

Abstract—1010! is a tile-matching game for Android and iOS.

Players aim to fill a board’s entire row or column using blocks

from block holder to empty the board, thus create more space

for the next blocks. These blocks are randomly-generated, thus

occasionally block holders will hold blocks that cannot fit into

the board by any combination and cause the game to end. This

loss can be avoided using a two-stage performance improver

consists of validator and unfit block changer. Validation begins

by creating an AND-OR tree as a basis for validation’s flow,

taking block set’s permutation and block’s position to the board

into account. If the block set is deemed unfit, block changer

algorithm will calculate the heuristics for each block based on

frequency and location of failure in the validation stage, then

change the block with the highest heuristic with random block

and redo the validation stage with new block set. After

measuring performance on five gameplays, running only the

validation stage results in an average of 3.95 ms, while doing

both stages ran in 14.48 ms on average.

Index Terms—AND-OR tree, mobile game, random

generator, tile-matching.

I. INTRODUCTION

A. About 1010!

1010! is a tile-matching mobile game from Gram Games,

released at Play Store and App Store since August 2014 [1]. It

was highly similar to Tetris [2], but instead of forcing players

to tackle falling blocks with increasing speed into the board,

1010! provided three blocks in a block holder which can be

fitted anywhere in the board. Players will receive points for

inserting filling board with blocks and clearing completed

rows or columns. The game will be over if player cannot

insert any blocks into the board. A sample game can be seen

in Fig. 1.

One of the main problems in 1010! is when a block holder

contained at least one block that could not fit into the board,

no matter how players strategize to put them in, thus causing

a game over situation. The problem lies in the block generator,

which randomly generates three blocks every time the block

holder gets empty without any validator to check its fitness to

the board. This cause a flaw in the game design.

Some solutions that has been proposed is to add undo

button [3], which was rejected by other players because it

reduce the game difficulty and very abusable. Other

recommendation was weighted random [4], which has been

used in Gram Games’ original version of 1010!. This paper

Manuscript received May 3, 2019; revised July 22, 2019.

Livia A. Lohanda, Samuel Lukas, and Irene A. Lazarusli are with the

Informatics Department, Universitas Pelita Harapan, Tangerang, Indonesia

(e-mail: livia.lohanda@uph.edu, samuel.lukas@uph.edu,

irene.lazarusli@uph.edu).

discusses another approach: include validation after block

generation, which trigger the generator to change the unfit

block based on heuristic point calculation.

Fig. 1. A screenshot of 1010! in iOS platform.

B. Scope of Analysis

Fig. 2. A screenshot of Klooni 1010! in Android platform.

The improver will be developed based on an open source

version of 1010! called Klooni 1010! initiated by

LonamiWebs and hosted in their GitHub [5], as seen in Fig. 2.

This project is written in Java using libGDX, a cross-platform

open source Java-based game development framework,

usually used to develop 2D Android games [6].

The validation stage will use AND-OR tree as its skeleton,

and the improver only focuses on ensuring every member of

any randomly generated block set is solvable, without

considering score in its decision making. Also, the improver

Performance Improver for Block Generator in 1010! Using

AND-OR Tree

Livia Andriana Lohanda, Samuel Lukas, and Irene Astuti Lazarusli

International Journal of Computer Theory and Engineering, Vol. 11, No. 6, December 2019

116DOI: 10.7763/IJCTE.2019.V11.1254

must be able to change unfit block with another block that

makes the block set solvable.

Lastly, since 1010! is a mobile game, the improver must

work under 100 milliseconds (ms).

II. LITERATURE REVIEW

A. Puzzle Game Design

According to Schell, there are ten principles that makes a

puzzle game design as a good design [7, pp. 243–251]:

1) Make the goal easily understood

2) Make it easy to get started

3) Give a sense of progress

4) Give a sense of solvability

5) Increase difficulty gradually

6) Parallelism let the players rest

7) Pyramid structure extends interest

8) Hints extend interest

9) Give the answer

10) Perceptual shifts are a double-edged sword

Out of ten principles, 1010! has implemented six first

principles. 1010! has a clear goal and easy to understand with

instructions available in the download page. The score is also

updated instantly after inserting one block into the board, so

the progress is visible. Principle #4 and #5 are represented by

the block sets; fitting all members into the board and clearing

blocks give players a sense of solvability. Moreover, more

blocks in the board means less space to fit another block in

the board, so players must figure out how to clear more space.

Regarding to principle #6, since there is no timer in 1010!,

players can pause the game whenever they want to and

resume it after rest time.

In addition to the 6 principles of puzzle game design, 1010!

relies on Zeigarnik effect to cause addiction towards the

game. [8]. Usually after reaching a certain checkpoint,

players will save their progress and exit the game. However

in 1010!, inserting a block into the board not only can clear

the board, but also create new unfinished rows and columns,

thus players feel as if they can never “complete” the game

and fueled to finish a round until reaching game over [9].

Although 1010! has implemented good design principles,

having a block generator with possibilities of generating

unsolvable block set violates principle #4. If players found

unsolvable block sets too often, they will feel like wasting

time to solve an unsolvable problem and finally decide to

give up [7], (p. 248). Hopelessness after repeatedly facing

unsolvable problems can worsen player’s ability in decision

making [10].

Lastly, regarding to principle #3, implementation of

performance improver should not hinder the game to update

instantly, since higher latency can affects performance [11].

At the rate of 13 ms, human brain can already perceive what

happened to the screen [12]. To maintain the illusion of

animation, a screen must be updated at least every 100 ms,

while a person can unpreparedly respond to stimulus within a

second [13]. If there is no feedback from the game after one

second, players will perceive it as a delay. This means the

improver should run under one second; even better if it runs

under 100 ms to avoid lagging animation.

B. AND-OR Tree

To validate a block set, we must search for a sequence of

actions that can make a block set fits into the board. Since the

solution is a sequence, our searching algorithm must consider

various possible action sequences. We follow up one option

and putting others aside for later, in case the currently chosen

option does not lead to the solution [14].

Usually the search for solution is mapped into a tree, where

nodes represent a subproblem with root node as its initial

state and leaf nodes as goal states. In 1010!, the environment

is nondeterministic, as inserting certain block in certain

position can fill the board or clearing lines. Therefore, we

will use AND-OR tree since it works on problems with

nondeterministic environment.

An AND-OR tree is slightly different from normal tree or

any directed graph used in problem solving. There are two

types of nodes: OR nodes and AND nodes. For an OR node,

their child nodes would not be influenced by other child

nodes, thus if one child node has been marked as resolved, the

parent node will be marked as resolved, too. Meanwhile in an

AND node, all child nodes indicates choices determined by

the environment, which means we must have a plan to solve

each child nodes and therefore all child nodes in an AND

node must be marked as solved before the parent node is

marked as resolved, too. [15].

III. SYSTEM DESIGN

A. Mathematical Modelling of 1010!

A block is consisted of connected cells and labelled with a

row vector that is equals to a 2D matrix of cells

{
 } , and fulfills (1), with indicates a

block type out of available nine types, and
indicates block rotation (and). Labelling

for every block type can be seen in Table I.

 {-

 (1)

A board is represented in a 2D matrix where all

members must fulfill (2). Cells in a board follow the block

type placed in said cell.

 {

 (2)

When inserting a block into the board, the block’s

position will be referenced using a reference point
 ,

which is the bottom leftmost cell. If is placed on

 , that means in there is a reference point

 . All cells in board must fulfill (3).

 (3)

Block holder is labelled as with

indicates the -th block.

International Journal of Computer Theory and Engineering, Vol. 11, No. 6, December 2019

117

TABLE I: TYPES OF BLOCKS IN 1010!

Block Label Block Label Block Label Block Label

 - -

= position of referenced point (
) for each block

B. Algorithm for Validation

1010!’s board state is determined by two factors:

1) Permutation of blocks. There are three blocks in a block

holder and each permutation uses three blocks, thus the

amount of available permutations is These

are labelled as with

and .

[

]

2) Block’s position. The same block in different location

will cause different state. For example, if there are values

of and that fulfills , the

state of board after putting in will be

different than in .

Fig. 3. The AND-OR tree used in validation stage.

The validation begins as illustrated in Fig. 3. There are

three OR nodes that can be chosen. If one of these nodes are

solved, the whole tree is solved. Assumed we are going to test

 . If it fits into the board, the tree will traverse the vertexes

connected to , which has two AND nodes to solve. Assume

we are going to . If fits in the board, must fits in the

board too, else both nodes will be marked unsolved.

The validation algorithm can detect which block causes

failure and where it happens. It can be used to detect which

block must be changed if the validation fails. The failure is

noted in a row vector with
 and filled with the failure’s position based on

current permutation used in validation. Fig. 4 describes the

validation algorithm.

Fig. 4. Validation algorithm.

C. Algorithm for Changing Block

Block changing is triggered when the validator returns

FAILURE. To decide which block is going to be changed, the

algorithm will calculate heuristic points from data collected

at validation stage, which are determined by two factors:

1) How often the block fails the test. The more often it

breaks the test, the bigger the value will be.

2) Position of failure. If it happens in the tree’s leaf node, the

heuristic points will be bigger than in the parent node.

The calculation from is stored first into a 2D

1. While the next permutation is still available:

(a) Adjust 𝑜𝑙𝑑𝑒𝑟 with current permutation

(b) While there is still a location to insert the first block 𝑝𝑖 ,

do:

i. Create new state after putting 𝑝𝑖 .

ii. While there is still a location to insert the second

block 𝑝𝑖 , do:

A. Create new state after putting 𝑝𝑖 .

B. If there is a location to put the third block

 𝑝𝑖 , return SUCCESS code and stop the

improver.

C. If there is none, note 𝑝𝑖 into 𝑢𝑛𝑓𝑖𝑡𝐵𝑙𝑜𝑐𝑘 and

move 𝑝𝑖 ’s location.

iii. If there is no location for 𝑝𝑖 , note 𝑝𝑖 into

𝑢𝑛𝑓𝑖𝑡𝐵𝑙𝑜𝑐𝑘.

iv. Move the location of 𝑝𝑖 .

(c) If there is no location for 𝑝𝑖 , note 𝑝𝑖 into 𝑢𝑛𝑓𝑖𝑡𝐵𝑙𝑜𝑐𝑘.

(d) Use the next permutation.

2. If there is no permutation left, return FAILURE.

International Journal of Computer Theory and Engineering, Vol. 11, No. 6, December 2019

118

matrix with that

follows (4).

 {

 ()
 (4)

After filling matrix , heuristic point is calculated based

on (5).

 ∑
 (5)

IV. IMPLEMENTATION AND TESTING

A. Implementation

In LonamiWebs’ Klooni 1010!, block generator was

located in takeMore() function from BlockHolder class. All

parts of the improver were collected in a helper class called

State which used to convert the 2D matrix into 2D matrix

 where all integers representing cell colors were

replaced with Boolean system to ease checking. In takeMore()

after blocks generation, the block holder will be validated

using validateBlock() from class State, which will call two

function: checkPermute() and changeBlock().

B. Performance Measurement

TABLE II: RESULTS FROM PERFORMANCE MEASUREMENT

 Only validate (ms) Validate+change (ms)

 5.736 7.001

 4.011 15.147

 4.170 14.919

 4.675 10.717

 3.685 22.250

 3.858 -

 3.610 -

 3.648 -

Average 3.948 14.479

Fig. 5. Performance comparison.

Algorithm’s performance was measured using

System.nanoTime() from Java API with Nox emulator as the

device (1 GB RAM and 1 CPU core allocated). In five

gameplays, the testing will measure validateBlock()’s

execution time in nanoseconds and classified them based on

amount of empty cells in the board and whether changeBlock()

was called. Table II and Fig. 5 showed that the more

“crowded” the board were, the longer time needed for the

algorithm to work. The average time needed for validation

stage only was 4 ms, and average time for validation and

changing stage was 14.5 ms.

V. CONCLUSION

In this paper, AND-OR tree had been successfully

implemented during validation stage to ensure solution for

any generated block sets. In case the validator found no

possible solution, the generator will replace said unfit block

according to heuristic calculation. Also, performance

improver for 1010!’s block generator had been implemented

and managed to run under 100 milliseconds. Typically,

validation stage took 4 ms to run, and changing stage took

14.5 ms in average, since it also ran validation more than one

time.

Future improvement can be focused on better method to

determine which block will be changed in case of any unfit

block set, while retain challenging for players and

unburdening for devices.

REFERENCES

[1] Gram Games, “1010! Press release,” Gram Games, Istanbul, 2014.

[2] M. Kosoff. (2015). Here’s how to play the game that’s so addictive it’s

destroying people’s sleep cycles. Business Insider. [Online]. Available:

http://www.businessinsider.sg/how-to-play-1010-mobile-game-2015-

11/?r=US&IR=T

[3] Oktomus. (2017). Feature request: Add an undo button. Issue #19.

LonamiWebs/Klooni1010. Github. [Online]. Available:

https://github.com/LonamiWebs/Klooni1010/issues/19

[4] Hitechcomputergeek. (2017). None of the set of three pieces matches.

Issue #11. LonamiWebs/Klooni1010. Github. [Online]. Available:

https://github.com/LonamiWebs/Klooni1010/issues/11

[5] Lonami, 1010! Klooni, 2017.

[6] J. Bose, LibGDX Game Development Essentials, Birmingham: Packt,

2014.

[7] J. Schell, The Art of Game Design: A Book of Lenses, 2nd ed. Florida:

Taylor & Francis Group, 2015.

[8] B. Zeigarnik, On Finished and Unfinished Tasks.

[9] M. Wu, “Game sophistication analysis: Case study using e-Sports

Games and TETRIS,” Japan Advanced Institute of Science and

Technology, 2018.

[10] K. Starcke, J. D. Agorku, and M. Brand, “Exposure to unsolvable

anagrams impairs performance on the IOWA gambling task,” Front.

Behav. Neurosci., vol. 11, p. 114, 2017.

[11] M. Claypool and K. Claypool, “Latency and player actions in online

games,” Commun. ACM, vol. 49, no. 11, p. 40, Nov. 2006.

[12] M. C. Potter, B. Wyble, C. E. Hagmann, and E. S. McCourt, “Detecting

meaning in RSVP at 13 ms per picture,” Attention, Perception,

Psychophys., vol. 76, no. 2, pp. 270–279, Feb. 2014.

[13] S. K. Card, G. G. Robertson, and J. D. Mackinlay, “The information

visualizer, an information workspace,” in Proc. the SIGCHI

Conference on Human Factors in Computing Systems Reaching

through Technology - CHI ’91, 1991, pp. 181–186.

[14] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,

3rd ed. New Jersey: Prentice Hall, 2010.

[15] G. Levi and F. Sirovich, “Generalized and/or graphs,” Artif. Intell., vol.

7, no. 3, pp. 243–259, 1976.

Livia A. Lohanda was born in 1998 in Tangerang,

Indonesia. She took her bachelor of computer science

at Universitas Pelita Harapan (UPH) from 2015. Since

she was an undergraduate student, she has joined the

School of Information Science and Technology UPH

as a laboratorium assistant. Her current research

interest is artificial intelligence.

International Journal of Computer Theory and Engineering, Vol. 11, No. 6, December 2019

119

	1254-R026

