

Abstract—Demands for Peer-to-peer (P2P) applications are

rapidly growing to become the most popular bandwidth

consumers in the world. Among the various P2P applications,

Gnutella is the most popular unstructured P2P networks

allowing the sharing of files at a very high rate. TWDM-PON

has been regarded as the promising solution to meet the higher

bandwidth demands next-generation passive optical network

(NG-PON2). It provides flexibility to support multiple services

to multiple organization on the same fiber. SDN

(software-defined networking) is the emerging technology that

decouples the control and data plane and centralized the

network intelligence at one place. As a result, the operators get

programmability, automation and network control to manage a

network that freely adapts the changes needed to the business.

In this paper, a new Gnutella application for SDN over

TWDM-PON architecture is proposed that the OLT and ONU

are capable of handling the Gnutella traffic generated by

Gnutella applications, and the Gnutella Engine Manager is

controlled by SD-controller. The proposed mechanism is able to

reduce the huge bandwidth waste caused by flooding

controlling messages, guarantee the success of query and also

localize the Gnutella inter and intra traffic between PON which

improve the quality of services (QoS) in terms of the mean

packet delay, jitter, system throughput and packet dropping.

Index Terms—P2P, Gnutella, TWDM-PON, SDN, QoS.

I. INTRODUCTION

P2P networking has generated tremendous interest

worldwide among both internet and computer network

professionals. P2P file sharing systems have become the

single most popular class of internet application in this

decade. Numerous businesses and websites have promoted

P2P technology as the future of Internet networking.

Although they have actually existed for many years, P2P

technologies promise to radically change the future of

networking [1]. P2P network is a distributed network in

which each node has the equal capability and ability to

exchange the information with each other directly. The P2P

system can be categorized into two parts - unstructured and

structured [2]. In P2P, the „peers‟ are the computers which

are connected to each other via the internet where files can be

shared directly between the systems on the network without

the need of a central server; so, we can say that each node acts

Manuscript received November 25, 2019; revised February 12, 2020.

Anish Sah, I-Shyan Hwang, and Ardian Rianto are with the Department

of Computer Science and Engineering, Yuan Ze University, Chung-Li,

32003, Taiwan (e-mail: ishwang@saturn.yzu.edu.tw).

Andrew Fernando Pakpahan is with the Department of Computer Science,

Universitas Klabat, Manado, 95371, Indonesia.

Andrew Tanny Liem is with the Department of Information Technology,

Universitas Advent Indonesia, Bandung 40559, Indonesia.

as a server. Based on the unstructured architecture, the P2P

network can be categorized into Pure Decentralized, Hybrid

Decentralized, and Partially Centralized [3]-[5]. In a Pure

Decentralized network, all nodes in the network act as

servers and/or client, while Hybrid Decentralized server

facilitates the interaction between peers by maintaining

directories of the shared files stored on the respective PCs of

registered users to the networks. In a partially centralized

system, the basis is the same as with purely decentralized

systems. However, some of the nodes assume a more

important role than the rest of the nodes and acting as local

central indexes for files shared by local peers [6], [7]. The

main purpose of the P2P design is for peers to correspond on

the internet, without the need for new protocol on switches

and router in the internet core. In P2P computing, nodes

organize themselves as an overlay network, in which packet

transmission on each of the overlay links uses standard

Internet protocols, that is Transmission Control Protocol

(TCP) and User Datagram Protocol (UDP) [8].

Gnutella is a large P2P network which was the first

decentralized P2P network of its kind to allow users to share

resources, leading to other, later networks adopting the

model [9], [10]. Gnutella is the top P2P file sharing system in

the world and it is the most popular peer-to-peer application

that it is an open source application. Gnutella protocol comes

in various versions: Gnutella 0.4 and Gnutella 0.6. The

number of active node in Gnutella network 0.4 is 5, whereas

the number of maximum hope is 7. In Gnutella protocol

version 0.4, the concept of servents are used and performs

tasks normally associated with both clients and servers.

Gnutella protocol version 0.6 uses a two-level hierarchy:

Ultrapeers (UPs) and Leaf Nodes (LNs). UPs can connect to

the high capacity links and have a large amount of processing

power. LNs maintain a single connection to their UPs, and

the UP maintains 10-100 connections, one for each LN and

1-10 connections to other nodes [11]. In Gnutella, there are

five main message-controlling mechanisms Ping, Pong,

Query, Query Hit and Push. According to [12], they monitor

Gnutella traffic in which Ping, Pong, and Query message

altogether account for more than 95% of traffic, where the

QUERY is 54.80%, PONG is 26.90%, PING is 14.80% and

QUERY-HIT is 2.80%, respectively.

The original search algorithm used in a Gnutella system

[13] was the flooding search algorithm that brings the major

issue of low success rate and a huge waste of bandwidth. In

[14], a new search algorithm called „AntSearch‟ was

proposed to reduce the network traffic caused by the flooding

algorithm. According to [15], they improve the current

routing algorithm based on the Ant algorithm for the optimal

routing. In the proposed routing search algorithm, they

Gnutella-Based P2P Applications for SDN over

TWDM-PON Architecture

Anish Sah, I-Shyan Hwang, Ardian Rianto, Andrew Fernando Pakpahan, and Andrew Tanny Liem

International Journal of Computer Theory and Engineering, Vol. 12, No. 2, April 2020

32DOI: 10.7763/IJCTE.2020.V12.1260

avoided the randomization and blindness of message relay

service by adding a constrained condition. Few of the

research [16] compared the strength and weaknesses of three

algorithms of Gnutella P2P protocol namely Flood, Random

Walk, and Random Walk with Neighbors and they proposed

a new search method based on the experiment. A new

hierarchical architecture in [17] is proposed for Gnutella

network by categorizing the nodes as client-nodes and

super-nodes which was able to make the network scale, by

reducing the number of nodes on the network involved in

message handling and routing as well as reducing the actual

traffic among them.

Most of the recent researches for Gnutella focus on

decrease the flooding problem and reducing the network

traffic to minimize the waste of bandwidth. Therefore, we

can easily understand the current researches target is to

control the network utilization of P2P application while

minimizing the inter-Internet Service Provider (ISP) traffic

and improving the quality of service (QoS). In optical access

networking, locality awareness in the neighbor has become

one of the most promising solutions to decrease the amount

of inter-ISP P2P traffic [18] which integrates peering

mechanism into the network infrastructure which greatly

simplifies the implementation of local policies. In the access

network, the PON system has to be an attractive technology

that can offer high bandwidth with low latency. Each PON

system architecture consists of a central Optical Line

Terminal (OLT) which is connected with multiple Optical

Network Units (ONUs) and one optical splitter [19], [20]. To

avoid the data collision between the ONUs, the IEEE 802.3

ah has developed a standard, called Multi-Point Control

Protocol (MPCP) [21]-[23]. Dynamic bandwidth allocation

(DBA) allocates the appropriate bandwidth to each ONU,

which is a method for assigning bandwidth dynamically

based on the queue state information received from ONUs. In

our previous work [24], we tried to reduce the inter- and

intra- traffic in the PON and ISPs, and also improve the QoS

by localizing the intra-ISP traffic. Likewise, in [25], we use

the application-aware mechanism to store some popular

context in the local system by supporting local content;

moreover, we tried to decrease the amount of inter-ISPs

traffic by localizing the intra-ISP traffic in which we

designed new ONU mechanism (patching and caching) to

reduce the resource consumption and provide more

downstream bandwidth without be buffered and scheduled in

the downstream direction by the OLT.

There are various PON standards, started form EPON,

G-PON, XG-PON1, and NG-PON2. In G-PON standards,

the bandwidths supported were downstream 2.5G and

upstream 1.25G; whereas in XG-PON1 standard the

bandwidth capacities were downstream 10G and upstream

1.25G or 5G. Finally, the NG-PON2 bandwidth can support

up to 40G [26], [27]. Among all of the aforementioned

proposals, Time and Wavelength Division Multiplexed

Passive Optical Network (TWDM-PON) technology are

chosen by the telecommunication industry for

implementation of NG-PON2 by the FSAN community in

April 2012. TWDM-PON increases the aggregate PON rate

by stacking XG-PONs via multiple pairs of wavelengths.

Software Defined Network (SDN) has gained a lot of

attention in the last few years starting from 2012 [28] The

Open Network Foundation (ONF) introduced a new concept

of Networking whereby the control and data planes are

decoupled, networking intelligence and state are logically

centralized, and the underlying networking infrastructure is

abstracted from the applications. The distributed control and

transport network protocols running inside the routers and

switches are the key technology that allows information in

the form of digital packets to travel around the world [29].

The SDN is considered as the optimal choice for the

Next-generation PON with the advantage of flexible and

centralized control capacity It aims to lead the centralized

programmable model of the network in which the OpenFlow

protocol used to adapt the SDN mechanism into a network.

OpenFlow is based on an Ethernet switch with internal

flow-table and the standardized interface to add and remove

flow entries [30]. Implementation of SDN over PONs

[31]-[33] can reduce the energy consumption of

TWDM-PONs, provide dynamic flex-grid wavelength circuit

creation, and manage the traffic.

In this paper, by taking advantage of SDN and OpenFlow

protocol in TWDM-PON, a new Gnutella-Applications for

SDN over TWDM-PON architecture is proposed, where we

used the concept of the partially centralized architecture of

P2P shown in Fig. 1. By implementing this architecture, we

are able to reduce the huge bandwidth waste caused by

flooding controlling message and guarantee the success of

query by reducing the dropping, localizing the intra-traffic

and accommodate a large number of users, and to guarantee

the network scalability by the improvement of QoS.

Fig. 1. Proposed Gnutella-Application based file sharing architecture for SDN.

International Journal of Computer Theory and Engineering, Vol. 12, No. 2, April 2020

33

The rest of the paper is organized as follows. Section II

introduces the proposed system architecture and mechanism

including OLT, ONUs and G-DBA Operations. Section III

conducts the overall system performance evaluation in terms

of packet delay, jitter, throughput, and packet dropping.

Section IV gives the conclusion of the paper.

II. PROPOSED SYSTEM ARCHITECTURE AND MECHANISM

This section describes the proposed Gnutella-Application

for SDN over TWDM-PON architecture. In the proposed

architecture, the open-flow based SD-controller is capable of

communicating with the Gnutella-Engine Manager

(G-Engine Manager) through North Bound APIs. The

OpenFlow based SD-controller manages the traffic flows

between the ONUs and OLT, and it takes benefits of flow

tables in ONUs containing the flow entry of each packets

traveling in the network to reduce the waste of bandwidth

done by Gnutella application.

A. System Architecture

we proposed a hierarchical Gnutella network shown in Fig.

1 by categorizing the nodes as Lead Nodes and Ultra Nodes

[16] that the G-Engine Manager as an Ultra Node and ONUs

as a Leaf Node. The architecture consists of five main

components, which are Gnutella-OLT (G-OLT),

Gnutella-ONU (G-ONU), G-Engine Manager, 3:N Star

Coupler (3:N SC) and MUX/DEMUX. The 3:N SC

broadcasts the downstream traffic tuned at the wavelength

1-4, upstream traffic tuned at the wavelength 5-8, and the

intra traffic tuned to wavelength λp2p.

B. Proposed OLT Architecture

Fig. 2 shows the details of Software-Defined OLT

(SD-OLT) architecture which contains the flow table,

buffered manager and SD-controller. The packet send by

ONUs is being received by the receiver (Rx) which is then

classified by packet classifier according to the packet types.

The packet classifier contains CoS (Class of Service) which

classifies the traffic according to the packet types, Expedited

Forwarding (EF) traffic, Assured Forwarding (AF) traffic

and Best Effort (BE) traffic; and ToS (Type of Service)

classifies the types of services. In our case, ToS will classify

the GT (Gnutella Traffic) from the BE traffic. If

SD-controller found some packets that belong to Gnutella

Traffic, first it will check whether the requested packet is

already in the same PON. This work is done by checking the

flow entry of OLT and ONUs, and if it found that the

requested packet is already in ONUs, the SD-Controller will

update the SD-Agent. After that, the ONUs can request for

the time slots to process the request packets. If the requested

packet is not found in the flow table entry of ONUs, it will

redirect the packet request to the G-Engine Manager for

further processing. The G-Engine Manager consists of the

packet processing engine, processing unit, storage, and

buffer. The packet processing engine is equipped with the

Query Routing Table (QRT) and the Distributed Hash Table

(DHT) [34]. QRT is used to maintain the routing table of

each user where the routing table contains a number of

packets shared by each user. If the packet is not found in

PON or Local LAN, it will redirect the message out of PON.

DHT is used to maintain the index value of shared file by

each ONUs, where the key value is generated by each node

and makes their own DHT, and G-Engine Manager maintains

and updates the DHT tables.

Fig. 2. Detailed software-defined OLT.

Fig. 3. Detailed operations of Gnutella.

Fig. 3 shows the detailed operations of G-Engine Manager,

after classifying the packet by using packet classifier, the

SD-controller will send all the packets that need to be

processed by Gnutella Engine Manager. The Gnutella Engine

Manager contains the QRT and DHT, so it can store all the

historical Gnutella activity that is done in Local LAN and

PON. It keeps records of all the packets that are being shared

by ONUs users according to packet types including its index

values which are then stored in DHT.

Once the packet is sent by SD-controller to G-Engine

Manager, the QRT will check if the requested packet is being

previously used by ONUs user. If QRT found the requested

packet is not being previously used in the local users or PON,

it will request the packet from external supernodes. If the

QRT found that the requested packets were previously used

by ONUs users, it will update the DHT with new index

values together with all the necessary user information. After

that, it updates the SD-controller and the OLT flow table. The

SD-controller will update the SD-Agent and ONUs flow

table with the information provided by G-Engine Manager.

Once the SD-Agent updates the ONUs, users can request the

timeslot for the transmission of the data.

Both OLT and ONUs can directly process the Report and

Gate message. In our OLT architecture, we have modified the

International Journal of Computer Theory and Engineering, Vol. 12, No. 2, April 2020

34

Ingress rule; if OLT receives any packet that belongs to

Gnutella traffic it will forward to G-Engine manager by

SD-controller for further processing.

C. Proposed ONU Architecture

Fig. 4 shows the detailed ONU architectures. The user

interacts with UNI and subscribes to the network, whereas

the packet classifier has three modules, which enables the

ONUs to classify the user traffic based on different

parameters. According to the Ingress, if the packet classifier

found that the packet belongs to Gnutella traffic, it will check

the flow table entry, and then check if the destination is on the

same ONU or different ONUs. If in the same ONU, it

redirects the packet, but if the end user request is in other

ONU, it is sent to the queue manager for future processing.

The intra traffic request is handled by star coupler by

redirecting the traffic between the ONUs. If the request is not

in the same PON, it is sent to G-Engine Manager for further

processing

Fig. 4. Detailed-software defined ONU.

The flow table is responsible for all records of flow entries

which contain the header files, counters, and actions. The

queue manager has four queues, Expedited-Forwarded (EF),

Assured-Forwarding (AF), and Best-Effort (BE), and one

other queue is referred to as GIT (Gnutella intra-Traffic). The

SD-Agent enables the SD-controller mechanism for the

SD-ONUs to connect between the OLT and ONUs. The

objective is to reduce the huge waste of bandwidth caused by

query message.

D. Gnutella-Dynamic Bandwidth Allocation (G-DBA)

Fig. 5 shows the details of the proposed new DBA scheme

to handle the Gnutella-based traffic. The proposed scheme

supports intra PON traffic with four priority queues at each

ONUs, which are EF, AF, GIT and BE respectively. Once the

OLT receive the Report message, the OLT will calculate the

time slots according to the traffic types. The standard

REPORT frame format has 8 queues. In our proposed

architecture, we only used 4 of them. Queue#0 represents EF

traffic, Queue#1 represents the AF traffic, Queue#2

represents the GT (Gnutella Traffic) and the Queue#4

represent the BE traffic. Here, the G-DBA will assign the

timeslots according to the Priority Queue and available

bandwidth. First it will allocate the bandwidth to EF traffic,

then checks remaining timeslot and allocates to AF traffic.

After EF and AF traffic it will allocate the GT Traffic and

finally the remaining timeslot to the BE traffic. Once the time

slots are being calculated for all traffic, there will be a

message containing start time, length, and wavelength for

each traffic for all ONUs.

Fig. 5. Proposed G-DBA flow chart.

E. Proposed Gnutella Signaling Operation

The Gnutella signaling operation is shown in Fig. 6.

Initially, if a node wishes to participate in the Gnutella

network, they would join by finding an initial host to start its

first connection. If the ONU is leaf node, the initial host will

be G-Engine Manager/Ultrapeers; then, OLT will send the

initial Discovery GATE message to all the connected ONUs.

Autodiscovery mode is used to discover and initialize the

newly activated ONUs in the network. It is also used to learn

round trip delays and MAC address of that ONUs and also

assign Logical Link Identification (LLID) parameters for

ONUs. The autodiscovery process is implemented in both the

OLT and ONUs with four MPCP control messages carried in

MAC control frames: GATE, REGISTER_REQ,

REGISTER, and REGISTER_ACK. The OLT sends a

discovery GATE to all ONUs to create the transmission

opportunity for the undiscovered ONU. Undiscovered ONU

generates a REGISTER_REQ message that remains buffered

until the transmission windows open. Then the

REGISTER_REQ is transmitted upstream to the broadcast

channel. At last, the OLT replies by sending

REGISTER_ACK to finish the autodiscovery process. After

the autodiscovery process, the OpenFlow connection

between the SD-controller and SD-Agent is established by

sending the OFPT_HELLO message on each side.

OFPT_ERROR message will be sent if the connection fails.

After establishing successful connection, the controller sends

an OPFT_FEATURE_REQUEST message which is

responded with OFPT_FEATURE_REPLY by the SD-Agent

of ONU. After that, the SD-controller setups the

OPT_CONFIGURATION in SD-Agent. The handshaking

operations between the ONU and OLT begins with sending

of the string Gnutella Connect/0.6<CR><LF>, where <CR>

is the ASCII code for carriage return and <LF> is the ASCII

code for line feed. The OLT responds with the string

Gnutella/0.6 <status code> <statues string><CR><LF>. The

status <code> follows the HTTP specification with code 200

meaning success [35]. If a client wishes to connect, the client

International Journal of Computer Theory and Engineering, Vol. 12, No. 2, April 2020

35

responds and sends GNUTELLA/0.6 with setting to 200. If

not, it will send an error message and closes the TCP

connection. The PING message is sent by OLT to all the

ONUs to show their presence on the network, and all ONUs

responds by PONG message. The PONG message contains

the Port Number, IP Address, Number of File Shares and

Number of KB Shares, which will be updated in the ONUs

Flow Tables and G-Engine Manager by the SD-controller.

The query is used to search the distributed network and

response to query-hit from ONUs. OFPT_FLOW_MOD is

used to update the flow table of SD-Agent.

Fig. 6. Gnutella signaling operations.

The GATE message specifies the transmission of start and

ends time during which the ONUs can transmit the queued

customer traffic upstream to the OLT. If the packet is intra

traffic, the SD-Agent communicates with the SD-controller

for information about the QRT and DHT then processes the

packet and subsequently updates the flow tables.

III. PERFORMANCE EVALUATION

In this section, we demonstrated our result by comparing it

with IPACT [36]. Our simulation experiment compares the

end-to-end packet delay, jitter, system throughput and packet

dropping probability. The system model is set up in the

OPNET with OLT and 64 ONUs. The data rate of

downstream and upstream both amounts to 4 Gbps and the

ONU buffer size is 10 MB. The distance between the ONUs

and the OLT is uniform from 10 to 20 km. The traffic models

AF and BE are the networks traffics chosen for their

self-similarity and long-range dependence (LRD) whereas,

the highest priority (i.e., EF traffic) uses poison distribution.

Self-similarity and long-range dependence are utilized to

generate the highly burst BE and AF traffic with a Hurst

Parameter of 0.7, and packet sizes of AF and BE are

uniformly distributed between 512 and 12144 bytes while EF

packet sizes are constantly distributed at 560 bytes. The

Gnutella packet is uniformly distributed between 9600 and

12144 bytes. The proposed scheme support four priority

queues at each ONUs, which are EF, AF, GT (Gnutella

Traffic) and BE, respectively. The simulation scenario and

parameter are shown in Table I and Table II respectively.

TABLE I: SIMULATION SCENARIOS

TABLE II: SIMULATION PARAMETER

A. Mean Packet Delay

The mean packet delay occurs when the packets reach the

ONUs at random time periods. Each packets will have to wait

for their allocated time period to transmit the upstream data,

where the waiting time is referred to as packet delay which

consists of the polling, granting and queuing delays [37]. Fig.

7 shows the improvement of delays in the different scenarios

as compared with IPACT. In Case 4 with 1.5ms cycle time,

we obtained maximum improvement in delay. At 1.5ms cycle

time, the result shows the improvement of 22% for EF delay,

22.5% for AF delay and 49.4% for BE delay whereas for

1.0ms cycle time we demonstrated the improvement of

International Journal of Computer Theory and Engineering, Vol. 12, No. 2, April 2020

36

14.8% for EF delay, 14.9% for AF delay and 30.7% for BE

delay, respectively. We can see the improvement because the

request does not have to pass through OLT, it can

immediately redirect the packet using one extra wavelength

(λp2p). In Cases 3 and 6, there is less delay improvement

because the AF traffic value is higher as compared to other

cases.

(a)

(b)

Fig. 7. Average delay improvement with different traffic ratios for (a) 1.0ms

cycle time (b) 1.5ms cycle time.

Fig. 8 shows the Gnutella delay between two different

cycle times. In 1.0ms cycle time, the high traffic load delay

suddenly increased because Cases 3 and 6 have the highest

AF traffic than other cases. This means that it needs more

timeslot to transfer the data so that subsequently our Gnutella

traffic will get the chance to transfer the data as well. Our

traffic prioritizes EF, AF, then Gnutella and lastly, BE traffic.

In the 1.5ms cycle time, the identical situation was alleviated

because the timeslot given by OLT is enough to transfer all

including the Gnutella traffic.

(a)

(b)

Fig. 8. Gnutella delay with different traffic ratios for (a) 1.0ms cycle time (b)

1.5ms cycle time.

B. Jitter Performance

Jitter is the packet transfer delay variation and it has a

significant impact on voice quality. A smaller jitter value is

required to deliver better and high-quality voice signal.

Fig. 9 shows the EF jitter different traffic ratios for

different scenarios. The proposed EF jitter in the high load

(100%) traffic is almost the same as the original IPACT.

However, in some scenarios from 50% to 90%, EF jitter is

improved in high traffic load as compared to IPACT.

(a)

(b)

Fig. 9. EF Jitter with different traffic ratios for (a) 1.0ms cycle time (b) 1.5ms

cycle time.

Fig. 10 shows the Gnutella jitter performance whereby in

Scenarios 3 and 6 at 1.0ms cycle time with traffic load (90%

to 100%) suddenly increased because the AF traffic is higher

as compared to other scenarios. This causes the remaining

traffic to be sent in the next given cycle time. In the case of

1.5ms cycle time, the timeslot given by OLT is enough for

ONUs to send the AF traffic, and the same goes for the

remaining traffic like Gnutella and BE traffic.

(a)

(b)

Fig. 10. Gnutella jitter with different traffic ratios for (a) 1.0ms cycle time (b)

1.5ms cycle time.

International Journal of Computer Theory and Engineering, Vol. 12, No. 2, April 2020

37

C. System Throughput

The system throughput is defined as the sum of the data

rate that is transmitted to all terminals in the network which

also includes the local (intra) traffic between the ONUs and

users. Fig. 11 shows the system throughput in different cases

with various traffic loads. The result clearly shows that the

proposed architecture with Gnutella and redirect traffic

through his higher than of IPACT traffic in both cycle times.

For 1.0ms cycle time, we can improve our throughput to a

maximum of 5.49% for Cases from 1 to 6 while for 1.5ms

cycle time, the maximum improvement is 5%. The

improvement is obvious because we are redirecting the intra

traffic (15% and 25%) of BE traffic from one ONU to another.

So when the number of intra traffic increases, the system

throughput also increases. However, the system throughput

performance at high traffic conditions (90% to 100%) are

almost the same.

(a)

(b)

Fig. 11. System Throughput with different traffic ratios for (a) 1.0 ms cycle

time (b) 1.5 ms cycle time.

(a)

(b)
Fig. 12. Traffic Dropping with different traffic ratios for (a) 1.0ms cycle time

(b) 1.5ms cycle time.

D. Traffic Dropping

Cycle time and buffer size are the two main reasons for

causing packet loss at ONUs. Increasing the cycle time

reduces the packets lost because each ONUs has more

time-slot to send its queues, however increasing cycle time

also cause to a high packet delay. Increasing the buffer size

reduces the packet loss but it will increase the queuing delay.

Fig. 12 shows the improvement of traffic dropping for 1.0ms

and 1.5ms cycle times. The simulation result shows the BE

dropping has improved with the Gnutella traffic ratio (25%)

of BE traffic as compared with (15%) of BE traffic. While

comparing with both 1.0ms and 1.5ms cycle times, the result

shows that the BE traffic dropping in 1.0ms cycle time is

reduced up to 57% and in 1.5ms cycle time traffic dropping is

reduced up to 77% in Case 6. From our observation, we

concluded that the traffic loss occurs when the traffic load is

beyond 70% at 1.0ms and 1.5ms cycle times, respectively.

When the BE traffic ratio is higher, the BE traffic increases in

all conditions. On the other hand, the packet loss has

improved in the 1.5ms cycle time because the ONUs has

more time to transmit the buffered packets.

IV. CONCLUSION

In this paper, we proposed a TWDM-PON architecture

and integrated it with an SDN scheme to handle the Gnutella

based applications. Our proposed G-DBA and SDN

controller can handle and enhance the required bandwidth for

Gnutella application as well as improve the transmission

delay and success rate in intra PON. We used an extra

wavelength to transmit the Gnutella traffic that assists faster

file transfers in local PON, which increases the scalability,

performance and guarantee the Quality of Services (QoS).

Our proposed architecture can improve BE packet delays for

up to 49%, EF packet up to 22%, AF packet up to 22%. Our

throughput also went up to 5% and with dropping

improvement up to 77% in Case 6 for 1.5ms cycle time.

Likewise, the proposed architecture can be extended for

multi-PONs to handle multiple Peer to Peer applications at

the same time, such as Bit-Torrent, UTorrent, etc. Ultimately,

the Network Function Virtualization (NFV) and Protection

can be employed for all SD-OLT and SD-ONUs to provide a

reliable system.

CONFLICT OF INTEREST

This paper or its version does not submit to any journal.

This work was supported in part by the National Science

Council of the Republic of China under grants MOST

107-2221-E-155-015.

AUTHOR CONTRIBUTIONS

Ms. Ardian Rianto, Prof. Andrew Fernando Pakpahan and

Prof. Andrew Tanny Liem studied the proposed the system

architecture and Gnutella operations; Mr. Anish Sah is

responsible for the simulation and data analysis; Prof.

I-Shyan Hwang conducted the research and edited the paper;

all authors had approved the final version.

REFERENCES

[1] P2P Networking and P2P Software. [Online]. Available:

https://www.lifewire.com p2p-networking-and-software-818019

[2] Y. Xu, X. Ma, and C. Wang, “Selective walk searching algorithm for

Gnutella network,” in Proc. 4th IEEE Consumer Communications and

Networking Conference, 2007, pp. 746-750.

International Journal of Computer Theory and Engineering, Vol. 12, No. 2, April 2020

38

[3] V. Vishnumurthy and P. Francis, “A comparison of structured and

unstructured P2P approaches to heterogeneous random peer selection,”

in Proc. USENIX Annual Technical Conference. USENIX Association:

Santa Clara, CA, 2007, pp. 1-14.

[4] T. Androutsellis, White Paper: A Survey of Peer-to-Peer File Sharing

Technologies, 2002.

[5] D. Spinellis, “A survey of peer-to-peer content distribution

technologies,” ACM Computing Surveys, vol. 36, no. 4, pp. 335-371,

2004.

[6] Gnutella Protocol Development. (2002). [Online]. Available:

http://rfc-gnutella. sourceforge.net/src/rfc-0_6-draft.html

[7] Wikipedia, Gnutella. [Online]. Available:

https://en.wikipedia.org/wiki/Gnutella

[8] P. Kisembe and W. Jeberson, “Future of peer-to-peer technology with

the rise of cloud computing,” International Journal of Peer to Peer

Networks, vol. 8, no. 2/3, pp. 45-54, Aug. 2017.

[9] D. Stutzbach and R. Rejaie, “Characterizing the two-tier Gnutella

topology,” in Proc. 2005 ACM SIGMETRICS International

Conference on Measurement and Modeling of Computer Systems.

Banff, Alberta, Canada, 2005, pp. 402-403.

[10] M. Ripeanu, “Peer-to-peer architecture case study: Gnutella network,”

in Proc. the First International Conference on Peer-to-Peer

Computing, 2001, pp. 99-100.

[11] D. Ilie and A. Popescu, “Statistical models for Gnutella signaling

traffic,” Computer Networks, vol. 51, no. 17, pp. 4816-4835, 2007.

[12] M. Portmann et al., “The cost of peer discovery and searching in the

Gnutella peer-to-peer file sharing protocol,” in Proc. the 9th IEEE

International Conference on Networks, 2001, p. 263.

[13] L. Tsungnan, W. Hsinping, and W. Jianming. “Search performance

analysis and robust search algorithm in unstructured peer-to-peer

networks,” in Proc. IEEE International Symposium on Cluster

Computing and the Grid, 2004, pp. 346-354.

[14] C. J. Wu, K. H. Yang, and J .M. Ho, “AntSearch: An ant search

algorithm in unstructured peer-to-peer networks,” in Proc. IEEE

Symposium on Computers and Communications, 2006, pp. 429-434.

[15] F. Ye, F. Zuo, and S. Zhang, Routing Algorithm Based on Gnutella

Model, Springer Berlin Heidelberg, 2009, pp. 9-15.

[16] K. Althobaiti, S. J. Alotaibi, and H. Alqahtani, “Improving Gnutella

query search algorithm with jumps,” International Journal for

Information Security Research, vol. 5, no. 4, pp. 600-607, Dec. 2015.

[17] S. Anurag and C. Rohrs. (2001). Ultrapeers: Another Step towards

Gnutella Scalability. [Online]. Available:

http://rfc-gnutella.sourceforge.net/Proposals/Ultrapeer/Ultrapeers.htm

[18] A. T. Liem, “P2P locality awareness architecture in Ethernet passive

optical networks,” in Proc. International Conference on QiR, 2013, pp.

111-115.

[19] Z. Wang et al., “MPCP design in prototyping optical network unit of

Ethernet in the first mile,” in Proc. the Ninth International Conference

on Communications Systems, 2004, pp. 121-125.

[20] A. Dixit et al., “Novel DBA algorithm for energy efficiency in

TWDM-PONs,” in Proc. 39th European Conference and Exhibition on

Optical Communication, 2013, pp. 1-3.

[21] X. Li and H. Yousefi'zadeh, “MPCP: Multi packet congestion-control

protocol,” SIGCOMM Computer Communication, vol. 39, no. 5, pp.

5-11, 2009.

[22] M. Li et al., “New dynamic bandwidth allocation algorithm for

Ethernet PON,” in Proc. 8th International Conference on Electronic

Measurement and Instruments, 2007, pp. 224-227.

[23] B. Skubic et al., “Dynamic bandwidth allocation for long-reach PON

overcoming performance degradation,” IEEE Communications

Magazine, vol. 48, no. 11, pp. 100-108, 2010.

[24] I. S. Hwang, A. Rianto, and A. F. Pakpahan, “Software-defined

peer-to-peer file sharing architecture for TWDM-PON,” in Proc. 27th

Wireless and Optical Communication Conference, 2018, pp. 1-4.

[25] I. S. Hwang and A. T. Liem, “A hybrid scalable peer-to-peer IP-based

multimedia services architecture,” IEEE/OSA Journal of Lightwave

Technology, vol. 31, no. 2, pp. 213-222, 2013.

[26] D. Nesset, “NG-PON2 technology and standards,” Journal of

Lightwave Technology, vol. 33, no. 5, pp. 1136-1143, 2015.

[27] M. Hajduczenia and H. J. A. D. Silva, “Next generation PON systems -

Current status,” in Proc. 11th International Conference on Transparent

Optical Networks, 2009, pp. 1-8.

[28] Open Network Foundation, “Software-defined networking: The new

norm for networks,” ONF White Paper, 2012.

[29] D. Kreutz et al., “Software-defined networking: A comprehensive

survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, 2015.

[30] Y. Zhao, B. Yan, and J. Zhang, “Software defined passive optical

networks with energy-efficient control strategy,” Optik, vol. 127, no.

23, pp. 11211-11219, 2016.

[31] A. F. Pakpahan, I. S. Hwang, and A. Nikoukar, “OLT energy savings

via software-defined dynamic resource provisioning in

TWDM-PONs,” IEEE/OSA Journal of Optical Communications and

Networking, vol. 9, no. 11, pp. 1019-1029, 2017.

[32] P. Parol and M. Pawlowski, “Towards networks of the future: SDN

paradigm introduction to PON networking for business applications,”

in Proc. Federated Conference on Computer Science and Information

Systems, 2013, pp. 829-836.

[33] N. Cvijetic et al., “SDN and OpenFlow for dynamic flex-grid optical

access and aggregation networks,” Journal of Lightwave Technology,

vol. 32, no. 4, pp. 864-870, 2014.

[34] Wikipedia, Gnutella2 Developer Network. [Online]. Available:

http://g2.doxu.org/ index.php/Main_Page

[35] D. Ilie, “Gnutella network traffic measurements and characteristics,”

Blekinge Institute of Technology Licentiate Dissertation Series, 2006.

[36] G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT a dynamic

protocol for an Ethernet PON (EPON),” IEEE Communications

Magazine, vol. 40, no. 2, pp. 74-80, 2002.

[37] G. Kramer, Ethernet Passive Optical Network, McGraw-Hill

Professional, 2005.

Copyright © 2020 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Anish Sah received the B.C.A degree in computer

science from the Purbanchal University of Nepal, in

2015, and the M.S degree from Yuan Ze University,

Taoyuan City, Taiwan, in 2019. His research interests

include high speed network, SDN, machine learning and

IoT.

I-Shyan Hwang received B.S. and M.S. degrees in

electrical engineering and electronic engineering from

Chung-Yuan Christian University, Chung-Li, Taiwan, in

1982 and 1984, respectively, and M.S. and Ph.D. degrees

in electrical and computer engineering from the State

University of New York at Buffalo, NY, in 1991 and

1994, respectively. In Feb. 2007, he was promoted to full

professor in the Department of Computer Science & Engineering at the Yuan

Ze University, Chung-Li, Taiwan. His current research interests are

fault-tolerant computing, high-speed networks, fixed mobile convergence,

heterogeneous multimedia services over fiber optic networks, NGN, green

computing and optical-network based infrastructure over cloud computing.

He serves as a member of the editorial board for the Springer Photonic

Network Communications Journal.

Ardian Rianto received a B.S. degree and an M.S.

degree in computer science & engineering at Yuan Ze

University, Taiwan in 2018. He is pursuing his Ph.D.

degree now. His recent work focuses on peer-to-peer

(P2P) applications in passive optical network.

Andrew Fernando Pakpahan received a B.S. degree in

computer science from Universitas Advent Indonesia,

Bandung, Indonesia and M.S. in informatics from Institut

Teknologi Bandung, Indonesia, and received a Ph.D.

degree in computer science & engineering at Yuan Ze

University, Taiwan in 2018. His current research

interests are in passive optical network, software-defined

networking, and network function virtualization.

Andrew Tanny Liem received the B.S. degree from the

Department of Computer Science, Adventist University

of Indonesia, Bandung, Indonesia, in 2003, and the M.S.

degree in 2006. He received the Ph.D. degree in

computer science and engineering from the Yuan-Ze

University, Taiwan in 2014. He is with Department of

Computer Science at Klabat University, Manado,

Indonesia. His recent work focuses on NGN and P2P

over EPON and fault tolerance.

International Journal of Computer Theory and Engineering, Vol. 12, No. 2, April 2020

39

https://creativecommons.org/licenses/by/4.0/

	1260-A3010

