no. 

23, pp. 45-85, 2019. 

[7] Y. Ma, H. Zhao, and Y. Cui, “Improved KNN classification algorithm 

parallel processing based on Hadoop platform,” Journal of 

Changchun University of Technology, vol. 39, no. 5, pp. 484-489, 

2018. 

[8] Z. Li and G. Huang, “Research on SVM_KNN classification 

algorithm based on Hadoop platform,” Computer Technology and 

Development, vol. 26, no. 3, pp. 75-84, 2016. 

[9] J. Zou and F. Li, “Distributed accurate fuzzy KNN classification 

algorithm under big data,” Computer Application Research, vol. 36, 

no. 12, pp. 3701-3704, 2019. 

[10] J. Wang, S. Yan, and Y. Gao, “Parallel ML-kNN algorithm based on 

MPI,” Journal of Zhengzhou University (Science Edition), vol. 50, no. 

3, pp. 34-38, 2018. 

[11] X. B. Zou, J. Wang, and M. Zhan, “KNN-ALS model 

recommendation algorithm under Spark platform,” Journal of 

Huaqiao University (Natural Science Edition), vol. 40, no. 2, pp. 264-

268, 2019. 

[12] L. Li, Y. Zhu, and Y. Song, “Spark-KNN parallel pattern recognition 

method for leakage current data,” Journal of System Simulation, vol. 

30, no. 4, pp. 1473-1481, 2018. 

 

Copyright © 2021 by the authors. This is an open access article distributed 

under the Creative Commons Attribution License which permits 

unrestricted use, distribution, and reproduction in any medium, provided 

the original work is properly cited (CC BY 4.0). 

 

Yaoshun Li was born in Jingzhou, Hubei, China 

in May 1998. He graduated from Wuhan Institute 

of Technology with a bachelor's degree in 

computer science and engineering in 2020. Since 

2020, he has continued to complete master's 

degree in the School of Artificial Intelligence, 

School of Computer Science and Engineering, 

Wuhan Institute of Technology, mainly engaged in 

research work in the direction of deep learning. 

 

0.94

0.98

1.02

1.06

1.1

1.14

1.18

0.6 1.2 1.8 2.4 3 3.6 4.2 4.8

Data/×104pcs

λ

 

International Journal of Computer Theory and Engineering, Vol. 13, No. 2, May 2021

59

https://creativecommons.org/licenses/by/4.0/


Lizhi Liu was born in Wuhan, Hubei, China in 

February 1973. He graduated from Huazhong 

University of Science and Technology with a 

master's degree in computer application 

technology. He is currently an associate professor 

at the School of Artificial Intelligence, School of 

Computer Science and Engineering, Wuhan 

Institute of Technology. He mainly studies cloud 

computing, big data, and machine learning.  
 

 

 

International Journal of Computer Theory and Engineering, Vol. 13, No. 2, May 2021

60




