

Abstract—Due to the growing number of

Chip-Multiprocessors, the researchers have proposed new

designs and architectures. So, there is a constant need to know

the most accurate simulators used in this scope, which should be

used to identify their outcomes. Computer System Architecture

(CSA) simulators are usually used to validate the designs,

architectures that new discovered and developments. This

paper is to provide an overview and insight into the most

critical simulations used in Computer System Architecture and

possible standards that distinguish simulators from the other.

The essential aspects and parameters that determine these

simulators are accuracy, speed, performance, flexibility, and

functionality as well. Cycle-Accurate, Event-Driven and Full

Systems Simulators of CSA, this taxonomy of simulators that w

discusses in this paper.

Index Terms—Computer system architecture (CSA),

simulators, sniper, a cycle-accurate, full system, event-driver,

Gem5, DRAMSim21.

I. INTRODUCTION

Computer System Architecture (CSA) Simulators are

software tools which are essential in designing several

computer models and components to predict performance

level in specific inputs [1]. Computer simulations are usually

a crucial point in computer architecture research and design.

Such referred to like the intricate design used by researchers

in architecture, which often designed in a complicated and

non-analytical way, which makes the production of such

models at all stages of design costly [1]. A comprehensive

simulation is expensive, as well as it requires realistic

workloads, many machine cycles, and well-designed

simulators [2].

Usually, the required level of detail getting by the low

speed, but in this issue, the multi-core processor design needs

a high-speed simulation [3]. That may take several weeks and

months to complete the task. The increasing of generations

grows with the aggregate throughput of the host chip

increases. However, there is no enhancement due to energy

constraints in the single-thread performance, that is a critical

component in the simulation [4]. It is interesting to note that

the number of the core is directly proportional to the

architecture model, as the number of cores increases, the

architecture becomes more complicated than the first. The

Manuscript received August 2, 2019; revised October 10, 2019.

Ahmed Hasan Kadhim Janabi is with Faculty of Art, Science &

Technology, University of Northampton, Northampton, UK and IT

Department, Al-Mustaqbal University College, Hilla, Babil, Iraq (e-mail:

ahmedaljanabi95@outlook.com).

Michael Opoku Agyeman is with Faculty of Art, Science & Technology,

University of Northampton, Northampton, UK (e-mail:

Michael.OpokuAgyeman@northampton.ac.uk).

increasing target complexity does not adapt to the increased

performance of the host cores. Researchers recognize the

problem by finding out different strategies to reduce

simulation time [5]. The method of sampling is the way that

applied in most previous works that use to get an analytical

description for a particular part in the application. That helps

to get comparable visions in a full simulation with the reduce

time taken as well [6].

In another hand, other researchers presented the parallel

simulation by running it on several threads to reduce a

single-simulation period. As well, this approach is

appropriateness for design stages, which requires to be

evaluated faster for more design points. Although, when

passing several parameters, driving Indicators simulations,

concurrently provides better performance for simulation [1].

Necessarily to use the reducing simulation period strategies

in the cycle-accurate simulators [7]. The simulators in

computer architecture implement the essential elements of

research to improve understanding of the importance

associating to the workload of the microarchitectural

structure. Generally, cycle-accurate simulators are not proper

for complex and large-scale structures [4].

The rest of the paper formed as follows: Section II

explained the importance of studying computer system

architecture. The type of system simulators described in

Section III. Section IV discusses the selected simulators for

detailed study. Section V concludes the paper.

II. COMPUTER SYSTEM ARCHITECTURE SIMULATORS

IMPORTANCE

Simulation is necessary because it facilitates the work of

researchers, simulates their work, and implements the

complicated structures. As such, the old systems required. A

system migration simulation, significant as well, which are

costly, can be simulated to maintain their operation.

Therefore, the simulators can help the company in moving to

the new software and hardware easier. That provides

economics and time in the business aspect [6], [7]. Besides,

simulation is also essential for hardware development.

According to Magnusson et., simulators are significant in

modelling computer systems despite their availability [8].

That contributes to the development of devices that still exist

or are under construction. Also, it decreases the costs because

it reduces the need for hardware models [9]. Thus, the use of

simulation is useful in terms of cost savings. For example, the

simulator provides the standard x86-based PC, to save costs

and organization [9]. It could help to build software for the

developers of device drivers and operating systems as well.

It’s challenging to debug software that is running in kernel

An Overview of Cycle-Accurate, Event-Driven and Full

Systems Simulators for Chip-Multiprocessors

Ahmed Hasan Kadhim Janabi and Michael Opoku Agyeman

International Journal of Computer Theory and Engineering, Vol. 11, No. 6, December 2019

103DOI: 10.7763/IJCTE.2019.V11.1251

mode; but, with using simulators provide debugging options

that make the development easier [1]. Also, the simulators

operate in a controlled environment that helps the researchers

to check security and enhance their work. That enables the

companies to examine the new proposed systems before

going into the process production. The simulation technology

has importance in recovering the past states of simulated

computers.

III. CLASSIFICATION OF COMPUTER SYSTEM ARCHITECTURE

SIMULATORS

The taxonomies in computer architecture simulators based

on their contexts. In the beginning, the researchers classified

the simulators depend on their field, which involves Cycle

Accurate, Full System, Instruction Set, Micro-architecture,

and Application-based simulators.

In another hand, there is another classification according to

the inputs or workload, which involves event-driven (also

called trace-driven simulators) and execution-driven

simulators [10].

A. Full System Simulators

Full system simulators can simulate a fully operating

system. Also, it can simulate the I/O devices which needed to

boot an operating system. That enables it to be flexible to

operate complex multi-threaded workloads. In general, the

full system simulators involve memories, peripheral devices,

interconnection buses, network connections, and processor

cores. There are many examples of full system simulators like

Simics [11], Gem5 [10], ML-Rsim [12], SimOS [10], and

PTLSim [13].

B. Event-Driven Simulators

In this case, Event-driven simulators (also called

Trace-driven simulators) use trace files as inputs. These files

include recorded streams of instructions of a program

operating on some real hardware, and this hardware

considers it's the target [12].

One of the most problems that faced the developers in this

type of simulators generated files could be a considerable

size and retrieve such files from disk it may take longer time.

However, this problem can solve by utilised trace sampling

and reduction techniques [10]. According to the event-driven

simulation cannot be used as a simulator to systems based on

the parallel system or timing. These Simulators perform

simulation corresponding to events, rather than depending on

a cycle-by-cycle in simulating the target. Sniper is CSA

simulator depends on this technique [9].

C. Cycle-Accurate Simulators

A cycle-accurate simulator is a CSA simulator that based

on a cycle-by-cycle basis. Usually, a cycle-accurate simulator

is applied when designing a new microprocessor so they can

be experimented and benchmarked accurately without

building a hardware device, and it merely changes design

many times to reach the required plan [13].

The Cycle-accurate simulators require to check if all

orders executed in the proper virtual time – branch prediction,

thread context switching, fetch, cache misses, and many

other subtle aspects of microprocessors [8]. Cycle-accurate

simulators usually add a fixed latency to memory accesses,

that lead to significantly under-reporting the real impact of

the memory system. Often, it uses Cycle-accurate simulators

to help fill the void of accurate memory system simulators.

DRAMSim2 is CSA simulator depends on this technique [7].

IV. SELECTED SIMULATORS FOR DETAILED STUDY

In this paper, has selected three types of simulators for

detailed study, which are gem5 simulator as an example of

full system simulators [8], Sniper simulator as an example of

Event-driven simulators [6], and DRAMSim21 simulator as

an example of Cycle-Accurate simulators, because they have

several design strategies with respect to detail and concept

[7], [14]. Next, is a brief discussion of all these simulators

along with previous validation works.

A. Gem5 Simulator

Gem5 is a full system simulator that used instruction set

architectures (ISAs) with many CPU models [4]. Gem5

obtains the full memory system modelling from GEMS [10]

and the detailed CPU modelling from M5 [4]. Also, it

supports various CPU models, including 'TimingSimple',

'AtomicSimple', 'O3' and 'InOrder'. AtomicSimple and

TimingSimple are nonpipelined single-cycle

micro-architectures [10].

The 'InOrder' and 'O3' used as a pipelined out-of-order

(OOO) and in-order (IO) core models. Both are

'execute-in-execute' meaning that instructions executed in the

execute step after the fixed all the dependencies. These can

be configured to simulate a different number of pipeline

stages, issue widths and number of hardware threads.

Gutierrez and his team experimented the accuracy of gem5

by modelling real systems based on ARM. They made some

modifications in the simulator, Gutierrez et al. [15] were

obtained 5% as a low percentage in a runtime error, and they

gained 13% as a low absolute percentage in a runtime error

for SPEC CPU2006 benchmarks [5], [15].

Usually, the researchers also require a simulation structure

that enables them to cooperate with others in both academia

and industry [15]. However, the licensing terms of the

simulators and quality of code can prevent this collaboration.

Moreover, some limitations like the lack of modularity and

the poor of quality code may cause some difficulties in

understanding and modify the code for new users.

The gem5 simulator exceeds those restrictions by

providing a flexible and modular simulation system that can

evaluate a broad range of systems, and it is reachable and

available for researchers. This infrastructure affords

flexibility by providing several sets of memory system

models, CPU models, and system execution modes [16]. The

license of BSD-based makes the code reachable and available

for others (researchers and developers) without awkward

legal restrictions [4].

B. Sniper Simulator

Sniper is a parallel simulator, a high-speed and accurate

x86. This simulator depending on the Graphite simulation

infrastructure and the interval core model, providing a

realistic and fast simulation to able to use a range of flexible

International Journal of Computer Theory and Engineering, Vol. 11, No. 6, December 2019

104

simulation possibilities while searching various

heterogeneous and homogeneous multi-core architectures [9].

Besides, it achieves timing simulations at high speed, and this

considered faster than the current-used simulators. The

timing simulations performed by the sniper simulator for

both multi-threaded, multi-program workloads and

shared-memory applications, are among 10s to 100+ cores.

The critical feature of the sniper simulator is has a core model

that depends on the period simulation [10]. The main reason

which makes the simulator be faster development and

evaluation times by using intervals which mean 'jumping'

between miss events [17].

Sniper simulator has been examined with Nehalem

systems and multi-socket Intel Core2 and get c performance

errors about 25% at a speed of simulation up to several MIPS

[9].

This simulator has a friendly environment and easy for the

researchers; that the reason to be balanced between accuracy

and performance. However, Sniper simulator doesn't support

all instructions of a different systems model (i.e. x86-bit 64

and the SSE4) [10].

Sniper simulator is considered very important in vital

studies that require in-depth detail. It also has used in

conventional one-IPC models when the cycle-accurate

simulators are not fast to allow logical simulation

assignments [1].

After the simulation process ends; the sniper simulator

generates different files which are (sim.cfg, sim.out, and

sim.stats) [1]. The sim.cfg file contains configuration

alternatives that used in the simulation process. While the

sim.out files include the primary statistics, also the sim.stats

file comprises several sets of tools to capture critical points of

the simulation and most importantly is CPI (Cycles Per

Instruction) Stacks. The CPI stack is sets of instructions

includes different components which contribute to the overall

performance, as presented in Fig. 1. The core CPI exists at

the bottom and displays the vital work done. The CPI stack is

essential while obtaining insight toward the performance of

the simulation [1].

An additional essential feature is that the interval core

model supports the making Cycles Per Instruction (CPI)

stacks. These stacks represent the cycles number that gets lost

due to the variable features of the system. This feature allows

Sniper use in the categorisation of applications and hardware

design/software [7]. The topology which uses in Sniper as

shown in Fig. 2.

Fig. 1. Cycles per instruction stack [1].

Fig. 2. The topology which uses in Sniper.

C. DRAMSim2 Simulator

Fig. 3. Overview of DRAMSim2 elements [7].

Fig. 3 Demonstrated the main structure of the DRAMSim2

elements. DRAMSim2 is considered one of the most popular

DDR2/3 memory system simulators which implemented by

using C++. The primary purpose of design this simulator is to

improve the accuracy of the simulation results and make the

simulator freely accessible DDR2/3 memory system model as

well can utilise for trace-based and full system simulations

[7].

As shown in Fig. 3 the core of the DRAMSim2 represented

by the object named memory system which needs two types

of files: the first file is a device ini which includes parameters

that define a particular DRAM device like power

consumption and the timing constraints of the device. The

second file is a system ini contains independent parameters of

the real DRAM device [7]. As an example of these

parameters are: ranks, memory controller queue structures,

row buffer, the address mapping scheme, debug options.

Also, the DRAMSim2 can be run in two different modes,

which are a shared library or as a standalone binary [13].

Moreover, this type of simulator has a flexible

object-oriented design and programming interface. More

critical, the DRAMSim2 supports a verification tool which

can help to verify the results of the DRAMSim2 simulation

without caring about the front end driver2 [13].

Besides shown that the DRAMSim2 offers a robust

visualisation tool that allowed users to view and analyse the

impacts of memory system parameters on performance

metrics like power, latency and bandwidth [7]. All of these

characteristics make the DRAMSim2 an essential tool for

International Journal of Computer Theory and Engineering, Vol. 11, No. 6, December 2019

105

researchers, especially those who want to comprise memory

models in their computer architecture research [7], [10].

V. CONCLUSION

More generally, these essential findings are consistent with

research showing that the best simulators tool that used

model multi-core micro-architecture. It is significant to use

simulators features at a sooner speed than the full-system

simulators identified through hardware and software

expenses. The main challenge of the simulators is how to

make a simulation been for thousand-core chips; however,

having such simulators is impossible to reach that level.

Furthermore, it may face challenges to achieve the primary

goal because of the limitation of some cores that causes by

the Instruction Set Architectures (ISA). In general, it possible

x86’s Advanced Programmable Interrupt Controllers

(xAPICs) able to support 256 cores. In this level of operation,

selecting a simulator must depend on the user-level simulator

model.

The continuous increase in the numbers of processes in

cores and systems leads to a rise in the system sizes that may

cause some difficulties in the simulating. The constant

development of multi-core technology with much larger

cache sizes requires accurate and high-level simulations to

validate the initiation of system architectures and designs.

REFERENCES

[1] M. Al-manasia and Z. Chaczko, “An overview of chip multi-processors

simulators technology,” Progress in Systems Engineering, Advances in

Intelligent Systems and Computing, vol 366, pp. 877-884, 2015.

[2] A. V. Laer, T. Jones, and P. M. Watts, “Full system simulation of

optically interconnected chip multiprocessors using gem5,” in Proc.

Opt. Fiber Commun. Conf. Fiber Opt. Eng. Conf. 2013, 2013.

[3] M. O.Agyeman, Q.-T. Vien, A. Ahmadnia, A. Yakovlev, K.-F. Tong,

and T. Mak, “A resilient 2-D waveguide communication fabric for

hybrid wired-wireless NoC design,” IEEE Trans. Parallel Distrib. Syst.,

p. 1, 2016.

[4] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Comput.

Archit. News, vol. 39, no. 2, p. 1, 2011.

[5] A. Al-Mahmood and M. O. Agyeman, “On wearable devices for

motivating patients with upper limb disability via gaming and home

rehabilitation,” in Proc. 2018 Third International Conference on Fog

and Mobile Edge Computing (FMEC), 2018, pp. 155–162.

[6] A. Akram and L. Sawalha, “A comparison of x86 computer

architecture simulators,” in Proc. the CEUR Workshop, vol. 1691, 2016,

pp. 21–27.

[7] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle

accurate memory system simulator,” IEEE Comput. Archit. Lett., vol.

10, no. 1, pp. 16–19, 2011.

[8] M. T. Yourst, “PTLsim: A cycle accurate full system x86-64

microarchitectural simulator,” in Proc. the ISPASS 2007 IEEE Int.

Symp. Perform. Anal. Syst. Softw., 2007, pp. 23–34.

[9] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the

level of abstraction for scalable and accurate parallel multi-core

simulation,” in Proc. the 2011 Int. Conf. High Perform. Comput.

Networking, Storage Anal. - SC ’11, 2011, p. 1.

[10] A. Akram and L. Sawalha, “×86 computer architecture simulators: A

comparative study,” in Proc. the 34th IEEE Int. Conf. Comput. Des.

ICCD 2016, 2016, pp. 638–645.

[11] P. S. Magnusson et al., “Simics: A full system simulation platform,”

Computer (Long. Beach. Calif)., vol. 35, no. 2, 2002.

[12] J. E. Miller et al., “Graphite: A distributed parallel simulator for

multicores,” in Proc. HPCA - 16 2010 Sixt. Int. Symp.

High-Performance Comput. Archit., 2010, pp. 1–12.

[13] Y. Paik, M. Han, K. H. Choi, M. Kim, and S. W. Kim, “Cycle-accurate

full system simulation for CPU+GPU+HBM computing platform,” in

Proc. Int. Conf. Electron. Inf. Commun. ICEIC 2018, vol. 2018, 2018,

pp. 1–2.

[14] M. O. Agyeman, “Optimizing heterogeneous 3D networks-on-chip

architectures for low power and high performance applications,”

Doctoral thesis, Glasgow Caledonian University, 2014.

[15] A. Gutierrez et al., “Sources of error in full-system simulation,” in Proc.

ISPASS 2014 - IEEE Int. Symp. Perform. Anal. Syst. Softw., 2014, pp.

13–22.

[16] M. O. Agyeman, A. Ahmadinia, and N. Bagherzadeh, “Performance

and energy aware inhomogeneous 3D networks-on-chip architecture

generation,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 6, pp.

1756–1769, Jun. 2016.

[17] R. Chis and L. Vintan, “Multi-objective hardware-software

co-optimization for the SNIPER multi-core simulator,” in Proc. 2014

IEEE 10th Int. Conf. Intell. Comput. Commun. Process. ICCP 2014,

2014, pp. 3–9.

Ahmed H. Janabi is currently a PhD researcher with

the Faculty of Arts, Science, and Technology at the

University of Northampton in the United Kingdom.

He finished his bachelor of engineering in computer

networking in 2017 with high honours, and

previously studied at the University of Babylon in the

Republic of Iraq.

He currently works as a researcher with the

University of Northampton in the United Kingdom. His previous positions

include teaching assistant within the University of Northampton, University

of Babylon, and Al-Mustaqbal University College. Currently he is in

progress of a journal write-up in the field of software-defined network and

security. His research interests include (but not limited to) software-defined

networks, internet of things, security on the network level, computer

architecture and engineering, and microprocessors.

Michael Opoku Agyeman is a charted engineer

(CEng) of the IET and a fellow of Higher Education

Academy (UK) who is a senior lecturer and the

programme leader of BEng, HND, MEng computer

systems engineering at the Department of Computing

at the University of Northampton, UK. He is an

associate member of the Chartered Management

Institute (ACMI). Previously, he was with Intel

Embedded System Research Group of the Chinese

University of Hong Kong (CUHK) as a research fellow, where he worked on

reliable wireless network-on-chip solutions. He received the PhD in

embedded and distributed systems from Glasgow Caledonian University,

UK, in 2014 and the MSc. degree in embedded and distributed systems from

London South Bank University, UK, in 2009. Michael received the BSc.

(Hons.) in electrical and electronics engineering from Kwame Nkrumah

University of Science and Technology (KNUST), Ghana, in 2008. He is the

author of one book and over 50 publications in significant conference

proceedings and journals. His research interests include VLSI SoC design,

computer architecture, reconfigurable computing, wired and wireless NoCs,

smart rehabilitation solutions, embedded systems and Internet-of-Things

(IoT). He has been a guest editor of the EAI Endorsed Transactions on

Industrial Networks and Intelligent Systems. Michael is currently a reviewer

of several conferences and journals. He serves as a technical committee

member (TPC) of over 10 conferences including IEEE ICCSN, IEEE

ICBDA, ICIIP and ICBDSC.

International Journal of Computer Theory and Engineering, Vol. 11, No. 6, December 2019

106

	1251-C3004

