

Abstract—Service composition is an important software

development activity in the various phases of a service-oriented

system. Developers would be keen to gauge the maintainability

of the services they compose from the services available in a

system. Complexity is widely acknowledged as a predictor of

maintainability. McCabe’s cyclomatic complexity is accepted as

a reliable metric for measuring complexity. This paper explains

usefulness of a result from McCabe’s work in computing

cyclomatic complexity of composite modules or components. It

suggests improvements to an existing formal model of

service-oriented system. It then applies the McCabe’s result to

define recursively a cyclomatic complexity generalization for a

composite service.

Index Terms—Composite service, cyclomatic complexity,

metric, service-oriented architecture.

I. INTRODUCTION

A Service-oriented system, SOA-based system or SOA

solution is a distributed software system that is based on the

architectural style service-oriented architecture (SOA),

where systems consist of service users and service providers

[1], [2]. The computing paradigm that utilizes SOA as the

architectural style for developing service-oriented software is

called service-oriented computing (SOC) [3]. An SOA

ecosystem is an environment encompassing one or more

social structure(s) and SOA-based system(s) that interact

together to enable effective business solutions. A social

structure is defined as a nexus of relationships amongst

people brought together for a specific purpose.

SOA can be understood in terms of two basic concepts:

layers and binding. Fig. 1 shows the SOA layers or the SOA

stack [3]-[6]. In static binding (Fig. 2) the service requesters

are bound to provided services at design time, whereas in the

case of dynamic, run-time scenario (Fig. 3), service

requesters dynamically discover, select the requisite services

from a registry, and bind thereof to selected services.

Service composition is an important software development

activity in the various phases of a service-oriented system [7].

Developers would be keen to gauge the maintainability of the

services they compose from the services available in a system

[8], [9]. Complexity can be seen as degree of difficulty in

understanding the structure of design artifacts; or the amount

of the internal work performed by a design artifact [10]-[12].

Complexity is an important structural or design characteristic

besides size, coupling and cohesion. Structural properties

Manuscript received December 7, 2020; revised February 28, 2021.

R. P. Singh is with I. K. G. Punjab Technical University and CSE,

GIMET, Amritsar, India (e-mail: rupi.pal@gmail.com).

H. Singh is with Dept. of CS, Guru Nanak Dev University, Amritsar,

India (e-mail: hardeep.dcse@gndu.ac.in).

represent internal quality and they are correlated to external

quality characteristics such as maintainability, reliability, and

performance. It has been widely accepted that high quality

software should exhibit low complexity [13]-[17]. McCabe’s

cyclomatic complexity (MCC) is widely accepted as a

reliable design metric for measuring complexity [18], [19].

This paper explains usefulness of a result from McCabe’s

work in computing cyclomatic complexity of composite

modules or components. It suggests improvements to an

existing formal model of service-oriented. It then applies

McCabe’s result to define recursively a cyclomatic

complexity generalization for a composite service.

The remaining paper is structured as follows. Section II

discusses an important formal model for service-oriented

system and the MCC metric in brief. Section III covers

related work. Section IV suggests improvements to an

existing SOS formal model. Section V presents our recursive

metric for composite service. Section VI presents a brief

discussion and Section VII concludes and discusses future

research possibilities.

II. FORMAL MODELS AND METRICS

A. The Perepletchikov-Ryan-Frampton-Schmidt Model

We present here briefly the elements of the

Perepletchikov-Ryan-Frampton-Schmidt model [16],

[20]-[22]. There are many other models, metrics and

measurement work [5], [13], [23]-[29]. In the general case, a

service-oriented system, SOS, is formally defined as: 𝑆𝑂𝑆 =
 < 𝑆𝐼, 𝐵𝑃𝑆, 𝐶, 𝐼, 𝑃, 𝐻, 𝑅 >, where SI is the set of all service

interfaces in the system; BPS is the set of all business process

scripts; C is the set of all object-oriented (OO) classes; I is

the set of all OO interfaces; P is the set of all procedural

packages; and H is the set of all package headers. Generically,

the elements of these sets are called service implementation

elements, each denoted as e.

Given a system, SYS, a service s can be defined as: 𝑠 = <
𝑠𝑖𝑠, 𝐵𝑃𝑆𝑠, 𝐶𝑠, 𝐼𝑠, 𝑃𝑠, 𝐻𝑠, 𝑅𝑠 > is a service of SYS if and only

if 𝑠𝑖𝑠 ∈ 𝑆𝐼 ∧ {(𝐵𝑃𝑆𝑠 ⊆ 𝐵𝑃𝑆 ∧ 𝐶𝑠 ⊆ 𝐶 ∧ 𝐼𝑠 ⊆ 𝐼 ∧ 𝑃𝑠 ⊆ 𝑃 ∧
 𝐻𝑠 ⊆ 𝐻) ∧ (𝐵𝑃𝑆𝑠 ∪ 𝐶𝑠 ∪ 𝐼𝑠 ∪ 𝑃𝑠 ∪ 𝐻𝑠 <> 𝑠) ∧ 𝑅𝑠 ⊆ 𝑅} .
The <> symbol represents service membership. A service

boundary is logical rather than physical. The model proposes

that we need to examine the possible call paths in response to

invocations of service operations via the service interface in

order to determine whether an element is a member of a

service.sis is a singleton set since a service s will have just one

service interface sis. R is the set of overall static coupling

relationships (design-time and inter-modular) of SYS, i.e.,

𝑅 ⊆ 𝑅𝑝 ⊆ 𝐸 × 𝐸 , where E is the set of all service

implementation elements e’s, i.e., 𝐸 = 𝑆𝐼 ∪ 𝐵𝑃𝑆 ∪ 𝐶 ∪ 𝐼 ∪

A Cyclomatic Complexity Generalization for a Composite

Service

Rupinder Pal Singh and Hardeep Singh

International Journal of Computer Theory and Engineering, Vol. 13, No. 2, May 2021

47DOI: 10.7763/IJCTE.2021.V13.1289

𝑃 ∪ 𝐻. Rp is the set of all common and possible relationships

on 𝐸 × 𝐸. The static coupling relationships of service s, Rs,

can be categorized as:

Interface to implementation relationships, 𝐼𝐼𝑅(𝑠) =

{(𝑠𝑖, 𝑒): 𝑠𝑖 = 𝑠𝑖𝑠 ∧ 𝑒 ∈ (𝐵𝑃𝑆𝑠 ∪ 𝐶𝑠 ∪ 𝑃𝑠)} (1)

Internal service relationships, 𝐼𝑆𝑅(𝑠) = {(𝑒1, 𝑒2): 𝑒1, 𝑒2 ∈

(𝐵𝑃𝑆𝑠 ∪ 𝐶𝑠 ∪ 𝐼𝑠 ∪ 𝑃𝑠 ∪ 𝐻𝑠)} (2)

Incoming relationships, 𝐼𝑅(𝑠) = {(𝑒1, 𝑒2): 𝑒1 ∈

(𝐵𝑃𝑆 − 𝐵𝑃𝑆𝑠 ∪ 𝐶 − 𝐶𝑠 ∪ 𝐼 − 𝐼𝑠 ∪ 𝑃 − 𝑃𝑠 ∪ 𝐻 − 𝐻𝑠) ∧ 𝑒2 ∈

(𝐵𝑃𝑆𝑠 ∪ 𝐶𝑠 ∪ 𝐼𝑠 ∪ 𝑃𝑠 ∪ 𝐻𝑠)} (3)

Outgoing relationships, 𝑂𝑅(𝑠) = {(𝑒1, 𝑒2): 𝑒1 ∈

(𝐵𝑃𝑆𝑠 ∪ 𝐶𝑠 ∪ 𝐼𝑠 ∪ 𝑃𝑠 ∪ 𝐻𝑠) ∧ 𝑒2 ∈ (𝐵𝑃𝑆 − 𝐵𝑃𝑆𝑠 ∪

𝐶 − 𝐶𝑠 ∪ 𝐼 − 𝐼𝑠 ∪ 𝑃 − 𝑃𝑠 ∪ 𝐻 − 𝐻𝑠)} (4)

Service incoming relationships, 𝑆𝐼𝑅(𝑠) = {(𝑒, 𝑠𝑖): 𝑒 ∈

(𝐵𝑃𝑆 − 𝐵𝑃𝑆𝑠 ∪ 𝐶 − 𝐶𝑠 ∪ 𝑃 − 𝑃𝑠) ∧ 𝑠𝑖 = 𝑠𝑖𝑠} (5)

Service outgoing relationships, 𝑆𝑂𝑅(𝑠) = {(𝑒, 𝑠𝑖): 𝑒 ∈

(𝐵𝑃𝑆𝑠 ∪ 𝐶𝑠 ∪ 𝑃𝑠) ∧ 𝑠𝑖 ≠ 𝑠𝑖𝑠} (6)

𝑅𝑠 = 𝐼𝐼𝑅(𝑠) ∪ 𝐼𝑆𝑅(𝑠) ∪ 𝐼𝑅(𝑠) ∪ 𝑂𝑅(𝑠) ∪ 𝑆𝐼𝑅(𝑠) ∪

𝑆𝑂𝑅(𝑠) (7)

Fig. 1. SOA layers.

Fig. 2. Static binding.

Fig. 3. Dynamic binding.

B. McCabe’s Cyclomatic Complexity

MCC can be briefly explained as follows [15]. Control

flow graph is a directed graph with unique entry and exit

points. Each node in the graph corresponds to a block of code

in the program where the flow is sequential, and the edges

correspond to the branches taken in the program. It is

assumed that each node can be reached by the entry node and

each node can reach the exit node. The cyclomatic

complexity of a control flow graph (CFG), whether

structured or unstructured, with p connected components is

𝐶 = 𝑒 − 𝑛 + 2𝑝 (8)

For a CFG with single connected component,

𝐶 = 𝑒 − 𝑛 + 2 (9)

Alternatively, if there are π simple predicates (a decision

node with either of two outcomes or a condition), the

cyclomatic complexity of the CFG, whether structured or

unstructured, is

International Journal of Computer Theory and Engineering, Vol. 13, No. 2, May 2021

48

𝐶 = 𝜋 + 1 (10)

III. RELATED WORK

MCC has had many applications, having been adapted to

parallel programs [19], concurrent module network model

[14] and embedded software [30]. Vasconcelos et al. [31]

have adapted MCC to derive a complexity metric for what

they call ISA (Information System Architecture). The work

by Perepletchikov et al. treats complexity for

service-oriented systems as an amalgamation of cohesion and

coupling [16]. Cardoso’s work for business process workflows

borrows some ideas from McCabe’s cyclomatic complexity

[32], [33]. However, Cardoso’s work seems to apply to

generic business processes, not to those related to service

compositions like BPEL workflows. Mao [26] describes

MCC for composite services specified using Petri-Nets.

Gruhn and Laue [13] discuss, besides Cardoso’s work, issues

involved in defining MCC for a business process workflow in

the classic fashion (edges-nodes+2). They do mention that

nested structures (e.g., modules/composing-services) should

contribute to greater overall complexity. However, none of

Cardoso, Mao and Gruhn-Laue recursively take into account

the underlying modules and components. McCabe does

suggest a method to calculate the complexity of a collection

of programs, particularly a hierarchical nest of subroutines

[15]. It is this method that we employ to define a recursive

definition of cyclomatic complexity for a composite service.

Hall and Preiser [14] argue that MCC as adapted to

network of modules should take into account complexities of

individual modules at nodes. Hall and Preiser do suggest a

metric similar to ours but they do not refer to the McCabe’s

result (MR, as discussed in the Section V) and as a result do

not suggest an exact cyclomatic complexity metric for

network of modules. We do not find any report on recursive

generalization of cyclomatic complexity for a composite

service. Though our previous work [34] did propose a

cyclomatic complexity metric for a service that reflects a few

ideas we present here, it does not directly treat composite

service and presents no derivation as we do here. In particular,

the work suggests that cyclomatic complexity of a service

should be sum of cyclomatic complexities of all its operations,

treating the whole service as a graph of control flow graphs of

operations as disconnected components. Our present work

fulfills the needs explained here.

IV. FORMAL MODEL IMPROVEMENTS

Our metric is applicable to service compositions created

using standard programming frameworks (e.g., Java Web

Services). A typical scenario is shown in Fig. 4 [35]. Hansen

[35] calls such applications “enterprise-quality SOA

applications.” A typical service implementation element of

the composition is shown in the Listing 1. Such compositions

can be modeled as CFGs since control flow analysis (CFA) is

suitable for analyzing structured and object-oriented

programs [36]. However, it is even possible to apply, in a

restricted manner, as explained in the Section VI, the metric

to business process compositions obtained using service

composition engines like BPEL.

1. public abstract class ShopperImp {

2.

3. public static ShopperImpnewShopperImp(Store src) {

4. if (src == null) {

5. throw new IllegalArgumentException("src may not be

null.");

6. }

7. switch (src) {

8. case YAHOO:

9. return

newYahooShopperImp(ShopperCredentials.getYahooA

ppID());

10. case EBAY:

11. return new

EBayShopperImp(EBayShopperImp.EBAY_PRODUC

TION_SERVER,

12. EBayShopperImp.SITE_ID_US,

ShopperCredentials.getEBayAppID());

13. case AMAZON:

14. return new

AmazonShopperImp(ShopperCredentials.getAmazonA

ccessKeyID());

15. default:

16. throw new RuntimeException("Unknown source: " +

src.getName());

17. }

18. }

Listing 1. The ShopperImp.newShopperImp() Factory

Method

A composite service itself is a recursive composition of

composing services (atomic, composite or both), components

and standard programming nodes. Any metric for a

composite service would need to take that into account. The

complexity metric that we intend to generalize for a

composite service, MCC, is essentially CFG-based. We

needed an SOS model that is graph-based, structure- and

behavior-based in terms of implementation elements and thus

would allow us to delineate CFGs of implementation

elements in a bottom-up manner. We found the

Perepletchikov-Ryan-Frampton-Schmidt model (sub-section

II.A) a suitable choice. However, some issues that we

identify in relation to the model are:

a) The logical boundary of a service is not clearly defined.

Given the graph union of sets CSes, where a CS itself is a

graph union of all invocation/call sequences (each

denoted as cs) possible for a service operation across

elements (or modules, e’s), the model defines the set of

elements across this graph union to be the logical

boundary of the service. Symbolically, this set is BPSs

Cs Is Ps Hs. The model restricts the elements of this

set to “reachable” elements, excluding called/invoked

elements participating in OR(s). The model excludes

them for atomic services (SOR(s) OR(s) = Φ) but

includes them for composite services (SOR(s)OR(s)

≠Φ). This is inconsistent. It appears that the model has

not clearly distinguished among the concepts of abstract

International Journal of Computer Theory and Engineering, Vol. 13, No. 2, May 2021

49

sequential control flow (as represented by a CFG) of an

executable artifact, invocations/calls the artifact would

make as function calls (e.g., recursive, static method

calls etc.), invocations/calls on injected dependencies

(also an e) like dynamic web components, the nested

calls those calls might make in turn (again, on

called/invoked elements participating in the respective

OR(e)’s of those elements, whether functions or injected

dependencies) and calls to composing-service

operations.

b) An atomic service is not clearly defined. The definition

given is: A service s with SOR(s) OR(s) = Φ is called

an atomic service. It misses requiring that the set BPSs be

a null set. BPSes are, as also assumed in this model,

executable composite services. As another gap, consider

a CDI-style bean that is defined as a JAX-RS root

resource class as in the Listing 2 would be exposed as an

atomic service. The element e1, the root resource class,

shows dependency on another element e2, a

container-managed component, MyOtherCdiBean. The

element e2 is a reusable component and could be

injected anywhere else as well in the global namespace

of the web server. This dependency is clearly an

outgoing relationship and thus an element of OR(s).

c) The standard definition of an atomic service, as follows,

does not necessarily require OR(s) to be a null set: An

atomic service is a well-defined, self-contained function

that does not depend on the context or state of other

services [37], [38]. Defining atomic services clearly

would make the model more in line with the widely

accepted layering shown in Fig. 1 and the ISO/IEC

18384-1-3 standard [1]; it is clear atomic services are

basic blocks whereas composite services can appear in

the higher business process layer of an SOS as well. The

definition of SIR(s) does not include static incoming

relationships from composite services other than BPS.

For example, the kind of composite service we

introduced in the beginning of this section (Fig. 4) is not

a bps.

d) A composite service or an atomic service itself has not

been included as an element of either a system SOS or a

service s. If services are allowed to be composed from

atomic and other composite services, those composing

services themselves become elements of the SOS. The

ISO/IEC 18384-1-3 standard [1] specifies that any

service, whether atomic or composite, would itself be an

element of SOS.

The above points analyzed together lead us to conclude:

i. The logical boundary of any public service operation

should be the union of the CFG of its main thread of

execution and CFGs of all its explicit child threads (if

any). Each such CFG constitutes a separate connected

component. Function- and injected-dependency calls

(synchronous, asynchronous, global, static method calls,

recursive or any valid combination thereof) and

composing-service calls will each be represented as a

node in the CFGs and thus be part of the logical

boundary. The executions of such calls are not part of the

logical boundary. All possible executions of a call

constitute separate CFG. This concept is explained later

in the Section V using McCabe’s result. The logical

boundary of a service should be the graph union of all

such logical boundaries of its operations. If there is a call

c1 to an operation o1 of an element e and another call c2

to a different operation o2 of e, each such call is a node.

If there is another call c3 to the same operation o1 of the

same element e, it will also be a separate node.

ii. An SOS should be defined as SOS =<SI, C, I, P, H, A,

CPS, R>, where A denotes all atomic services and CPS

denotes all composite services in the system. CPS will

include composite services created on top of service

composition engines as also those created on top of

application programming frameworks.

We can now define a service recursively as follows.

Given a service-oriented system, SYS, a service s can be

defined as:

a) 𝑠 = < 𝑠𝑖𝑠 , 𝐶𝑠 , 𝐼𝑠, 𝑃𝑠, 𝐻𝑠, 𝑓𝑠, 𝑅𝑠 > is a service of SYS if

and only if 𝑠𝑖𝑠 ∈ 𝑆𝐼 ∧ {(𝐶𝑠 ⊆ 𝐶 ∧ 𝐼𝑠 ⊆ 𝐼 ∧ 𝑃𝑠 ⊆ 𝑃 ∧
 𝐻𝑠 ⊆ 𝐻) ∧ (𝐶𝑠 ∪ 𝐼𝑠 ∪ 𝑃𝑠 ∪ 𝐻𝑠) = 𝐷(𝑓𝑠) ∧ (𝑅𝑠 ⊆
𝑅)} .

1. @Path("/cdibean")

2. public class CdiBeanResource {

3. @Inject MyOtherCdiBean bean; // CDI injected bean

4. @GET

5. @Produces("text/plain")

6. public String getIt() {

7. return bean.getIt(); }

8. }

Listing 2. A JAX-RS root resource class.

fs is the logical boundary of the service s. Only elements

that are either inlined (such as header files in C++) to the

logical boundary of a service or used (such as OO interfaces)

by elements that are in the logical boundary and not reused

anywhere else except within a service can be said to

exclusively belong to the service. These elements are

extracted by D() as the set D(fs). Such a service is called an

atomic service.

b) 𝑠 = < 𝑠𝑖𝑠 , 𝐶𝑠 , 𝐼𝑠, 𝑃𝑠, 𝐻𝑠, 𝐴𝑠, 𝐶𝑃𝑆𝑠, 𝑓𝑠, 𝑅𝑠 > is also a

service of SYS if and only if 𝑠𝑖𝑠 ∈ 𝑆𝐼 ∧ {(𝐶𝑠 ⊆ 𝐶 ∧ 𝐼𝑠 ⊆
𝐼 ∧ 𝑃𝑠 ⊆ 𝑃 ∧ 𝐻𝑠 ⊆ 𝐻 ∧ 𝐴𝑠 ⊆ 𝐴 ∧ 𝐶𝑃𝑆𝑠 ⊆ 𝐶𝑃𝑆) ∧
(𝐶𝑠 ∪ 𝐼𝑠 ∪ 𝑃𝑠 ∪ 𝐻𝑠) = 𝐷(𝑓𝑠) ∧ (𝑅𝑠 ⊆ 𝑅)} . Such a

service is called a composite service.

𝑅 ⊆ 𝐸 × 𝐸 where E is the set of all service

implementation elements e’s, i.e., 𝐸 = 𝑆𝐼 ∪ 𝐶 ∪ 𝐼 ∪ 𝑃 ∪
𝐻 ∪ 𝐴 ∪ 𝐶𝑃𝑆 . R is the set of all common and possible

relationships of an SOS.

International Journal of Computer Theory and Engineering, Vol. 13, No. 2, May 2021

50

Fig. 4. SOAShopper architecture, an example of composition using standard programming frameworks.

V. CYCLOMATIC COMPLEXITY FOR A COMPOSITE SERVICE

McCabe [15] argues that tracking the MCC of a program

under development and keeping it low should help in

modularization of the program and thus keep it testable and

maintainable. More specifically, he explains that every

structured program can be reduced to the CFG shown in the

Fig. 5 by successively replacing its every control flow

subgraph (that is, a subgraph with unique entry and exit nodes)

with a single node. The CFG in the Fig. 5 has essential

complexity (ec) of 1. Likewise, every unstructured CFG with

m control subgraphs has essential complexity,

𝑒𝑐 = 𝐶 − 𝑚 (11)

where C is its MCC.

If all its control subgraphs are successively removed,

replacing each with a single node, we get a fully unstructured

CFG with essential complexity equal to its MCC.

𝑒𝑐 = 𝐶 − 0 = 𝐶 (12)

Fig. 5. The CFG with unit essential complexity.

The essential complexity of a graph indicates the extent to

which it can be reduced. Each removed control graph can be

implemented as a separate module. In other words, whether it

is a structured or unstructured graph, the process of

modularization involves reducing its MCC to a suitable

complexity. One might still be interested in computing the

complexity of the overall program (main program and its

modules). The process of composition is a related but slightly

different process. One starts with a main program of suitable

complexity and as more and more nodes are implemented as

interface invocations/calls to reusable modules or

components, either available off-the-shelf or developed from

scratch, the complexity of the overall program (main program

and its modules) might need to be tracked too. Significantly,

to compute the cyclomatic complexity of the overall program,

McCabe presents a result [15]. He provides justification

using an example as reproduced in Fig. 6. Suppose there is a

main routine M that calls subroutines A and B. All three

routines taken together are treated as one collection

consisting of three connected components.

Fig. 6. McCabe’s example.

International Journal of Computer Theory and Engineering, Vol. 13, No. 2, May 2021

51

The main routine maintains the abstract sequential control

in the manner imposed by these CFGs. It does not transfer

this control to any of the sub-routines. The main routine

suspends (blocks) its abstract sequential control by storing

the current program counter (PC) on a call stack. In other

words, the main routine only transfers the machine control to

a subroutine, which then starts its complete sequential flow

till the end and then transfers back the machine control to the

main routine. The main routine resumes its abstract

sequential flow at the PC it blocked by retrieving it from the

stack. If it is an asynchronous call, the main routine does not

even suspend; the call is executed on a separate thread. This

scenario applies to the situations where an operation of a

service implementation element e or a composite service

calls operations on some other composing components or

services. Applying the formula (Eq. 8) for connected

components to the example in Fig. 6 with p=3, the

complexity C is,

𝐶 = 𝑒 − 𝑛 + 2𝑝 = 13 − 13 + 23 = 6 (13)

Also,

𝐶 = 𝐶(𝑀) + 𝐶(𝐴) + 𝐶(𝐵) = 2 + 2 + 2 = 6 (14)

McCabe’s Result (MR): In general, the complexity of a

collection of k control graphs is equal to the summation of

their individual complexities,

𝐶(𝐺) = 𝑒 − 𝑛 + 2𝑝 = ∑ 𝑒𝑖
𝑘
1 − ∑ 𝑛𝑖

𝑘
1 + 2𝑘 = ∑ (𝑒𝑖

𝑘
𝑖 +

 𝑛𝑖 + 2) = ∑ 𝐶𝑖
𝑘
𝑖 (15)

McCabe clarifies that the above result can be used to

calculate the complexity of a collection of programs,

particularly, such as a hierarchical nest of subroutines. For

example, to compute the overall complexity of an operation

of a composite service or component, that, in turn, calls some

operations on other services or components, the cyclomatic

complexities of CFGs of individual invoked operations of

composing services or components are simply added to the

cyclomatic complexity of the operation. In general,

McCabe’s result is applicable to a graph consisting of

separate connected components.

We now recursively define a cyclomatic complexity

generalization for composite services. For any thread of

execution, for example, a thread of execution of a

function-call or an injected dependency call, given that the

nodes in its CFG are standard programming nodes, its

cyclomatic complexity Cp is

𝐶𝑝 = 𝑒𝑑𝑔𝑒𝑠 − 𝑛𝑜𝑑𝑒𝑠 + 2 (16)

The CFG constitutes the logical boundary (as explained in

the Section IV) of the thread of execution, p.

Next, we describe computation of the cyclomatic

complexity of a multi-thread concurrency program cp.

Developers might use such a concurrency in writing service

implementation elements. We assume that developers use

only standard programming nodes in writing these threads.

The CFGs of the main thread and its explicit child threads are

separate connected components. Applying MR,

𝐶𝑐𝑝 = 𝐶𝑚𝑡 + ∑ 𝐶𝑐𝑡𝑙𝑙 (17)

where CP is the complexity of the complete program cp, Cmt

is complexity of the main thread and Cctl is complexity of lth

child thread. Cmt and Cctl can be computed using the Eq. 16.

The union of the CFGs of the main thread and the explicit

child threads constitute the logical boundary of the program

cp.

Next, let us treat a recursive function. We assume that the

function is written using standard programming nodes only.

For a recursive function, the cyclomatic complexity will just

be the complexity of the CFG of the function. All nested

recursive calls will be made to the same function.

𝐶𝑟 = 𝐶𝑐𝑓 (18)

Ccf can be computed using the Eq. 16. The CFG constitutes

the logical boundary of the recursive function, r.

Consider a generic software artifact encapsulating some

functionality that is available via call/invocation: e.g., an

operation of a service (e.g. an operation of a service endpoint

class), an operation of an element e etc. Denote it as o.

Suppose o, in turn, makes a number of dependency calls to

other similar software artifacts. One or more calls to the

same artifact will be treated as one outgoing static coupling.

Each such coupling will be an element of OR(o). Any other

elements called by calls nested further are also similar

software artifacts. Denote pth operation called by a

dependency call as dop. The cyclomatic complexity of the

software artifact o is, applying MR,

𝐶𝑜 = 𝐶𝑜𝑓 + ∑ 𝐶𝑑𝑜𝑝𝑝 (19)

where Cof is the complexity(computed using any combination

applicable from the Eqs. 16-18) of the logical boundary of the

operation o and Cdop is the complexity of the pth dependency

operation dop called from the logical boundary of o.

Consider a service implementation element e such that e is

in C P. The cyclomatic complexity of any of its public

operations can be defined as follows. (Service interfaces SI

and OO interfaces I do not have any control flow complexity;

and package headers H do not have any stand-alone control

flow complexity since they are supposed to contain only

inline functions and a compiler will compile a package

header along with some procedural package or class). For

every operation eo of an implementation element e, there will

be a logical boundary across standard programming nodes

(e.g., if else) and dependency calls to i operations deo of

some other similar elements e (e Є C P and any other

elements called by calls nested further are also e Є C P).

Each dependency call (e.g., a function-call,

injected-dependency call etc.) to an e’s operation is treated as

a node in the logical boundary. (The executions of such calls

constitute separate logical boundaries.) One or more calls to

the same operation will be treated as one outgoing static

coupling. Each such coupling will be an element of

OR(eo).The complexity of the logical boundary (we use f to

denote it) can be calculated using any combination applicable

from the Eqs. 16-18 as Ceof. Let the complexity of an

operation of a dependency that is called be denoted with Cdeo.

The total complexity of eo will be, applying Eq. 19,

𝐶𝑒𝑜 = 𝐶𝑒𝑜𝑓 + ∑ 𝐶𝑑𝑒𝑜𝑖𝑖 (20)

Consider an atomic service as. For each operation aso in

the atomic service as, there will be a logical boundary across

International Journal of Computer Theory and Engineering, Vol. 13, No. 2, May 2021

52

standard programming nodes (e.g. if else) and nested calls to

operations deo’s of some other elements e. Each nested call

(e.g., a function-call or injected-dependency call) to any other

e’s operation is treated as a node. (As clarified earlier in this

section, the executions of such calls constitute separate

logical boundaries.) One or more calls to the same operation

will be treated as one outgoing static coupling. Each such

coupling will be an element of OR (aso). The complexity of

the logical boundary is computed using any combination

applicable from the Eqs. 16-18. Let this be denoted Casof.

Then, applying Eq. 19, the total complexity of each operation

is computed as

𝐶𝑎𝑠𝑜 = 𝐶𝑎𝑠𝑜𝑓 + ∑ 𝐶𝑑𝑒𝑜𝑞𝑞 (21)

where deoq (using Eq. 20)is the complexity of the qth

element-operation called from the logical boundary of as.

For the atomic service as, each of the logical boundaries of

its various operations form separate connected components.

Applying MR,

𝐶𝑎𝑠 = ∑ 𝐶𝑎𝑠𝑜𝑗𝑗 (22)

As we mentioned in the Section III, our previous work [34]

reports this metric.

Consider a composite service cps. For each operation cpso

of the service, there will be a logical boundary across

composing-service operation calls (each treated as a node),

dependency calls to operations deo’s on some e’s (e is not a

service but can make nested calls to services) and standard

programming nodes (e.g. if else). Each call to an e’s

operation is treated as a node. (The executions of such calls

constitute separate logical boundaries.) One or more calls to

the same operation will be treated as one outgoing static

coupling. Each such coupling will be an element of OR (cps).

The cyclomatic complexity of the logical boundary is

computed using any combination applicable from the Eqs.

16-18 as Ccpsof.. Let the complexity of a kth operation invoked

on a composing service (it can be either atomic or composite)

be denoted by Ccosok. Let the complexity a uth operation

invoked via a dependency call be Cdeo (using Eq. 19).
Applying Eq. 19, the total complexity of the composite

service operation cpso is

𝐶𝑐𝑝𝑠𝑜 = 𝐶𝑐𝑝𝑠𝑜𝑓 + ∑ 𝐶𝑐𝑜𝑠𝑜𝑘𝑘 + ∑ 𝐶𝑑𝑒𝑜𝑢𝑢 (23)

For the composite service cps, each of the logical

boundaries of its various operations form separate connected

components. Applying MR,

𝐶𝑐𝑝𝑠 = ∑ 𝐶𝑐𝑝𝑠𝑜𝑣𝑣 (24)

Ccpsov is the complexity of vth operation. Ccps denotes the

cyclomatic complexity of the composite service cps.

VI. DISCUSSION

It is even possible to apply, in a restricted manner, the

metric to business process compositions as achieved using

BPEL [39], [40] provided there are no concurrent/parallel

elements (like <flow>, parallel <for-each>), synchronizing

dependencies (defined by <link> node) and external one-way

events (the <invoke> activity should not allow a business

process to invoke a one-way call on a port Type offered by a

partner and there should be no <onAlarm> events). A <scope>

node should be treated as a single node in the logical

boundary of the composition.

With these assumptions, the business process flow graph is

the same as the logical boundary of the business process.

Consider a business process graph for a composite service

with a single operation as an example as in Fig. 7 [17].

Applying Eq. 23,

𝐶𝑐𝑝𝑠𝑜 = 𝐶𝑐𝑝𝑠𝑜𝑓 + ∑ 𝐶𝑐𝑜𝑠𝑜𝑘𝑘 (25)

Using Eq. 16, the cyclomatic complexity for the logical

boundary is 2. There are six nodes and six edges. So,

𝐶𝑐𝑝𝑠𝑜𝑓 = 6 − 6 + 2 = 2 (26)

Assume every operation corresponding to a

service-operation invocation, coso, has complexity 2.

𝐶𝑐𝑝𝑠𝑜 = 2 + 2 + 2 + 2 = 8 (27)

Fig. 7. BPEL workflow.

VII. CONCLUSION

This paper identifies and explains an exact cyclomatic

complexity metric for composite components. Further, it

presents a recursive definition of cyclomatic complexity

metric for a composite service. Complexity is an important

design predictor of maintainability and a comprehensive

complexity metric as cyclomatic complexity will help

developers in gauging the maintainability of composite

services they compose.

Moreover, the method can be generally applied to any

composite component or module. The paper also

International Journal of Computer Theory and Engineering, Vol. 13, No. 2, May 2021

53

demonstrates initial work toward making fundamental

improvements to a prominent model. In our future work, we

intend to take forward these improvements, develop a

comprehensive model and suggest more metrics.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

R.P. Singh reformulated the model and worked out the

metric. H. Singh guided the entire work and wrote the final

version of the paper. Both authors had approved the final

version.

REFERENCES

[1] ISO/IEC, Information technology--Reference Architecture for Service

Oriented Architecture (SOA RA), ISO/IEC 18384-1, 3 & 3. First

edition 2016-06-01.

[2] OASIS. Reference Architecture Foundation for Service Oriented

Architecture Version 1.0, 04 December 2012. OASIS Standard.

[Online]. Available:

http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.h

tml

[3] B. Portier. (2007). SOA Terminology overview, Part1: Service,

architecture, governance, and business terms. [Online]. Available:

http://www.ibm.com/developerworks/webservices/library/ws-soa-ter

m1/?S_TACT=105AGX04&s

[4] C. Emig et al. The SOA’s Layers. [Online]. Available:

http://www.cm-tm.uka.de/CM-Web/07.Publikationen/%5BEL+06%5

D_The_SOAs_Layers.pdf

[5] D. Rud, A. Schmietendorf, and R. Dumke, “Resource metrics for

service-oriented infrastructures,” in Proc. SEMSOA 2007, 2007, pp.

90-98.

[6] D. Russell and J. Xu, “Service oriented architecture in the provision of

military capability,” in Proc. UK e-Science All Hands Meeting, 2007.

[7] Q. Z. Sheng et al., “Web services composition: A decade’s overview,”

Information Sciences, vol. 280, pp. 218–238, 2014.

[8] D. Ameller, “A survey on quality attributes in service-based systems,”

Software Qual. J., vol. 24, pp. 271–299, 2016.

[9] J. Bogner et al., “Exploring maintainability assurance research for

service- and microservice-based systems: Directions and differences,”

in Joint Post- Proc. of the First and Second International Conference

on Microservices.

[10] J. Bogner et al., “On the impact of service-oriented patterns on

software evolvability: A controlled experiment and metric-based

analysis,” Peer J. Computer Science, vol. 5, p. 213, 2019.

[11] M. Perepletchikov, C. Ryan, and K. Frampton, “Cohesion metrics for

predicting maintainability of service-oriented software,” in Proc. 7th

International Conference on Quality Software, 2007.

[12] S. Rangarajan et al., “Web service QoS prediction using improved

software source code metrics,” PloS one, vol. 15, no. 1, p. e0226867,

2020.

[13] V. Gruhn and R. Laue. Complexity metrics for business process

models. [Online]. Available:

http://ebus.informatik.uni-leipzig.de/~laue/papers/metriken.pdf

[14] N. R. Hall and S. Preiser, “Combined network complexity measures,”

IBM. J. R. D., vol. 28, no. 1, Jan. 1984.

[15] T. J. McCabe, “A complexity measure,” IEEE Transactions on

Software Engineering, vol. 2, no. 4, 1976.

[16] M. Perepletchikov, “Software design metrics for predicting

maintainabaility of service-oriented software,” Ph.D. thesis, RMIT

Univ., Melbourne, Feb. 2009.

[17] S. VanderWiel, D. Nathanson, and D. J. Lilja, “Performance and

program complexity in contemporary network-based parallel

computing systems,” Technical Report No. HPPC-96-02, March 1996,

University of Minnesota.

[18] G. Polančič and B. Cegnar, “Complexity metrics for process models –

A systematic literature review,” Computer Standards & Interfaces, vol.

12, p. 3, 2016.

[19] S. VanderWiel, D. Nathanson, and D. J. Lilja, “Performance and

program complexity in contemporary network-based parallel

computing systems,” Technical Report No. HPPC-96-02, March 1996,

University of Minnesota.

[20] M. Perepletchikov, C. Ryan, and K. Frampton, “Cohesion metrics for

predicting maintainability of service-oriented software,” in Proc. 7th

International Conference on Quality Software, 2007.

[21] M. Perepletchikov, C. Ryan, and K. Frampton, “Coupling metrics for

predicting maintainability in service-oriented designs,” in Proc. 18th

International Conference on Software Engineering, 2007.

[22] M. Perepletchikov, C. Ryan, K. Frampton, and H. Schmidt,

“Formalising service-oriented design,” Journal of Software, vol. 3, no.

2, Feb. 2008.

[23] B. Gonen et al., “Maintaining SOA systems of the future: How can

ontological modeling help,” in Proc. the International Conference on

Knowledge Engineering and Ontology Development, 2014, pp.

376-381.

[24] A. Korostelev et al., “Error detection in service-oriented distributed

systems,” in Proc. IEEE Int. Conf. on DSN 2006, 2006, vol. 2, pp.

278-282.

[25] Y. Liu and I. Traore, “Complexity measures for secure service-oriented

software architectures,” in Proc. the 3rd IEEE International PROMISE

Workshop, 2007.

[26] C. Mao, “Control flow complexity metrics for petri net based web

service composition,” Journal of Software, vol. 5, no. 11, November

2010.

[27] D. Rud, A. Schmietendorf, and R. Dumke, “Product metrics for

service-oriented infrastructures,” in Proc. 16th International Workshop

on Software Measurement/DASMA Metrik Kongress 2006,2006.

[28] T. Xu, K. Qian, and X. He, “Service oriented dynamic decoupling

metrics,” in Proc. 2006 Intl. Conf. on Semantic Web and Web Services

(SWWS’ 06), June 26-29, 2006 WORLDCOMP’ 06, Las Vegas, USA.

[29] W. Zhao, Y. Liu, J. Zhu, and H. Su, “Towards facilitating development

of SOA application with design metrics,” Journal of Software, vol. 5,

no. 11, November 2010.

[30] G. Menkhaus and B. Andrich, “Metric suite for directing the failure

mode analysis of emdedded software systems,” in Proc. 7th ICEIS’05,

2005.

[31] A. S. Vasconcelos, P. Sousa, and J. Triblolet. Information system

architectures: An enterprise engineering evaluation approach. [Online].

Available: http://www.inesc-id.pt/ficheiros/publicacoes/3543.pdf

[32] J. Cardoso, “Process control-flow complexity metric: An empirical

validation,” in Proc. IEEE Intl. Conf. on Services Computing (IEEE

SCC 06), Chicago, USA, Sept, 2006, pp 167-173.

[33] J. Cardoso, “Approaches to compute workflow complexity,” in Proc.

Dastguhl Seminar 06291, 2006.

[34] H. Singh and R. Singh, “On formal models & deriving metrics for

service-oriented architecture,” Journal of Software, vol. 5, no. 8, Aug

2010.

[35] M. D. Hansen, SOA Using Java Web Services, 2007 Pearson Education,

Inc., USA.

[36] V. Garousi et al., “Control flow analysis of UML 2.0 sequence

diagrams,” Carleton University TR SCE-05-09, September 2005.

[37] D.K. Barry and D. Dick, Architectures, and Cloud Computing: The

Savvy Manager’s Guide, 2nd Ed. Elsevier Inc., 2013.

[38] J. Ganci. (2006). Patterns: SOA Foundation Service Creation Scenario.

[Online]. Available:

http://www.redbooks.ibm.com/redbooks/pdfs/sg247240.pdf

[39] M. B. Juric. A Hands-on Introduction to BPEL. [Online]. Available:

https://www.oracle.com/technical-resources/articles/matjaz-bpel.html

[40] OASIS. Web Services Business Process Execution Language Version

2.0, 11 April 2007. OASIS Standard. [Online]. Available:

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html#_Toc

164738529

Copyright © 2021 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Rupinder Pal Singh was born in Amritsar, India on the

Aug 01, 1970. Singh earned a bachelor of Engg. degree

in electrical engineering from Jabalpur Engineering

College, Japalpur, India in 1993. Singh earned a master

of Tech. degree in information technology from Guru

Nanak Dev University, Amritsar, India in 2008. Singh

was registered as a part-time Ph.D. scholar in computer

science and engineering in 2012 and is in the process of

submitting his thesis.

He is on a long study leave from his position of associate professor of

computer science and engineering with GIMET, Amritsar, India. Previously,

he held a position of associate professor in information technology with

AIET, Faridkot, India. Besides the academic experience, he has an industry

experience of about 12 years.

Author’s formal

photo

International Journal of Computer Theory and Engineering, Vol. 13, No. 2, May 2021

54

http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.html
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.html
http://www.ibm.com/developerworks/webservices/library/ws-soa-term1/?S_TACT=105AGX04&s
http://www.ibm.com/developerworks/webservices/library/ws-soa-term1/?S_TACT=105AGX04&s
http://www.cm-tm.uka.de/CM-Web/07.Publikationen/%5BEL+06%5D_The_SOAs_Layers.pdf
http://www.cm-tm.uka.de/CM-Web/07.Publikationen/%5BEL+06%5D_The_SOAs_Layers.pdf
http://ceur-ws.org/Vol-244/
http://www.se.uni-hannover.de/semsoa-2007/index.php/Home
http://ceur-ws.org/Vol-244/
http://ebus.informatik.uni-leipzig.de/~laue/papers/metriken.pdf
http://dx.doi.org/10.1016/j.csi.2016.12.003
http://www.dsn2006.org/
http://www.inesc-id.pt/ficheiros/publicacoes/3543.pdf
http://ceur-ws.org/Vol-244/
http://drops.dagstuhl.de/opus/volltexte/2006/821/pdf/06291.CardosoJorge.Paper.821.pdf
https://www.semanticscholar.org/paper/On-Formal-Models-and-Deriving-Metrics-for-Singh-Singh/450f6f88048e151590b824516134f584a3f52ffc
http://www.redbooks.ibm.com/redbooks/pdfs/sg247240.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html#_Toc164738529
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html#_Toc164738529
https://creativecommons.org/licenses/by/4.0/

Prof. Singh contributes extensively to education-quality, co-curricular and

extra-curricular committees of the institutes he is been affiliated to.

Hardeep Singh was born in Kapurthala, India on the

Feb 16, 1963. Singh earned a Ph.D. in computer science

and engineering from Guru Nanak Dev University,

Amritsar, India in 2003.

He is currently a professor and the head of the Dept.

of Computer Science in Guru Nanak Dev University.

Previously, he held the positions of the head of the Dept.

of Computer Science twice. He has several publications

to his credit including six books.

Prof. Singh has held several administrative and academic positions in

Guru Nanak Dev Uinversity, including chairs of Boards of Studies and

Faculty of Computer Science and Engg, Dept. and Engg, and Tech. He was

the dean of Faculty of Engg. and Tech. and the dean of Alumni. He held the

positions of director of Capacity Enhancement Program and Placement.

Author’s formal

photo

International Journal of Computer Theory and Engineering, Vol. 13, No. 2, May 2021

55

	1289-G1968

