



Abstract—Internet of Things (IoT) is getting more and more

popular. This trend brings about great challenge in system

management for administrators. A framework featuring

Software-Defined Networking (SDN) and Message Queuing

Telemetry Transport (MQTT) is proposed in this study to

facilitate the deployment and management of IoT. With the

proposed framework, the network connectivity and routing of a

newly added node can be automatically configured. The

functionalities, including data acquisition and device

configuration, of an individual end device can be remotely

managed via friendly web-bases user interface. Flexibility in

deployment, sophistication in management and failover of faulty

route can be achieved with the proposed framework.

Index Terms—IoT, SDN, MQTT.

I. INTRODUCTION

The Internet has dramatically changed our daily life. The

Internet of Things (IoT) [1] will be another wave of

revolution, in particular with the rise of the concept of

Industry 4.0. In the era of IoT, it is desirable to endow

conventional devices with communication capability. It can

be expected that there will a vast number of devices to be

networked. This means that networking management will be a

major issue in the application and deployment of IoT. To this

problem, we proposed a management framework

incorporating MQTT (Message Queuing Telemetry

Transport) [2] and SDN (Software-Defined Networking) [3].

MQTT is employed for the interoperability in message

dispatch and SDN is incorporated for flexibility in device

deployment and failover of faulty route.

The rest of this article is organized as follows. Section II

briefly reviews technologies involved in the proposed

framework. System design is presented in Section III. Section

IV reports our system implementation. Finally, some

conclusions are drawn in Section V.

II. RELATED TECHNOLOGIES

The term “Internet of Things” was coined by Kevin Ashton,

director of Auto-ID center of MIT, in 1999. He defined IoT as

connecting everything to Internet with communication unit in

order to achieve intelligent identification and management.

The “ITU Internet Report 2005: Internet of Things” is an

important milestone for the evolution of IoT. European

Telecommunications Standards Institute (ETSI) suggests that

Manuscript received October 25, 2018; revised January 12, 2019. This

work was supported in part by the Ministry of Science and Technology,

Taiwan, ROC, under MOST 106-2221-E-151-007.

Chin-Shiuh Shieh, Jhih-Ying Yan, and Hao-Xiang Gu are with the

Department of Electronic Engineering, National Kaohsiung University of

Science and Technology, Taiwan, ROC (e-mail: csshieh@ nkust.edu.tw).

a complete IoT architecture should consist of 3 layers, namely

perception layer, network layer, and application layer.

A. Message Queuing Telemetry Transport

Numerous protocols have been proposed for M2M

(Machine-to-Machine) message exchange, such as MQTT,

CoAP (Constrained Application Protocol) and XMPP

(Extensible Messaging and Presence Protocol).

MQTT is used in our framework for several reasons, such

as many-to-many transmission, light-weighted, and QoS

support. Based on TCP/IP, MQTT aims to offer reliable

service in unreliable, low-bandwidth network environment.

Three different roles are involved in a MQTT system, namely

publisher, broker, and subscriber, as shown in Fig. 1.

Publishers are information sources. They send messages to

the broker if there is any status change. Broker caches

messages from publishers and send them to subscribed

subscribers. There are a number of broker implementations,

such as Mosquitto, Apache Apollo, HiveMQ, Mosca,

RabbitMQ, and RSMB and so on. Mosquitto is employed in

our implementation because of it is open-source,

high-performance, and with more functional supports.

Fig. 1. An illustration for MQTT [8].

Depending on the network environment, MQTT offers 3

types of QoS services, namely at most once, at least once and

exactly once. This allows the system has more control over

the message dispatch.

B. JavaScript Object Notation

As IoT getting popular, there are more and more

heterogeneous devices deployed in enterprises, households

and factories. These devices generate and transmit data at

different time and at different rate. The transmitted data are in

certain formats. The formats are defined by manufactures or

alliances. There will be interoperability issue if the data are in

different formats. It is critical to have a common data

specification for message exchange. For the time being, there

are two major languages for data exchange, namely XML

(eXtensible Markup Language) and JSON (JavaScript Object

Notation) [4]. XML has more complete definition on data

format. As a result, XML has larger message size and

SDN-Based Management Framework for IoT

Chin-Shiuh Shieh, Jhih-Ying Yan, and Hao-Xiang Gu

6

International Journal of Computer Theory and Engineering, Vol. 11, No. 1, February 2019

DOI: 10.7763/IJCTE.2019.V11.1231

therefore slower parsing and processing speed. On the other

hand, JSON has smaller message size, which can speed up the

processing. There reasons make JSON more suitable for

networked applications. So we adopt JSON in our

implementation.

C. Embedded Systems

Embedded systems are those appliances or controllers with

embedded specific and real-time functionalities. From the

perspective of applications, IEEE defines embedded systems

as apparatuses controlling, monitoring or assisting the

operation of equipment, machines and factories. Embedded

system is one of the main reasons for the prosperity of IoT.

The rise of IoT is driven by the rapid grow of embedded

systems and their demands in connecting to the Internet.

Embedded systems are usually deployed in household,

factory automation, vehicular, medical and military

applications. In recent years, a number of platforms are

introduced in response to the wide variety of application

needs, such as Arduino and Raspberry Pi. We shall use them

as the sensor nodes/IoT device in out IoT environment.

D. Asynchronous JavaScript and XML

Asynchronous JavaScript and XML (AJAX) [5] is a

browser-end web-page development technology. The primary

appeal of AJAX is that part of the web page content can be

updated without the need of reloading the entire web page.

AJAX consists of 3 technologies, namely HyperText Markup

Language (HTML)/eXtensible HyperText Markup Language

(XHTML), Document Object Model (DOM) and JavaScript.

HTML/XHTML is in charge of the presentation of the web

page. DOM is the tool for the dynamic download of part of the

web page content. JavaScript is used to implement the AJAX

engine. AJAX engine is responsible for the communication

between client and server. It takes care of asynchronous

incoming requests. In another word, users can continue

her/his browsing operation without waiting for the response

from server. AJAX is widely used in the industry, such as

Google Map and Yahoo News. In out implementation of the

proposed framework, administrators of an IoT environment

configure and monitor end devices through browser. So we

also incorporate AJAX in our implementation.

E. Distributed Non-Relational Databases

NoSQL [6] is a new type of database, different from

conventional relational databases. It does not use Structured

Query Language (SQL) as its query language. Its storage

needs not to be in table mode. It in general avoids the JOIN

operation in SQL databases and has the feature of horizontal

extensibility. NoSQL can conduct horizontal expansion in

order to have new server node added. There is no need for

high-performance server or cluster as in conventional

relational database. NoSQL distributes and copies data to

individual nodes and synchronize them.

NoSQL databases adopt Key-Value model to resolve the

difficulty in database update for huge amount of data.

Moreover, object-based APIs allow network manager easily

have access to data structures stored in memory.

Big data shall accompany the growth of IoT. In this

situation, NoSQL database is superior to conventional

relational SQL database. Although there will be limited data

in our prototype, for reason of completeness, we employ

NoSQL databases in our implementation.

F. Software-Defined Networking

Software-Defined Networking (SDN), as a new technology

for network virtualization, had received considerable

attention since 2014. As the name implies, in SDN, the

network topology and packet routing are governed by

software. According to Open Networking Foundation [7], the

fundamental idea of SDN is the separation of control plan and

data plan, as shown in Fig. 2.

Fig. 2. Separation of control and data plans in SDN [9].

In conventional networks, routers and switches operate

according to their individual software and hardware

configurations. Control and data plans are mixed and fused

together. It is extremely difficult to integrate and coordinate

these routing devices. On the other hand, in SDN, control plan

is separated from data plan and SDN controller is introduced

to control the forwarding behaviors of all switches in the same

domain. Switches are now merely responsible for the packet

forwarding.

With SDN, when network topology change is needed, there

will be no more tangling of network cables. The administrator

simply commands the controller to send adequate forwarding

rules to individual switches. She/he needs not to configure all

the routers and switches one by one. As a result, high level of

flexibility and quick deployment can be achieved by SDN.

Fig. 3. Layered structure of SDN [10].

In SDN, all network devices are controlled by a SDN

controller in a centralized manner. SDN controller is

responsible for the maintenance of network structure and

provides useful APIs (Application Programming Interface) to

upper layer. With these APIs, upper layer applications can

7

International Journal of Computer Theory and Engineering, Vol. 11, No. 1, February 2019

monitor and control the entire network, as illustrated in Fig.

3.Various applications become possible, such as network

security, virtual segmentation, load balancing, QoS support,

and so forth.

As cloud computing and big data technologies getting

mature, there is increasing demands on networking supports.

The industry anticipates the incorporation of SDN can get rid

of the bondage of conventional networking and provide

desired flexibility in network management.

III. SYSTEM DESIGN

The proposed framework aims to liberate administrators

from the tangling of wired cables, and enable them to manage

the network easily, flexibly and efficiently. A typical scenario

is given in Fig. 4. IoT devices send two types of information

to system databases. One is the device information which will

be stored in MySQL database. The other is sensed data which

will be stored in MongoDB. Device information includes

device ID and its capability. This information is published to

the broker via MQTT protocol. At the same time, a device

also subscribes to its own ID in order to accept commands

from users. Using browser as user-interface, users can search

the databases and subscribe to interested topics. Users can

also command end devices via browser. For instance, users

can instruct an end device to change its updating interval.

SDN plays essential role in the proposed framework in

routing configuration, traffic monitoring and failover of

faculty route.

Table I summarizes the accomplishments of the proposed

framework.

Fig. 4. A typical scenario of the proposed framework.

A. Signaling Charts for Network Topology Management

There are 3 main tasks in SDN-based network management.

Here we look into their signaling diagrams one by one. The

first task is the inclusion of a newly added IoT device. A new

IoT device publishes its own information in JSON format to

the broker via MQTT protocol. All packets during the

interaction are managed by SDN, as show in Fig. 5. IoT

Manager governs all registered IoT devices in the

environment, and store device information and sensed data

into databases. Users can then have access to sensed data via

browser.

TABLE I: ACCOMPLISHMENTS OF THE PROPOSED FRAMEWORK

Technology Function Description

SDN

Flexible

Route

Configuration

Switch packet-in unmatched

packet to controller for route

configuration. Controller obtains

detailed information regarding the

packet via OFPPacketIn and then

conducts flooding. Once target

address is reached, add_flow is

called to have a new entry added

to the forwarding table in switch.

Traffic

Monitoring

Via _monitor API, controller

periodically requests traffic

statistics from registered switches

in the network domain.

Faulty Route

Failover

Switches exchange information

via BPDU packet. Root switch

report exchanged information to

controller. In case of faulty route,

spanning tree algorithm is

executed to find out a new

connected topology.

MQTT

QoS

Management

There are 3 types of QoS supports,

namely at most once, at least once

and exactly once.

End Device

Management

Control the interval, QoS and

status of end devices’ updating.

SQL/

NoSQL

Information/

Data

Storage

SQL stores device information

and NoSQL store sensed data.

AJAX
Dynamic Web

Page Access

Part of web page content can be

updated without the need of

reloading an entire web page.

Embedded

Systems
End Devices

Arduino and Raspberry Pi serve as

IoT end devices in out

implementation.

JSON
Data

Exchange

Specification language for data

exchange.

Fig. 5. Signaling diagram for the inclusion of a newly added device.

Fig. 6. Signaling diagram for device reconfiguration.

The second task is the issuing of users’ commands. User

can not only read sensed data, but also reconfigure end

8

International Journal of Computer Theory and Engineering, Vol. 11, No. 1, February 2019

devices. From SQL database, users can have information

regarding the device of interest, such as device ID, sensor type,

report interval, QoS support and so on. Users can then

reconfigure the device by publishing intended reconfiguration

to the broker. End device receives these reconfiguration

commands by subscribing to its own ID, as shown in Fig. 6.

With this approach, users need not to attend the field to

conduct on-site reconfiguration. Moreover, MQTT is also a

good solution to the interoperability problem.

A final task is the handling of faulty route. In SDN,

switches exchange status and routing information via NPDU

(Bridge Protocol Data Unit) packets. Root switch passes

collected information to the controller. In case of faulty route,

spanning tree algorithm is invoked by controller to find out a

new connected topology, as show in Fig. 7.

Fig. 7. Signaling diagram for failover of faulty route.

IV. IMPLEMENTATION

A fully functional prototype is implemented to validate the

feasibility of the proposed framework. Software/hardware

used in our implementation is listed in Table II.

TABLE II: SOFTWARE/HARDWARE USED IN IMPLEMENTATION

 Item OS Name Host Qty

OpenFlow

Controller

Ubuntu

14.04
Ryu 3.27 MSI Cubi 1

OpenFlow

Switch

Ubuntu

14.04

Open vSwitch

2.3.0
MSI Cubi 3

MQTT

Broker

Ubuntu

14.04
Mosquitto MSI Cubi 1

USB

Adaptor
N/A RJ45 N/A 7

WiFi AP N/A RT-AC66U N/A 1

IoT Manager/

SQL

Ubuntu

14.04
N/A ASUS D810 1

NoSQL CentOS MongoDB AcerPower M6 4

A. Automatic Routing Configuration

As an end device added to the system, its packet routing

path will be automatically configured by SDN. At first, there

will be no matched entry in the switch for the newly added

device. The switch packet_in its packet to the controller.

Controller will check if the MAC address had been recorded.

If not, packet_out will be called to look for the destination

MAC address by flooding. Once found, a new forwarding rule

for the MAC address will be added by calling add_flow. The

route configuration is then complete, as shown in Fig. 8, and

subsequent packets shall follow the same routing path.

Fig. 8. Automatic routing configuration.

B. Traffic Monitoring

After registration, controller request information from

registered switches every 10 seconds. Available information,

including port, flow entry table, number of received packets

(rx-pkts), number of received bytes (rx-bytes), number of

receiving errors (rx-error), number of transmitted packets

(tx-pkts), number of transmitted bytes (tx-bytes), number of

transmitting errors (tx-error) and so on.

C. Failover of Faulty Route

Here we experiment the failover capability of SDN.

Referring to Fig. 9, end device has an initial route following

SWa/Port6  SWa/Port8  SWc/Port1  SWc/Port3 

Internet. When we deliberately disable the link from

SWa/Port8 to SWc/Port1, the failover mechanism invoked

automatically to find out a new route. A new route following

SWa/Port6  SWa/Port7  SWb/Port3  SWb/Port2 

SWc/Port2  SWc/Port3  Internet is established and the

completes the failover process.

Fig. 9. Failover of faculty route.

D. Prototype in Action

Fig. 10. JSON for data exchange.

For the purpose of demonstration, we setup an SDN-based

management framework for IoT with topology as shown in

Fig. 4. End devices are Arduino and Raspberry Pi with

temperature and humidity sensors. We define a JSON format,

as shown in Fig. 10, for the data exchange between end device

9

International Journal of Computer Theory and Engineering, Vol. 11, No. 1, February 2019

and the IoT Manager. The defined JSON includes device ID,

number of port, topic, QoS, sensor type, sensor status, sensing

time, and so on.

Our implementation makes use of AJAX and MQTT for

the configuration of end devices. The user interface is given in

Fig. 11. It includes Dashboard, Chart, Control Panel and

Manual. The page layout is designed using Cascading Style

Sheets (CSS). For a professional outlook, packages imported

include Font Awesome, Bootstrap, Morris, and SB admin.

Fig. 11. Web-based user interface.

After subscription, we can see the updated message, as

shown in Fig. 12.

Fig. 12. Received update in JSON.

User can reconfigure end devices via the web-based user

interface. “Command” button allows users to specify what

parameters to be updated, including QoS, On/Off control,

sensing interval, topic, and so on. Click “Action” will commit

the reconfiguration and publish it to the broker, as shown in

Fig. 13.

V. CONCLUSION

A SDN-based management framework for IoT is proposed

in this article. The proposal is aimed to relieve the burden of

administrators in network management. A fully functional

prototype indicates that the proposed framework is feasible.

With SDN, the routing of newly Added devices can be

automatically configured. Failover of faulty route can be

achieved transparently. With the incorporation of JSON,

MQTT and AJAX, users can have access to sensed data

through friendly web-based user interface. Moreover, users

are capable of reconfiguring end devices remotely, without

the need of on-site reconfiguration.

Fig. 13. End device reconfiguration.

REFERENCES

[1] M. Kaufmann, Internet of Things: Principles and Paradigms, R.

Buyya and A. V. Dastjerdi, Eds. 2016.

[2] MQTT. [Online]. Available: https://en.wikipedia.org/wiki/MQTT

[3] F. Hu, Network Innovation through OpenFlow and SDN: Principles

and Design, CRC Press, 2014.

[4] JSON. [Online]. Available: https://www.json.org

[5] AJAX. [Online]. Available:

https://en.wikipedia.org/wiki/Ajax_(programming)

[6] S. Tiwari, Professional NoSQL, Wrox, 2011.

[7] Open Networking Foundation. [Online]. Available:

https://www.opennetworking.org

[8] Sami Pietikäinen. Using local MQTT broker for cloud and interprocess

communication. [Online]. Available: https://pagefault.blog

[9] Jitendra Bhati. A primer on software defined networking (SDN) and

OpenFlow standard. [Online]. Available: https://opensourceforu.com

[10] Scott Fulton III, What is SDN? How software-defined networking

changed everything. [Online]. Available: https://www.zdnet.com

Chin-Shiuh Shieh received his Ph.D. degree from

Department of Computer Science and Engineering,

National Sun Yat-Sen University, Taiwan, in 2009.

He is now serves as an associate professor in

Department of Electronic Engineering, National

Kaohsiung University of Science and Technology,

Taiwan. His research interests include computer

networking, embedded system and computational

intelligence.

Jhih-Ying Yan received his M.S. degree from

Department of Electronic Engineering, National

Kaohsiung University of Science and Technology,

Taiwan, in 2017. His research interests include

computer networking and IoT.

Hao-Xiang Gu received his M.S. degree from

Department of Electronic Engineering, National

Kaohsiung University of Science and Technology,

Taiwan, in 2017. His research interests include

computer networking and SDN.

10

International Journal of Computer Theory and Engineering, Vol. 11, No. 1, February 2019

