
  

 

Abstract—Due to the growing number of 

Chip-Multiprocessors, the researchers have proposed new 

designs and architectures. So, there is a constant need to know 

the most accurate simulators used in this scope, which should be 

used to identify their outcomes. Computer System Architecture 

(CSA) simulators are usually used to validate the designs, 

architectures that new discovered and developments. This 

paper is to provide an overview and insight into the most 

critical simulations used in Computer System Architecture and 

possible standards that distinguish simulators from the other. 

The essential aspects and parameters that determine these 

simulators are accuracy, speed, performance, flexibility, and 

functionality as well. Cycle-Accurate, Event-Driven and Full 

Systems Simulators of CSA, this taxonomy of simulators that w 

discusses in this paper. 

 
Index Terms—Computer system architecture (CSA), 

simulators, sniper, a cycle-accurate, full system, event-driver, 

Gem5, DRAMSim21. 

 

I. INTRODUCTION 

Computer System Architecture (CSA) Simulators are 

software tools which are essential in designing several 

computer models and components to predict performance 

level in specific inputs [1]. Computer simulations are usually 

a crucial point in computer architecture research and design. 

Such referred to like the intricate design used by researchers 

in architecture, which often designed in a complicated and 

non-analytical way, which makes the production of such 

models at all stages of design costly [1]. A comprehensive 

simulation is expensive, as well as it requires realistic 

workloads, many machine cycles, and well-designed 

simulators [2].  

Usually, the required level of detail getting by the low 

speed, but in this issue, the multi-core processor design needs 

a high-speed simulation [3]. That may take several weeks and 

months to complete the task. The increasing of generations 

grows with the aggregate throughput of the host chip 

increases. However, there is no enhancement due to energy 

constraints in the single-thread performance, that is a critical 

component in the simulation [4]. It is interesting to note that 

the number of the core is directly proportional to the 

architecture model, as the number of cores increases, the 

architecture becomes more complicated than the first. The 
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increasing target complexity does not adapt to the increased 

performance of the host cores. Researchers recognize the 

problem by finding out different strategies to reduce 

simulation time [5]. The method of sampling is the way that 

applied in most previous works that use to get an analytical 

description for a particular part in the application. That helps 

to get comparable visions in a full simulation with the reduce 

time taken as well [6].  

In another hand, other researchers presented the parallel 

simulation by running it on several threads to reduce a 

single-simulation period. As well, this approach is 

appropriateness for design stages, which requires to be 

evaluated faster for more design points. Although, when 

passing several parameters, driving Indicators simulations, 

concurrently provides better performance for simulation [1]. 

Necessarily to use the reducing simulation period strategies 

in the cycle-accurate simulators [7]. The simulators in 

computer architecture implement the essential elements of 

research to improve understanding of the importance 

associating to the workload of the microarchitectural 

structure. Generally, cycle-accurate simulators are not proper 

for complex and large-scale structures [4]. 

The rest of the paper formed as follows: Section II 

explained the importance of studying computer system 

architecture. The type of system simulators described in 

Section III. Section IV discusses the selected simulators for 

detailed study. Section V concludes the paper. 

 

II. COMPUTER SYSTEM ARCHITECTURE SIMULATORS 

IMPORTANCE 

Simulation is necessary because it facilitates the work of 

researchers, simulates their work, and implements the 

complicated structures. As such, the old systems required. A 

system migration simulation, significant as well, which are 

costly, can be simulated to maintain their operation. 

Therefore, the simulators can help the company in moving to 

the new software and hardware easier. That provides 

economics and time in the business aspect [6], [7]. Besides, 

simulation is also essential for hardware development.  

According to Magnusson et., simulators are significant in 

modelling computer systems despite their availability [8]. 

That contributes to the development of devices that still exist 

or are under construction. Also, it decreases the costs because 

it reduces the need for hardware models [9]. Thus, the use of 

simulation is useful in terms of cost savings. For example, the 

simulator provides the standard x86-based PC, to save costs 

and organization [9]. It could help to build software for the 

developers of device drivers and operating systems as well. 

It’s challenging to debug software that is running in kernel 
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mode; but, with using simulators provide debugging options 

that make the development easier [1]. Also, the simulators 

operate in a controlled environment that helps the researchers 

to check security and enhance their work. That enables the 

companies to examine the new proposed systems before 

going into the process production. The simulation technology 

has importance in recovering the past states of simulated 

computers. 

 

III. CLASSIFICATION OF COMPUTER SYSTEM ARCHITECTURE 

SIMULATORS 

The taxonomies in computer architecture simulators based 

on their contexts. In the beginning, the researchers classified 

the simulators depend on their field, which involves Cycle 

Accurate, Full System, Instruction Set, Micro-architecture, 

and Application-based simulators. 

In another hand, there is another classification according to 

the inputs or workload, which involves event-driven (also 

called trace-driven simulators) and execution-driven 

simulators [10]. 

A. Full System Simulators 

Full system simulators can simulate a fully operating 

system. Also, it can simulate the I/O devices which needed to 

boot an operating system. That enables it to be flexible to 

operate complex multi-threaded workloads. In general, the 

full system simulators involve memories, peripheral devices, 

interconnection buses, network connections, and processor 

cores. There are many examples of full system simulators like 

Simics [11], Gem5 [10], ML-Rsim [12], SimOS [10], and 

PTLSim [13]. 

B. Event-Driven Simulators 

In this case, Event-driven simulators (also called 

Trace-driven simulators) use trace files as inputs. These files 

include recorded streams of instructions of a program 

operating on some real hardware, and this hardware 

considers it's the target [12].  

One of the most problems that faced the developers in this 

type of simulators generated files could be a considerable 

size and retrieve such files from disk it may take longer time. 

However, this problem can solve by utilised trace sampling 

and reduction techniques [10]. According to the event-driven 

simulation cannot be used as a simulator to systems based on 

the parallel system or timing. These Simulators perform 

simulation corresponding to events, rather than depending on 

a cycle-by-cycle in simulating the target. Sniper is CSA 

simulator depends on this technique [9]. 

C. Cycle-Accurate Simulators 

A cycle-accurate simulator is a CSA simulator that based 

on a cycle-by-cycle basis. Usually, a cycle-accurate simulator 

is applied when designing a new microprocessor so they can 

be experimented and benchmarked accurately without 

building a hardware device, and it merely changes design 

many times to reach the required plan [13]. 

The Cycle-accurate simulators require to check if all 

orders executed in the proper virtual time – branch prediction, 

thread context switching, fetch, cache misses, and many 

other subtle aspects of microprocessors [8]. Cycle-accurate 

simulators usually add a fixed latency to memory accesses, 

that lead to significantly under-reporting the real impact of 

the memory system. Often, it uses Cycle-accurate simulators 

to help fill the void of accurate memory system simulators. 

DRAMSim2 is CSA simulator depends on this technique [7]. 

 

IV. SELECTED SIMULATORS FOR DETAILED STUDY 

In this paper, has selected three types of simulators for 

detailed study, which are gem5 simulator as an example of 

full system simulators [8], Sniper simulator as an example of 

Event-driven simulators [6], and DRAMSim21 simulator as 

an example of Cycle-Accurate simulators, because they have 

several design strategies with respect to detail and concept 

[7], [14]. Next, is a brief discussion of all these simulators 

along with previous validation works. 

A. Gem5 Simulator 

Gem5 is a full system simulator that used instruction set 

architectures (ISAs) with many CPU models [4]. Gem5 

obtains the full memory system modelling from GEMS [10] 

and the detailed CPU modelling from M5 [4]. Also, it 

supports various CPU models, including 'TimingSimple', 

'AtomicSimple', 'O3' and 'InOrder'. AtomicSimple and 

TimingSimple are nonpipelined single-cycle 

micro-architectures [10].  

The 'InOrder' and 'O3' used as a pipelined out-of-order 

(OOO) and in-order (IO) core models. Both are 

'execute-in-execute' meaning that instructions executed in the 

execute step after the fixed all the dependencies. These can 

be configured to simulate a different number of pipeline 

stages, issue widths and number of hardware threads. 

Gutierrez and his team experimented the accuracy of gem5 

by modelling real systems based on ARM. They made some 

modifications in the simulator, Gutierrez et al. [15] were 

obtained 5% as a low percentage in a runtime error, and they 

gained 13% as a low absolute percentage in a runtime error 

for SPEC CPU2006 benchmarks [5], [15].  

Usually, the researchers also require a simulation structure 

that enables them to cooperate with others in both academia 

and industry [15]. However, the licensing terms of the 

simulators and quality of code can prevent this collaboration. 

Moreover, some limitations like the lack of modularity and 

the poor of quality code may cause some difficulties in 

understanding and modify the code for new users. 

The gem5 simulator exceeds those restrictions by 

providing a flexible and modular simulation system that can 

evaluate a broad range of systems, and it is reachable and 

available for researchers. This infrastructure affords 

flexibility by providing several sets of memory system 

models, CPU models, and system execution modes [16]. The 

license of BSD-based makes the code reachable and available 

for others (researchers and developers) without awkward 

legal restrictions [4]. 

B. Sniper Simulator 

Sniper is a parallel simulator, a high-speed and accurate 

x86. This simulator depending on the Graphite simulation 

infrastructure and the interval core model, providing a 

realistic and fast simulation to able to use a range of flexible 

International Journal of Computer Theory and Engineering, Vol. 11, No. 6, December 2019

104



  

simulation possibilities while searching various 

heterogeneous and homogeneous multi-core architectures [9]. 

Besides, it achieves timing simulations at high speed, and this 

considered faster than the current-used simulators. The 

timing simulations performed by the sniper simulator for 

both multi-threaded, multi-program workloads and 

shared-memory applications, are among 10s to 100+ cores. 

The critical feature of the sniper simulator is has a core model 

that depends on the period simulation [10]. The main reason 

which makes the simulator be faster development and 

evaluation times by using intervals which mean 'jumping' 

between miss events [17].  

Sniper simulator has been examined with Nehalem 

systems and multi-socket Intel Core2 and get c performance 

errors about 25% at a speed of simulation up to several MIPS 

[9].  

This simulator has a friendly environment and easy for the 

researchers; that the reason to be balanced between accuracy 

and performance. However, Sniper simulator doesn't support 

all instructions of a different systems model (i.e. x86-bit 64 

and the SSE4 ) [10]. 

Sniper simulator is considered very important in vital 

studies that require in-depth detail. It also has used in 

conventional one-IPC models when the cycle-accurate 

simulators are not fast to allow logical simulation 

assignments [1].  

After the simulation process ends; the sniper simulator 

generates different files which are (sim.cfg, sim.out, and 

sim.stats) [1]. The sim.cfg file contains configuration 

alternatives that used in the simulation process. While the 

sim.out files include the primary statistics, also the sim.stats 

file comprises several sets of tools to capture critical points of 

the simulation and most importantly is CPI (Cycles Per 

Instruction) Stacks. The CPI stack is sets of instructions 

includes different components which contribute to the overall 

performance, as presented in Fig. 1. The core CPI exists at 

the bottom and displays the vital work done. The CPI stack is 

essential while obtaining insight toward the performance of 

the simulation [1]. 

An additional essential feature is that the interval core 

model supports the making Cycles Per Instruction (CPI) 

stacks. These stacks represent the cycles number that gets lost 

due to the variable features of the system. This feature allows 

Sniper use in the categorisation of applications and hardware 

design/software [7]. The topology which uses in Sniper as 

shown in Fig. 2. 

 

 
Fig. 1. Cycles per instruction stack [1]. 

 
Fig. 2. The topology which uses in Sniper. 

 

C. DRAMSim2 Simulator 

 
Fig. 3. Overview of DRAMSim2 elements [7]. 

 

Fig. 3 Demonstrated the main structure of the DRAMSim2 

elements. DRAMSim2 is considered one of the most popular 

DDR2/3 memory system simulators which implemented by 

using C++. The primary purpose of design this simulator is to 

improve the accuracy of the simulation results and make the 

simulator freely accessible DDR2/3 memory system model as 

well can utilise for trace-based and full system simulations 

[7].  

As shown in Fig. 3 the core of the DRAMSim2 represented 

by the object named memory system which needs two types 

of files: the first file is a device ini which includes parameters 

that define a particular DRAM device like power 

consumption and the timing constraints of the device. The 

second file is a system ini contains independent parameters of 

the real DRAM device [7]. As an example of these 

parameters are: ranks, memory controller queue structures, 

row buffer, the address mapping scheme, debug options. 

Also, the DRAMSim2 can be run in two different modes, 

which are a shared library or as a standalone binary [13]. 

Moreover, this type of simulator has a flexible 

object-oriented design and programming interface. More 

critical, the DRAMSim2 supports a verification tool which 

can help to verify the results of the DRAMSim2 simulation 

without caring about the front end driver2 [13]. 

Besides shown that the DRAMSim2 offers a robust 

visualisation tool that allowed users to view and analyse the 

impacts of memory system parameters on performance 

metrics like power, latency and bandwidth [7]. All of these 

characteristics make the DRAMSim2 an essential tool for 
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researchers, especially those who want to comprise memory 

models in their computer architecture research [7], [10]. 

 

V. CONCLUSION 

More generally, these essential findings are consistent with 

research showing that the best simulators tool that used 

model multi-core micro-architecture. It is significant to use 

simulators features at a sooner speed than the full-system 

simulators identified through hardware and software 

expenses. The main challenge of the simulators is how to 

make a simulation been for thousand-core chips; however, 

having such simulators is impossible to reach that level. 

Furthermore, it may face challenges to achieve the primary 

goal because of the limitation of some cores that causes by 

the Instruction Set Architectures (ISA). In general, it possible 

x86’s Advanced Programmable Interrupt Controllers 

(xAPICs) able to support 256 cores. In this level of operation, 

selecting a simulator must depend on the user-level simulator 

model. 

The continuous increase in the numbers of processes in 

cores and systems leads to a rise in the system sizes that may 

cause some difficulties in the simulating. The constant 

development of multi-core technology with much larger 

cache sizes requires accurate and high-level simulations to 

validate the initiation of system architectures and designs. 
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