
  

Abstract—A large portion of agricultural crop yield is lost 

due to plant diseases. The impact of this is more severe in 

developing countries that do not have sufficient trained 

professionals to identify and treat diseases. Deep learning has 

shown promising results in the field of image classification and 

is adopted in fields such as medicine. However, its' adoption in 

the field of agriculture has been slow in comparison. There are 

many examples in literature that had trained deep learning 

models to detect plant diseases by images. However, there is still 

no successful application developed that works in the real world. 

In this paper, the authors review the research efforts that have 

been done in the area of image-based plant disease detection 

with deep learning and try to analyze the challenges faced in 

adopting it in the agricultural sector. The authors examine 

datasets used, image pre-processing conducted and deep 

learning technologies utilized. 

 
Index Terms—CNN, computer vision, disease classification, 

plant diseases, visible symptoms, automatic identification. 

 

I. INTRODUCTION 

According to Strange et al. [1] plant diseases cause an 

estimated loss of 16% of agricultural annual crop yield 

globally and leads to famines and food crisis worldwide. 

Swift [2] states that spread of plant diseases is also one of the 

few reasons accepted by the World Trade Organization for 

blocking importation of agricultural produce. According to 

the Federation of American Scientists [3] this causes 

significant loss of revenue to nations. In developed countries 

there are more professionals in the agriculture sector to 

correctly diagnose and treat crop diseases before it becomes 

an epidemic, there are safety nets to support farmers who are 

affected and food reserves are maintained to avoid famines if 

a major food crop is affected by a disease. Vurro et al. [4] 

notes that most developing countries do not have such 

resources and therefore are severely affected by outbreaks of 

plant diseases.  

Sladojevic et al. [5] states that most plant diseases show 

symptoms in the visible spectrum. Therefore, majority of 

diseases can be diagnosed by visual examinations by 

professionals in the field of agriculture. As stated by Vurro et 

al. [4] developing countries lack sufficient trained 

professionals to meet the demand. Due to recent 

advancements of deep learning in the field of computer vision, 

it is a prime candidate to democratize the tools required to 

accurately diagnose plant diseases.  

Smartphones have become as powerful as computers in 

their processing power and memory according to Boulos et al. 
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[6] and has high quality cameras. Boissin et al. [7] states that 

modern smartphone cameras are powerful enough to be used 

for imaged-based teleconsultations in medical practice 

instead of digital cameras. As observed by the Economist [8] 

price of smartphones have also significantly dropped making 

them accessible to a wider demographic of society even in 

developing countries. Due to the state of processing, memory, 

camera and affordability of modern smartphones it is a good 

hardware choice for applications that diagnose plant diseases. 

 

II. DEEP LEARNING ARCHITECTURES USED IN LITERATURE 

A. Convolutional Neural Networks 

According to Kamilaris et al. [9] Convolutional Neural 

Networks (CNN) are a type of deep, feed-forward Artificial 

Neural Networks (ANN) which are widely used in the 

literature for computer vision based tasks with high 

accuracies. According to Amara et al. [10] and Ramcharan et 

al. [11], one of the main advantages of deep learning methods 

such as CNNs over traditional machine learning methods is 

the lack of need for extracting feature manually which is a 

time consuming and labour intensive process. CNNs are able 

to learn the features automatically by convolving multiple 

filters across the image pixels. 

B. Imagenet Dataset 

As mentioned by Russakovsky et al. [12] the 

improvements CNN architectures within the past decade can 

be mainly credited to the annual ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC). ImageNet is a 

public dataset that contains millions of annotated images 

belonging to around thousand object classes. This dataset is 

now used as a benchmark to evaluate the effectiveness of 

different computer vision algorithms. The annual challenge 

sets challenges based on either image classification, object 

detection or single-object localization.  

C. Architectures Used in the Literature 

Some studies in the literature have repeated plant disease 

classification experiments with multiple deep learning 

architectures to compare their performance. The findings are 

consistent with how these algorithms have performed in the 

ILSVRC. AlexNet described by Krizhevsky [13] won the 

ILSVRC challenge in 2012. GoogleNet described by 

Szegedy [14] won ILSVRC in 2014 by improving upon 

AlexNet. Mohanty et al. [15], Brahimi et al. [16], Fuentes et 

al. [17] compared the CNN architectures AlexNet and 

GoogleNet using the PlantVillage dataset and found 

GoogleNet to perform better than AlexNet.  

Brahimi et al. [16] repeated the experiment with AlexNet, 

GoogleNet and the shallow neural network SVM. GoogleNet 
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and AlexNet both performed significantly better than the 

shallower networks. Ramcharan et al. [11] created a model 

with Inception v3 architecture (an improved version of 

GoogleNet) and repeated the experiment with the final output 

SoftMax layer of the model replaced by a Support Vector 

Machine (SVM) and K-nearest neighbor (KNN). Both SVM 

and original SoftMax had average classification accuracies 

above 90% while KNN performed the worst with 71% 

average classification accuracy.  

Ferentinos [18] trained a model with another CNN 

architecture VGG [19] and found it to perform better than 

both GoogleNet and AlexNet.  

Too et al. [20] repeated the experiment for ResNet, 

DenseNet and VGG 16 and found The former two to perform 

better than VGG 16. However, Fuentes et al. [17] who trained 

models with tomato plant disease dataset reports that 

VGG-16 outperforms different versions of ResNet 

architecture such as ResNet-50, ResNet-101, ResNet-152 and 

ResNeXt-50. 

From studies done in the literature it is seen that modern 

deep learning model architectures outperform shallow 

networks. Also, performance of the models in classification 

of plant diseases is consistent with how the performance of 

these models are compared generally. For example, their 

performance in ILSVRC. 

D. Transfer Learning 

It is expensive and time consuming to create large image 

datasets for plant diseases. It is more difficult for diseases that 

are rare. Kaya et al. [21] and Too et al. [20] states that with a 

limited dataset, training a network from scratch is not 

efficient and leads to overfitting. Many authors such as 

Sladojevic et al. [5], Mohanty et al. [15], Brahimi et al. [16], 

Ferentinos et al. [18], Too et al. [20], Kaya et al. [21] use 

transfer leaning to overcome this problem. 

When using a re-trained network, the first layers use 

weights pre-trained with a large dataset such as ImageNet 

dataset. This will be used to extract useful general features. 

The final layers are modified to detect the specific features 

inherent to the image class. The model is then retrained with a 

dataset to update the weight values. Transfer learning could 

reduce training time according to Ramcharan [11] and 

overfitting according to Barbedo [22]. Mohanty et al. [15], 

Brahimi et al. [16] reports significant improvement in 

accuracy when the model is pre-trained compared to training 

it from scratch. Kaya et al. [21] states that specially when 

having smaller datasets, classification accuracy is higher with 

transfer learning than without.  

 

III. FACTORS AFFECTING CLASSIFICATION ACCURACY 

The literature shows deep learning models can be trained 

to classify plant diseases using image datasets with high level 

of accuracy. Many of the reviewed literature on plant disease 

detection use the PlantVillage dataset for training. Mohanty 

et al. [15], Brahimi et al. [16], Ferentinos [18], Barbedo [23], 

Too et al. [20] are some examples. According to Too et al. 

[20] PlantVillage is a free dataset created by Penn State 

University containing 54,306 images of 26 different plant 

diseases of 14 crops. Other methods discussed in the 

literature uses datasets created by the authors themselves. 

Ramcharan et al. [11], Amara et al. [10], Fuentes et al. [17], 

Habaragamuwa et al. [24], Oppenheim [25] are some who 

have done this. 

In all the studies, they divide the dataset into a training and 

testing sets. After training the model, the accuracy of the 

model is found by using the test dataset and testing is not 

repeated with different datasets. However, Mohanty et al. [15] 

and Ferentinos [18] observe that even though deep neural 

networks models trained using the PlantVillage dataset 

achieve classification accuracies exceeding 90%, the 

accuracy drops significantly when tested on images outside 

the PlantVillage dataset and taken in different conditions. For 

Mohanty et al. [15], accuracies dropped from being above 

90% to just above 31%. Barbedo et al. [23] notes that this is 

likely due to several conditions other than the symptom 

regions which get picked up by the training process. So, the 

model works fine when used on images from the same dataset 

with the same conditions. But when tested on images taken 

on different days, different locations and different capture 

conditions, the model performs poorly. Therefore, to make 

advancements in the field it is important to discover what 

these conditions are and study on how to mitigate them.  

A. Images Taken in Field Conditions vs Laboratory 

Conditions 

Majority of the images in the PlantVillage dataset which is 

used in most studies are taken in laboratory conditions. This 

means many of the factors such as angle of capture, 

background, size of symptom region and light conditions are 

controlled. (Shown in Fig. 1). 

Ferantinos [18] trained one model with images taken in 

controlled laboratory conditions and another model with 

images taken in field conditions (such as Fig. 2) for the same 

disease. When tested on images taken in the field, the model 

achieved better performance when it was trained on images 

taken in field conditions. Since users will be taking images in 

field conditions, it is important to capture the training images 

in the field itself. This should be taken into consideration 

when creating datasets in the future. 

B. Impact of the Image Background 

When images are captured in laboratory conditions such as 

in Fig. 1, a uniform background could be maintained. 

However, as discussed in the previous chapter this is not 

practical.  

According to Barbedo [23] studies conducted with 

traditional machine learning algorithms always removed the 

background of the images in the training dataset before 

training the model. Amara [10] states that in these 

approaches’ features used for classification were 

hand-crafted. Therefore, additional elements in the image 

were removed to prevent them interfering. In contrast deep 

learning techniques such as CNN’s automatically creates the 

features necessary for classification. Ferantinos et al. [18] 

states that since deep learning architectures such as 

Convolutional Neural Networks (CNNs) can identify 

important and non-important features from images, there is 

little risk of the model learning unnecessary background 

features. 

Mohanty et al. [15] segmented the images to remove the 

extra background from the images with the assumption that it 

would improve classification accuracy by removing 
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distracting background features. But it resulted in no 

significant difference. However, it should be noted that most 

PlantVillage dataset images were taken in laboratory 

conditions such as Fig. 1 and therefore, will not have very 

complex backgrounds to begin with. Ramcharan et al. [11] 

used images taken in field conditions with complex 

backgrounds containing items such as soil, sky, other 

vegetation, feet and hands but the model produced high 

classification accuracies despite this. Therefore, Ramcharan 

notes that it is not necessary to remove the background when 

using deep learning. Barbedo [23] found that removing the 

background improved classification accuracy from 76% to 

79%. The author notes that in the dataset he used, the 

background had elements that mimicked the plant symptoms. 

For example, Fig. 4 shows soil having similar colour to the 

disease symptom on the leaf. This suggest that removing the 

background can be useful in specific scenarios and it should 

be reviewed in case by case basis. 

There are several things that can be done to reduce the 

background busyness when taking images for the training 

dataset. One is to capture the images such that the symptom 

region encompasses majority of the image. Another simple 

solution is to hold a piece of single coloured card behind the 

plant part when capturing the image.  

To test the impact on classification accuracy of these 

changes, the model should be tested on images with busy 

backgrounds. End user can also be prompted to crop the 

region of interest to minimize the impact of the background. 

With the prevalence of touch controlled mobile devices this 

would not be a difficult task. However, if they crop out too 

much of the image including parts of the symptom region, 

this would have a negative effect by reducing accuracy due to 

the model not having enough information. 

C. Impact of Dataset Size 

It is expensive and time consuming to make large 

databases. However, Kamilaris et al. [9] states that at least a 

few hundred images are required per disease class for an 

accurate diagnosis.  

Many methods in the literature perform image 

augmentation to increase the dataset size and reduce 

overfitting. The augmentation methods used in the literature 

are rotation performed by Zeng et al. [26], Fuentes et al. [17], 

Barbedo [23] Barbe et al. [5], cropping performed by Zeng et 

al. [26], Habaragamuwa et al. [24], mirroring by 

Habaragamuwa et al. [24], Barbedo [23], contrast and 

brightness adjustment by Fuentes [17] and Barbedo [23], 

affine transformations and perspective transformations by 

Barbe et al. [5]. Fuentes et al. [17] found the accuracy to 

increase from 0.5564 to 0.8306 by increasing the dataset size 

by data augmentation. Barbedo [23] divided each image in 

the dataset into to multiple images containing individual 

symptom regions to increase dataset size and see how the 

CNN would perform with more localized information (shown 

in Fig. 5). This significantly improved classification accuracy 

from 76% to 87% compared to original dataset. To see if the 

improvement is solely due to increase in dataset size or also 

due to the effect of cropping the image to only contain the 

Region of Interest (ROI), experiment was repeated with the 

cropped image dataset being the same size as the original 

dataset. Accuracy fell to 81% but was still higher than the 

original dataset. This showed that both cropping the symptom 

region as well as increasing the dataset size had an impact in 

increasing accuracy. Ramcharan et al. [11] manually cropped 

images of each cassava leaf into individual leaflets as shown 

in Fig. 3 to increase the dataset size almost 7 times. However, 

this did not cause significant improvement in classification 

accuracy which was already high for original dataset. Since 

this is a time-consuming process, it should not be pursued 

unless the model is performing poorly due to lack of data in 

the dataset.  

 

 
Fig. 1. Example image from 

PlantVillage dataset. 

 
Fig. 2. Image taken in field 

conditions. 

 

 
Fig. 3. Original leaf image (left) and cropped leaflet images (right). 

 

 
Fig. 4. Background elements mimics symptoms. 

 

 
Fig. 5. Symptom regions in image divided into different images. 

 

D. Variation on How Symptoms Appear 

As stated by Kamilaris [9] most studies had images of 

upper surface of the plant leaf. But diseases can start 
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appearing in other plant parts such as the stem or fruit. 

According to Barbedo [23] some disorders can show varying 

symptoms based on the stage of the disease. Some disorders 

produce visually similar symptoms. In these cases, an image 

taken in the visual spectrum might not be enough for accurate 

detection. A plant can also show symptoms from multiple 

disorders. According to Bharali et al. [27] the plant is 

weakened by a disorder, it is more susceptible for other 

injections as it’s immune system is weakened. 

Most of these issues which are difficult to tackle. It is not 

practical to create datasets that cover all possible ways a 

symptom can show or all possible combinations of different 

symptoms although it should be attempted much as possible. 

One solution is to gradually increase the dataset size overtime 

with user captured images. Furthermore, if the model cannot 

make a prediction with high accuracy, the user could be 

instructed to perform additional tests to rule out the possible 

diseases. For example, according to Champoiseau [28], 

bacterial wilt in the tomato can be distinguished from other 

diseases that cause similar wilting by cutting the part of the 

infected stem and dipping it a transparent container with 

water. The infected stem would discharge a white ooze. 

Other Capture Conditions 

Images in the field can be taken in different light 

conditions depending on factors such as weather, cloud cover, 

time of day geographical region. Bharali et al. [26] have tried 

to control the illumination conditions by either conducting 

the experiments in laboratory conditions and Peressotti [29] 

by using artificial light sources. However, for deep learning 

techniques such controlling is not required. Future studies in 

the field should have images in the training dataset that are 

taken in different times of the day under different light 

conditions to account for this variation. A more specific 

problem related to illumination is specular light. According 

to Oppenheim [27] this is a high intensity reflection which 

occurs when light hits the surface at certain angles. 

Information is lost in areas of the image affected by this. The 

most practical way to avoid this is to position the camera in 

an angle that avoids it.  

Angle at which the image is taken is also a factor to be 

considered. Peressotti et al. [29] states that ideally the leaf 

should be perpendicular to the camera. However, Oberti et al. 

noted that 40-60 degrees angle was the most appropriate 

when detecting powdery mildew in grapevine leaves. The 

author states that the reason could be due to the fact that at 

initial stages the filamentous structures of the fungus grow 

vertically in the plant tissue therefore it is detected better 

when the image is taken at a slanting angle. So, the type of 

disorder should be considered when deciding some factors 

such as the angle of capture. 

 

IV. DISCUSSION 

Reviewing the existing literature, it is seen that deep 

learning models created with CNN architectures have 

obtained high classification accuracies for diagnosing plant 

diseases. But these models tend to not generalize for images 

captured under different conditions. The problem seems to lie 

on the high variation of multiple conditions in the images 

taken. This paper has tried to explore these different 

conditions and on how to mitigate the effect of them. Future 

research must focus on analysing these issues and finding out 

optimum solutions. More public datasets should be created in 

light of the limitations of the PlantVillage dataset for future 

studies. 
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