



Abstract—In view of the problem that Portable

Executable(PE) files are transmitted in the network, resulting

in information loss, duplication and malicious tampering, this

paper proposes an integrity check scheme based on PE file

structure feature extraction and binder technology. The basic

idea is to extract PE file structure features, combined with the

bundling technology to achieve PE file integrity verification. In

view of the problem that the imitation of software is rapidly

spreading, such as the core code segment of the software can be

stolen, this paper proposes a software zero watermarking

scheme based on PE file special instruction feature extraction.

The basic idea is to extract the special features of PE file code

segment and logical operation of copyright information to

generate zero watermark. The algorithm does not affect the

performance and efficiency of the PE file. When the structural

integrity of the PE file is damaged, the software exits the

operation and outputs the copyright information. By attacking

and converting the PE file and testing it with different software,

it is proved that the zero watermark algorithm is robustness

and credibility.

Index Terms—PE file, feature extraction, bundling

technology, integrity verification, software zero watermark.

I. INTRODUCTION

As a kind of digital products, software has high copying

rate and great business benefits. The problems of software

infringement, piracy, random tampering and malicious

attacks are also becoming more and more serious, which

seriously hinders the health and sustainability of the software

industry. Software watermark is a kind of digital watermark,

which is used to carry information of copyright issuers, users,

developers and sellers. In software copyright management, it

can be used for identity authentication, permission restriction,

preventing copyright theft and illegal copying of software,

etc. [1], [2]. Software birthmark feature technology, also

known as zero watermark or zero knowledge, is an invariant

feature or a key feature in the extraction software to achieve

identification of the software or the software family [3].

Software feature acquisition techniques include: (1)

static-based extraction algorithms, and (2) dynamic

dependency graph methods combined with semantic analysis.

Tamada et al. [4] improved the limitations of the source code,

selected the execution code (binary or bytecode), applied the

Manuscript received September 17, 2019; revised December 12, 2019.

This research project was supported by the Education Department of Jilin

Province ("Thirteen Five" Scientific Planning Project, Grant No.

JJKH20180898KJ), Jilin Education Science Planning Project ("Thirteen

Five" Plan, Grant No. GH170043).

Zhen Chen, De Li, and Hua Jin are with Department of Computer Science,

Yanbian University, Yanji, China (e-mail: 2576939243@qq.com,

leader1223@ybu.edu.cn, hjin@ybu.edu.cn).

java bytecode set as a software feature; Heewan Park [5]

proposed the use of opcodes and their static stacks as

software functions for software identification. In order to

improve the robustness of this feature, the literature [6]-[8]

introduces the Chinese word segmentation n-gram method to

extract the state of the dynamic operation runtime to improve

the feature.

However, in terms of its development, the study of

software features began with the analysis of source code

features [9], [10]. At present, there are few zero

watermarking algorithms based on Portable Executable (PE)

files. The algorithm extracts PE file structure features and

special instruction features, combines bundling technology

and zero watermark technology to achieve PE file integrity

verification and copyright protection.

II. RESEARCH ON RELATED TECHNOLOGY

A. PE File Overview

The Portable Executable (PE) format is the mainstream

executable file format on the Microsoft Win32 platform,

meaning a portable executable. Common PE format files

include EXE and DLL files. Both use the same PE format.

The basic structure of the PE file is shown in the Fig. 1:

Fig. 1. The basic structure of the PE file.

B. Structural Feature Extraction and Integrity Checking

For a PE file, considering its operational characteristics

and structural characteristics, and in order to prevent

malicious attacks from modifying the original file, some

structural information is particularly important. The

following describes the structural characteristics of the PE

file and the structural feature extraction method and integrity

check.

Feature-Based Software Integrity Verification and Zero

Watermarking Technology

Zhen Chen, De Li, and Hua Jin

International Journal of Computer Theory and Engineering, Vol. 12, No. 2, April 2020

40DOI: 10.7763/IJCTE.2020.V12.1261

1) Extraction of PE file structure features

a) Extraction of DOS_header structure features

There are many fields defined by this structure, but most of

them are designed to be compatible with the DOS system,

which is basically useless in the Windows system. There are

only two important fields to focus on throughout the

structure:

e_magic, it's always equal to hex 0×5A4D, namely

ASCLL string ‘MZ’.

If 0 5 4e_magic A D 

PE file is invalid

Another important field is the e_lfanel field with an offset

of 0×3 bytes in hexadecimal. It points to the address where

the PE header starts.

b) Extraction of nt_ Header structure features

Nt_header is defined as Fig. 2:

Fig. 2. The structure of nt_Header.

For PE files, Signature is always equal to hex 0×00004550,

namely ASCLL string „PE\0\0‟.

If 0 4550Signature  

PE file is invalid

Next is IMAGE_FILE_HEADER. The PE file header

defines some basic fields of the PE file. The most important

field in this structure is the NumberOfSections, distance from

the PE header is 6 bytes. This is the number of sections in the

file. These fields are used when the PE loader is loaded. If the

loader finds that some fields defined in the PE file header do

not satisfy the current running environment, the PE will be

terminated. So select these fields as the features of the

structure.

Next one is IMAGE_OPTIONAL_HEADER32. Although

it is named optional header, this is necessary for PE files,

which contains many important fields related to execution.

The structure defines a lot of fields, select some fields as

feature values, and the selected fields and meanings are as

follows:

(1) AddressOfEntryPoint: The Relative Virtual Addresses

(RVA) of program entrance.

(2) BaseOfCode: The RVA of the start of the code

segment.

(3) BaseOfData: The RVA of the start of the data segment.

(4) ImageBase: The base address of the image.

(5) SizeOfImage: The size of the image, the PE file is

loaded into the memory space is continuous, this value

specifies the size of the virtual space.

(6) SizeOfCode: The length of the code segment, if there

are more than one code segments, is the sum of the code

segment lengths.

(7) SizeOfInitiallizedeData: The length of the initialized

data.

c) Extraction of SECTION TABLE structure features

The properties of all sections in the PE file are defined in

the SECTION TABLE. The SECTION TABLE is arranged by

a series of structures, each of which is used to describe a

section. The order of the structures is the same as that of the

sections they describe in the file. The definition of the

SECTION TABLE is as shown in Fig. 3:

Fig. 3. The structure of SECTION TABLE.

Only the following fields are really useful:

(1)VitualSize: The size of the block corresponding to the

section table, which is the actual size of the block data before

it is aligned.

(2)VitualAdress: The address where the block is loaded

into memory.

(3)PointToRawData: Point out the location of the section

in the disk file, which is the offset from the beginning of the

file header.

(4)SizeOfRawData: The size of the block in the disk.

By relying on the values of the above four fields, the loader

can find the data of a section from the PE file. And map it to

memory.

2) Integrity check based on bundler technology

Bundling technology is a new type of computer

technology. Bundle or attach additional data or an executable

program to an executable file, and the program will still run.

The role of the binder is to bundle two or more files and run

the bundled files to achieve the purpose of running multiple

files. This paper combines the bundler technology with the

integrity check to achieve PE file integrity check.

C. Feature Extraction and Zero Watermarking

Technology

1) Code section special instruction feature extraction

The principle of selecting the feature value of the code

section is as follows: (1) If the code of the signature code has

a special constant and the constant is not the memory address

of the target program, it is preferentially selected as the

signature. (2) If the signature has a code for the structure or

class variable, it can be selected. (3) If the signature position,

without the above code, special instructions can be used, and

the code without absolute address is the signature. (4) The

feature code should be made as short as possible, thereby

reducing the complexity of time and space in the detection

process and improving the detection efficiency. (5) It should

not be too common, so if you choose an overly universal code

as a signature, the probability of false positives is very high.

(6) Guarantee the uniqueness of the feature code and cannot

be repeated.

The call instruction is a jump instruction. When the jump

instruction is executed, two steps are performed: (1) pushing

the current execution position of the program onto the stack;

(2) transferring to the called subroutine. As shown in Fig. 4,

International Journal of Computer Theory and Engineering, Vol. 12, No. 2, April 2020

41

these subroutines are special instructions without special

addresses. They are short and precise, conform to the

principle of feature value selection. Therefore, select the

subroutine pointed to by the call instruction as the code

segment feature value.

Fig. 4. Subroutine pointed to by the CALL instruction.

2) Zero watermarking technology

The idea of zero watermark is mostly used for image

watermarking, which refers to a watermark embedding

method that constructs image copyright information through

image features without modifying image information. The

software zero watermark, assuming that the software

program is P, the watermark information W is obtained by

the watermark generation algorithm and related information.

After being attacked, you can still get the W through the

watermark generation algorithm. The algorithm extracts

special instructions from the code segment of program P,

takes the disassembled binary number as a feature, and

performs an exclusive OR operation on the copyright

information to obtain W.

3) Robustness and credibility test of zero watermark

generation algorithm

Robustness and credibility are two important indicators for

evaluating the characteristics of software birthmarks.

Robustness is the ability to measure the identity of two

identical software; credibility is the ability to distinguish

between two different software.

The chi-square test（ 2
test） is used to compare the

correlation analysis of two or more samples, and compares

the degree of agreement or the degree of fit between the

theoretical frequency and the actual frequency.

When unknown software is tested, the fit of its

characteristic contour to the known software birthmark

characteristics is calculated. The whole process can be

divided into two steps. 1). Calculate the threshold; 2).

Chi-square test.

1) Calculate the threshold: that is, calculate the mean value

of the chi-square value between the feature a obtained by the

equivalent sample and the feature b of the original sample, as

in formula (1), as the software detection threshold:

 
2

n
0

1

i

i i

P P

P





  (1)

2) Chi-square test: Calculate the chi-square test value

test of the software feature to be tested and the existing

software birthmark feature frequency, compare it with the

detection threshold  , which is smaller than the detection

threshold, indicating that the test program belongs to the

same software version, otherwise not a similar version.

III. FEATURE-BASED SOFTWARE INTEGRITY CHECK AND

ZERO WATERMARKING ALGORITHM

With the continuous popularization of computer and

network technologies in various industries, different versions

of software are also emerging in the network environment,

especially for commercial applications such as configuration

software, etc. Software products are transmitted in the

network. On the one hand, information may be lost or

duplicated due to objective factors such as network lines. On

the other hand, an attacker may maliciously tamper with

software information by means of interception or forwarding.

The algorithm extracts the structural characteristics of the

protected software, performs the MD5 operation as the basis

for input to the integrity check part, and bundles the integrity

check program with the protected software. When the

software is attacked by tampering, the software exits the

operation and displays the software copyright.

The software shows its rich commercial profit, the

software imitation spreads rapidly, the core code segment of

the software is stolen, and other parts such as data segments

and resource segments are replaced, which brings difficulty

to the software identification. The need for

pseudo-authentication is also becoming more and more

urgent. The algorithm extracts the special instruction feature

of the PE file code segment, and is used to identify the core

code section of the PE file, and performs an exclusive OR

operation with the preprocessed watermark information, and

stores it as zero watermark authentication information in the

zero watermark information database.

A. Integrity Check and Zero Watermark Generation

Algorithm

The flow chart of integrity check and zero watermark

generation algorithm is shown in Fig. 5. The specific

algorithm includes the following steps:

Step1 Read the carrier PE file;

Step2 Extracting the structural features of the PE file;

1) Define the DOS structure DOS header, read the

e_magic and e-lfanew field under DOS header;

2) Define the PE header nt_header, read the Signature

field under nt_header;

Define the FileHeader, read the NumberOfSections;

Define the OptionalHeader, read the following fields:

1 AddressOfEntryPoint

2 BaseOfCode

3 BaseOfData

4 ImageBase

5 SizeOfImage

6 SizeOfCode

7 SizeOfInitializedeData

3) Define the PE file section table SECTION_header,

International Journal of Computer Theory and Engineering, Vol. 12, No. 2, April 2020

42

traversing each section, read the following fields:

1 VitualSize

2 VitualAddress

3 PointToRawData

4 SizeOfRawData

Step3 The field read by Step 2 is used as the feature
1
T , do it

With MD5. Record the result of the operation as Info1, it is

a string of hexadecimal data, saved it in the integrity check

section;

Step4 Binding the carrier PE file to the integrity check

portion;

1) Define the carrier file, denotede as *myself , get the path

1ST& of *myself, read the length 1size

of *myself.

if 01 size , report errors;

2) Create a composite file. Use the malloc function to

allocate a
1

size length space for *myself, open *myself by

1
&ST , write the contents of *myself ;

3)Define the integrity verification file, denotede as *heself,

get the path
2

&ST of *heself, read the length
2

size
of

*heself.;

4) Use the malloc function to allocate a
2

size
length

space for *heself in the composite file, write the contents of

*heself. Create the final composite file, record *out;

Step5 The copyright information C is encrypted by using the

DES algorithm to form a binary watermark information
1
w ,

and the watermark length
1
()L w is recorded; the input 64-bit

plaintext is replaced according to the replacement rule.

Information database IPR.

Fig. 5. The flow chart of integrity check and zero watermark generation

algorithm.

L0 is the first 32 bits of the replaced data;

R0 is the replaced data.

After the 32-bit, each iteration of the encryption process

can be expressed as shown in (2):

 1n
L R n 

   11,1  nnn KRfnLR (2)

The function consists of a four-step operation:

1)
n
K generation;

2) extended permutation;

3) S- box substitution;

4) P- permutation.

Step6 Read the subroutine pointed to by the appropriate

number of jump instructions (CALL instruction) from the

beginning of the PE file code segment, and disassemble it by

asm32c . Record the result of the disassembly as
2
T , it is a

string of hexadecimal data, and record the length
2
()L T of

2
T ;

Step7 Calculation    2 1
L T L w , add the same number of 0

after
1
w to get

2
w ;

Step8 Calculation
2 2
T w , save the result as zero watermark

authentication information RI in the zero watermark

Watermark Extraction and Tamper Detection Algorithm

The flow chart of watermark extraction and tamper

detection algorithm is shown in Fig. 6. The specific algorithm

includes the following steps:

Step1 Read the PE file to be detected；

Step2 Extract the structural feature values of the PE file to be

detected, and encrypt it with the MD5 algorithm to obtain

2Info ;

Step3 Run the PE files to be tested, release the final

composite files and run them at the same time.

1) Define the final composite file *out, create a new file

2
exe_temp* , and position the file pointer to the end of *out;

2) Read the length
2

size of the integrity check part heself* ,

read the contents of *heself and write it into 2exe_temp* ;

3) Close the handle of file 2exe_temp* ;

Step4 Enter 2
Info into the integrity check section and

compare Info1 and Info2 :

if 2Info1Info 

the PE file runs normally;

if 2Info1Info 

the PE file exits, prompting for copyright information;

Step5 Reading the subroutine pointed to by the jump

instruction (CALL instruction) of the PE text segment, and

disassembling to form a binary feature sequence
3
T ;

Step6 Perform 2χ test for
2
T

and
3
T .

if ξχ2 

the software to be tested is not infringed;

 if ξχ2 

read RI from IPR,
 3T RI , get

3
w ;

Step7
3
w is decrypted by DES and compared with copyright

information C to authenticate copyright.

Fig. 6. The flow chart of watermark extraction and tamper detection

algorithm.

International Journal of Computer Theory and Engineering, Vol. 12, No. 2, April 2020

43

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Environment and Pretreatment

In order to verify the feasibility of the algorithm, the

selected PE file is a PDF reading software gsview, and the

simulation experiment is performed under C++,

MatlabR2010b and analysis software c32asm.

1) Integrity inspection section

The structural features of DOS_header and nt_header of

the PE file are extracted as shown in Fig. 7. The structural

feature extraction of the section table is shown in Table I, all

the above features are hexadecimal data:

Fig. 7. The structural features of DOS_header and nt_header.

TABLE I: THE STRUCTURAL FEATURE EXTRACTION OF THE SECTION TABLE

name Vitual Size Vitual Address PoinTo RawData SizeOfRawDta

.text 0c64 1000 0400 0e00

.data 0010 2000 1200 0200

.rdada 0220 3000 1400 0400

.bss 0060 4000 0000 0000

.idata 0378 5000 1800 0400

/4 0020 6000 1c00 0200

/35 0a4c 7000 2000 0c00

/47 0282 8000 2c00 0400

/61 01bb 9000 3000 0200

/73 0074 a000 3200 0200

/86 018d b000 3400 0200

/97 0018 c000 3600 0200

Perform MD5 operation on the feature value, the

operation result is hexadecimal: 5172317495DB4D73,

input the operation result into the integrity check program,

and then bind gsview to the integrity check part, using the

icon of gsview, as shown in Fig. 8. After bundling, the

software running interface is shown in Fig. 9.

Fig. 8. The icon of gsview.

Fig. 9. The software running interface.

2) Zero watermark generation section

Locate the PE file code segment and find the first four

jump instruction CALL instructions, as shown in Fig. 10.

Taking the first CALL instruction as an example, after the

jump, the address is hexadecimal: 004013E0, and the

signature is extracted at the subroutine, as shown in Fig.

11.

Fig. 10. CALL instructions.

Fig. 11. Features extracted in the subroutine.

If the copyright information is: copyright yanbian, convert

it to binary. Extract the subroutine pointed to by the first 4

jump instructions. The eigenvalues are as shown in the

following Table II, all of the eigenvalues are hexadecimal.

TABLE II: THE EIGENVALUES

Serial number Eigenvalues

1 55 89 E5 83 EC 18

2 55 89 E5 53

3 55 89 E5 DB E3

4 55 89 E5 57

Perform OR operate on eigenvalues and copyright

information. The calculation result: 36 E6 95 FA 9E 71 32 E1

91 73 2C E8 B9 8A 34 E7 E5 57. It is stored in the software

registration information database IPR as the registration

information RI.

B. Performance Analysis

The evaluation of information hiding techniques for PE

files relies on three metrics: performance and efficiency,

integrity, robustness, and credibility.

1) Performance and efficiency

Because the copyright certificate does not belong to the

normal function of the software, the performance and

efficiency of the software will decrease after the watermark

information is added to the software. The algorithm extracts

the birthmark features of the software and uses it to construct

a software zero watermark without embedding information

into the carrier, so the performance and efficiency of the PE

file does not change.

2) Integrity test

The integrity of the PE file is destroyed by performing the

following operations on the PE file:

1) Change the program entry of the PE file;

2) Change the PE file size by adding useless instructions;

3) Use tool PEditor to add or delete a section table;

4) Modify the size of the optional header of the PE file;

International Journal of Computer Theory and Engineering, Vol. 12, No. 2, April 2020

44

5) Modify the base address of the code and the base

address of the initialization data;

The result of the operation is shown in Fig. 12. The

integrity of the PE file is corrupted, the software exits the run,

and the copyright information is displayed.

Fig. 12. The result of the operation.

3) Robustness and credibility test of zero watermark

generation algorithm

a) Robustness

Let the software P become
1
P after the equivalent

semantic transformation (SPT), and if there is

 P
B Extract P ,  Q

B Extract Q , when the similarity value

satisfies(3):

 2 ,
P Q
B B  (3)

The extraction method Extract is said to be robust to the

transformation SPT.

Attack and transform program gsview (tool plus manual

simulation), as shown below, get 6 equivalent programs, and

perform 2 test with the original program, as shown in Table

III:

1) Change the software portal;

2) Add instructions to the software: by adding unnecessary

code to the PE file without changing the program semantics.

For example, 8,espadd . It may affect the efficiency of

program execution, but the semantics of the program will not

be changed;

3) Change the size of the software, add or delete PE file

section tables, etc. through tool PEditor;

4) Modify the running path;

5) Use tool PEditor to perform an optimization attack;

6) Instruction equivalent replacement means that some

instructions or functions of the program are completed by

other instructions or compound functions. Many instructions

can perform similar functions, and can also perform the

functions of another simple instruction by splitting and

merging the instructions. For example:

,subAddressCALLandsubAddressjmp;eippush

The two-stage instruction function is equivalent, but the

form is different and can be replaced with each other.

After several attacks and transformations on the PE file,

the detected is small, indicating that the code segment special

instruction feature value extracted by the algorithm can

identify the same software after the deformation, so the

robustness is better.

TABLE III: CHI-SQUARE TEST

Attack mode
2

Attack mode
2

Change program entry 0 Change size 0

Add instruction 0 Instruction replacement 3.75

Optimization attack 1.5 Modify the running path 0

b) Credibility

There are two different programs P and Q , which are

independently developed and use the same feature extraction

algorithm.

If there is    Extract P Extract Q ,

The birthmark extracted by method d is said to have

credibility.

Take 20 different programs (maximum, minimum,

including desktop applications, music programs, download

programs, cryptographic algorithms, user-defined programs,

etc.), extract features, perform similarity calculations, and

perform test with software. The calculated statistical results

are shown in Table IV:

By performing test on different software and the test

software, it can be seen from the test results that the value is

large, indicatding that the code segment special code feature

value extracted by the algorithm can distinguish different

softwares, so the credibility is good.

TABLE IV: THE CALCULATED STATISTICAL RESULTS

Software(.exe) Size(M)
2

Software(.exe) Size(M)

2

QQMusic 0.215 19 wpscloudsver 0.824 15

DES 0.261 7 Thunder 1.31 10.5

Notebook 0.372 14 BaiduMusic 2.08 17

QyClient 0.457 15.5 CoputerZ_CN 3.77 9.25

WeChat 0.481 16.25 baidunetdisk 8.48 12.25

Xunjie 0.521 8.75 iku_startpic 8.56 12.5

AliIM 0.537 10 WebServe 9.49 13

wow_helper 0.624 11.25 ytbrowser 9.51 11.5

AliTask 0.621 13.5 360ExtLoader 10.79 9

QyKernel 0.753 7.75 CDRAFT_M 10.62 9.75

c) Threshold setting

In this experiment, by attacking and transforming the

gsview program, six equivalent programs are obtained.
2 test is performed with the original program, and the

maximum is 3.75. Take 20 different programs, extract

features, perform similarity calculation, and perform 2 test

with the original software, the minimum is 7, so the threshold

can be set to 5.5. When the suspected object and the genuine

software are tested for similarity, 2 is less than this

threshold. It is necessary to consider that the suspected object

infringes the copyright.

V. CONCLUSION

Software products are transmitted in the network. On the

one hand, information may be lost or duplicated due to

objective factors such as network lines. On the other hand, an

attacker may maliciously tamper with software information

by means of interception or forwarding. The algorithm

extracts the structural characteristics of the protected

software, performs the MD5 operation as the basis for input

to the integrity check part, and bundles the integrity check

program with the protected software. When the software is

attacked by tampering, the software exits the operation and

displays the software copyright.

In order to prevent the core code segment of the PE file

from being stolen, the algorithm extracts the special

International Journal of Computer Theory and Engineering, Vol. 12, No. 2, April 2020

45

instruction feature of the PE file code segment, and is used to

identify the core code section of the PE file, and performs an

exclusive OR operation with the preprocessed watermark

information, and stores it as zero watermark authentication

information in the zero watermark information database.

Through the six different attack transformations of the

experimental software, the feature extraction algorithm

proposed in this paper is proved to be robust. Perform
2

test on the features extracted by other software and the

features extracted by the experimental software. It is proved

that the feature extraction algorithm proposed in this paper

has the belief. And thus set the threshold 5.5. When testing

the similarity between suspected software and genuine

software, it is necessary to consider suspicious object

copyright infringement below this threshold.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Zhen Chen designed and implemented experiments,

collected and analyzed data, wrote the paper; De Li critically

reviewed and guided the intellectual content of the article;

Hua Jin received research funding and provided technical or

material support; all authors had approved the final version.

REFERENCES

[1] H. Lim and H. Park, “Detecting theft of java applications via a static

birthmark based on weighted stack patterns,” Transactions on

Information and Systems, vol. 91, no. 9, pp. 2323-2332, 2008.

[2] M. D. Preda and M. Pasqua, “Software watermarking: A Seman-based

approach,” Electronic Notes in Theoretical Computer Science, vol. 331,

pp. 71-85, 2017.

[3] J. Fan, D. D. Li, and Y. M. Yan, “Research on software features and

software watermarking in software protection,” Computer Applications

and Software, vol. 35, no. 12, pp. 298-302, 2018.

[4] Z. Khorsand and A. Hamzeh., “A novel compression-based approach

for malware detection using PE header,” Information & Knowledge

Technology, 2013.

[5] E. Raff, R. Zak, and R. Cox, “An investigation of byte n-gram features

for malware classification,” Journal of Computer Virology and

Hacking Techniques, 2016.

[6] D. Fleck, A. Tokhtabayev, and A. Alarif, “PyTrigger: A system to

trigger & extract user-activated malware behavior,” in Proc. Eighth

International Conference on Availability, 2013.

[7] W. Rui, F. D. Guo, and Y. Yi, “Semantics-based malware behavior

signature extraction and detection method,” Journal of Software, 2012.

[8] Z. Salehi, A. Sami, and M. Ghiasi,”Using feature generation from API

calls for malware detection,” Computer Fraud & Security, vol. 2014,

no. 9, pp. 9–18, 2014.

[9] Z. Y. Jie, T. Zhan, and W. Ni, “Evaluation of code obfuscating

transformation,” Journal of Software, vol. 23, no. 3, pp. 700-711, 2012.

[10] R. J. Oentaryo and D. Lo, “Information retrieval and spectrum based

bug localization: Better together,” in Proc. Joint Meeting on

Foundations of Software Engineering, 2015.

Copyright © 2020 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Zhen Chen received a bachelor's degree in

measurement and control technology and

instrumentation from China University of Mining and

Technology (Beijing). Now he is studying for a

master's degree in computer application at Yanbian

University. His research interests are software

watermarking and information security.

De Li received the Ph.D. in computer science from

Xiangming University. He is a professor at Yanbian

University, an academic master's tutor and a master's

tutor. He is the project leader of the National Natural

Science Foundation project and has published many

research papers and invention patents.

Hua Jin (Corresponding author) was born in 1970.

She is hold with a master degree of engineering. She is

engaged in undergraduate and postgraduate teaching

work in Yanbian University, College of technology,

with the main research direction of database,

information security and Internet of things application

technology.

Author‟s formal

photo

Author‟s formal

photo

Author‟s formal

photo

International Journal of Computer Theory and Engineering, Vol. 12, No. 2, April 2020

46

https://creativecommons.org/licenses/by/4.0/

	1261-G1742

