

Abstract—Evolving legacy enterprise systems into a lean

system architecture has been on the agendas of many

enterprises. Recent advance in legacy system evaluation is in

favour of microservice technologies, which not only

significantly reduce the complexity in deployment of enterprise

systems but also enhance the availability of services to system

users. However, there are technical challenges to overcome

towards a successful transformation. Challenges, relating to

information security, container optimisation, the performance

of a new system and its deployment, are particularly under

concern. To cope with these technical challenges, a new

approach is proposed in this paper to govern the evolution of

legacy systems into a microservice-based and cloud-hosted

architecture. This approach includes a detailed working process,

a set of transformation rules towards microservices and their

repositories. In addition, a conceptual framework is drawn to

provide a comprehensive illustration to this evolution approach.

Moreover, a case study is presented to demonstrate the

application of the proposed approach on the evaluation of a

chosen legacy system, as well as the procedure of system

architecture optimisation.

Index Terms—Cloud computing, enterprise legacy system,

feature-driven evolution rules, microservices.

I. INTRODUCTION

Software system evolution is subject to the sophistication

of available hardware and the cost of implementation. Over

the last decade, enterprise systems were designed and

developed based on specific hardware at a fixed scale until

virtualization and cloud computing technologies were

introduced. These technologies provide enterprise system

development with greater flexibility. A new wave of

revolution has been aroused by the recent introduction of

microservice architecture.

The continuous development of microservice mechanism,

both in academia and the industry, shows different features,

such as a fast start-up, separation units, etc. This new

technique allows the monolithic application to be broken

down into smaller cohesive independent services with respect

to their functionality. Microservices are organised as a set of

small services runing in its own process and communicating

with other services via an Application Programming

Interface (API) gateway, that allows developers to update

each service independently without affecting others.

Owing to the aforementioned technical advantages,

Manuscript received September 13, 2018; revised October 12, 2018.

Safa Habibullah, Xiaodong Liu, and Zhiyuan Tan are with School of

Computing, Edinburgh Napier University, Edinburgh, UK (email:
s.habibullah@napier.ac.uk, x.liu@napier.ac.uk, z.tan@napier.ac.uk).

microservices provide a new solution to evolving legacy

systems nowadays. Deploying a microservice in the cloud

provides a new means to modernise software applications

and is adopted by enterprises for next-stage system

deployment. Microservice can be developed in any

programming language that means it gives a development

team freedom to choose and implement the most appropriate

programming languages that suits better to their

characteristics and requirements. In addition, each service

represents a small job, which makes it easy for the developer

to understand.

Microservices, however, are not without issues and

challenges. Thus, to build the most suitable foundation for

enterprise, a solid understanding on this new paradigm is

crucial as it is changing how enterprises handle information,

and resolve legacy system weaknesses such as scaling

challenges.

The rest of the paper is structured as follows. Section II

presents the related work. Section III discusses the

conceptual framework and the set of transformation rules. A

case study is presented in Section IV. Conclusions are drawn

and future work is introduced in Section V.

II. RELATED WORK

Microservices are inspired by service-oriented computing

and have evolved from business solutions for modern

applications. Microservices have gained popularity in recent

years, and a clear understanding of this paradigm is critical to

sensible implementation of microservice-based systems.

Thus, an in-depth investigation was conducted to identify

state-of-the-art microservice architectures. It reveals that

recent studies have focussed on the scalability, availability

and performance of these architectures.

In this section, we aim to divide the related work into three

parts to provide a fair evaluation of microservice

architectures.

A. Systematic Study

Francesco et al. conducted a systematic mapping study in

[1] a clear summary of microservices is presented and serves

a solid foundational reference for both academia and industry

professionals. This study also identifies a gap in the system

quality attributes, such as security, portability and testability.

Another systematic mapping study shows that some of the

qualities of attributes have not be thoroughly investigated,

such as security features for microservice architecture [2].

This study also provides a broad overview of the challenges

facing microservice architecture and related technologies,

An Approach to Evolving Legacy Enterprise System to

Microservice-Based Architecture through Feature-Driven

Evolution Rules

Safa Habibullah, Xiaodong Liu, and Zhiyuan Tan

International Journal of Computer Theory and Engineering, Vol. 10, No. 5, October 2018

164DOI: 10.7763/IJCTE.2018.V10.1219

which can be used by the research community to widen this

field of study.

B. Pattern

To provide a guide for the process of system migration,

Balalaie et al. [3] followed the principles of situational

method engineering to design a set of preliminary

repositories for microservice migration patterns. Different

solutions were provided to decompose a legacy system, and

the challenges of the proposed patterns were discussed, while

different patterns were implemented using a variety of

techniques depending on service discovery, the load balancer,

and the circuit breaker. Each transform pattern has been

provided by a scenario that gives a clear idea for the reasons

for the evolution transform. The authors in [3] stabilised a

system by applying a pattern that takes into account

containerisation of the service. On the other hand, all the

above techniques have limitations that must be considered. If

it is not properly managed and implemented, it might become

a single point of failure. Furthermore, migration patterns

include certain weaknesses. For example, the proposed

pattern was simple and focused on the migration planning

phase.

C. Case Study

Dragoni et al. [4], for example, presented a real case study

of a mission critical system - the Foreign eXchange (FX) core

system at Danske Bank - which includes a legacy system

architecture, to determine the primary issues that affect

system scalability. Microservice architectures have also

shown to be a promising approach to reduce the complexity

of the code. Moreover, microservices can be decoupled by

using service discovery. As mentioned in [4] switching to a

microservices architecture leads to better scalability by

applying various techniques, such as horizontal scaling,

clustering, cash and load balancing techniques [4]. However,

The FX system can be enhanced by implementing the above

techniques to support other quality attributes. For example,

including security to deliver innovative user-experience to

customer.

Villamizarn et al. [5] promoted an enterprise case study

that was developed and deployed in the cloud podium in both

the monolithic and microservice architecture. However, the

authors analysed the performance of both architectures in

terms of response time, more features of performance need to

be measured in the future.

Based on existing proposals and approaches, a research

gap exists in relation to non-functional attributes of

microservice architecture, such as performance and security.

Thus, the current study seeks to create a transformation plan

for a new architecture taking into account the situational

context of the legacy application. To improve software

evolution, a feature-driven, agile methodology is introduced

as an effective means for developing the system. The

importance of this method depends on building a detailed and

prioritised features list to gain better understanding of the

system and to provide guidance throughout system evolution.

When the software system grows, the process of development

becomes complex; thus, to overcome difficulties,

feature-driven development is employed to create a set of

rules. For security, performance and functionality are the

primary requirements of developing and evolving a legacy

system.

III. MAIN APPROACH

This research is constructed around legacy systems, cloud

computing and microservices. It aims to develop a highly

effective scheme, driven by evolution frameworks and rules,

in order to modernise legacy systems. A novel approach is

designed to evolve legacy enterprise systems into a lean

system architecture with the support of microservices and

cloud computing. The proposed framework, shown in Fig. 1,

consists of three key components, namely core system,

middle layer, and target system. It focuses on how to evolve a

legacy system by using a microservice architecture and then

migrating to a cloud platform.

Fig. 1. Conceptual framework.

A. Core System

Firstly, we will start from a legacy application (i.e. legacy

code). This process aims to restructure the elements from one

representation to another at the same level of abstraction. The

core system carries out the transformations from a legacy

system to microservices where the source code of the legacy

system candidate elements are identified for transformation.

The primary objective of the core system is to define a set of

feature driven transformation rules in order to establish a

rational transformation of the legacy application into

microservices. In accordance with business and technical

concerns and requirements, different combinations of feature

driven rules could be implemented.

This microservice-based approach can facilitate the

development of new business functions rather than creating

new elements as a part of the monolithic code, which may

increase the complexity of the code. The microservice

architecture allows services of a software system to evolve

independently of other services. Services can be built using

any programming language, and each of them runs as a

distinct process. In addition, this microservice-based

approach may reduce the size of the legacy application and

create, independent and easily-maintained services [6].

B. Middle Layer

The main purpose of this layer is to move away from a

legacy application and towards the microservice architecture.

International Journal of Computer Theory and Engineering, Vol. 10, No. 5, October 2018

165

The potential advantages of this architecture will lead to a

better performance, the possibility of fewer system errors and

enhanced functionality, security and scalability. The adoption

of a microservice provides the best architecture that forms

optimal solutions for enterprises. The conceptual framework

of this research has given rise to the research challenge of

how to transform legacy source code to a microservice, in

order to achieve the intended target.

Initially, modernising the legacy application will be

achieved by applying a set of transformation rules to the

legacy code that takes its purpose into consideration. The

transformation into the targeted architectural paradigm is

accomplished by using the microservice technique. The

microservice technique involves the substitution of each part

of the legacy application functionality with a microservice,

thus breaking the entire legacy system into services. Where to

start and how to identify the candidate microservices are

important points to be considered carefully, by:

1) Identifying the enterprise‟s capabilities and system

domains. This will lead to the determination of the

microservice that the enterprise needs to construct.
2) Identifying the information to be exchanged in the

transaction. For instance, in e-commerce the orders, items

and customers might need to be considered.
3) Analysing the code allows one to break up some features

much easier than others. Microservices ought to maintain

their respective database rather than to share a common

one. The reason for keeping separate databases is to avoid

updating every service when there is a change in a

common database and to minimize coupling between the

services. Besides, when splitting the monolith into

services, one must also consider how these services will

be deployed into the cloud platform. In order to take

advantage of this technological phenomenon, we will

consider containerization technologies, apart from the

microservice. Containers provide portability for

microservices in various platforms. Developers will be

able to move the microservices seamlessly between the

private cloud and the public cloud, as is shown in Fig. 2.
Fig. 2 illustrates that a legacy application is

re-architectured into a set of containerised services. Each

container is independent and deployed in the cloud podium.

The container removes redundant resources that virtual

instances need, which improves the performance.

Fig. 2. The legacy application is re-architectured into a set of containerised

services (microservices).

C. Target System

This layer represents the design of a target architecture and

the cloud components used in migration. In order to deliver

containerised microservices, a hybrid cloud platform will be

considered, this is the most important step to achieve the

enterprise‟s needs, such as better performance, security and

scalability. Furthermore, for the migration plan, different

requirements will be introduced as well as different

satisfactory solutions will be proposed.

Before moving to a hybrid cloud, we need to understand

what it is. Mell and Grance [7] defined a hybrid cloud as „a

composition of two or more distinct cloud infrastructures (i.e.

private, community or public) that remain unique entities, but

are bound together by standardised or proprietary technology

which enables data and application portability (e.g. cloud

bursting for load balancing between clouds)‟. According to

Mazhelis and Tyrvainen [8], the hybrid cloud‟s purpose is to

provide the efficient distribution of the load between the

clouds

Private and public clouds will be used in this research in

order to provide the deployed environment for our new

architecture. It is presumed that part of the enterprise

software will be deployed in a public cloud specifically,

whereas other types of subsystems will be deployed in a

private cloud due to confidential information. Thus, there

will be two types of deployment environments: containerised

microservices hosted by the public cloud and containerised

microservices hosted by the private cloud.

The system could be moved from the private to a public

cloud and vice versa, depending on the enterprise‟s

requirements. In general, this layer has two parts: the

functional part and the technical part. From the functional

perspective, the target system not only represents the

functionalities that will be delivered, but also covers

non-functional aspects, such as performance and security.

From the technical viewpoint, a decision will be made among

several possible selections of technologies that will be used.

In order to further advance the state of the art of

microservice-based legacy system migration, it has been

decided to employ the idea of the feature driven, based in

legacy system evolution and we set out to propose a

feature-driven microservice transformation rule repository.

These rules define transformation that can be applied to

software architecture in order to maintain the system goals,

requirements and objectives. The migration rules will help to

deal with software architecture during implementation and

operation.

D. Feature Driven Microservice Rules

A set of features driven microservice rules is proposed in

this section. The rules are documented in the pseudo code

format. The title of each rule is given based on its context.

Each rule consists of an assumption, condition and impact on

feature.

An assumption part reflects a main problem of a system. A

condition is a mirror of the solution. Lastly, an impact on a

feature explains the concerns that might arise when the rule is

applied.

TABLE I: RULE1- DECOMPOSING LEGACY APPLICATION TO MICROSERVICE

ARCHITECTURE

 Assumption

There is a monolithic system which needs to

scale and improve modularity, and individual

parts of a modular application may be

International Journal of Computer Theory and Engineering, Vol. 10, No. 5, October 2018

166

independently deployed.

Ls = legacy system;

Condition

Decomposing the legacy system to a

microservice architecture through building an

application from internal light weight services

will improve modularity and simplify scaling a

particular service to meet new demands and

requirements.

Decomposition can happen as a result of

different non- functional requirements and the

size of the service depends on the complexity of

the problem domain.

Ls = legacy system;

Mo = modularity;

Sc = scalability;

Ms = microservice architecture;

While (Ls)

 {

 Create Ms;

 Mo_max Sc_max;

}

Impact on

features

 separate processes add complexity and new

problems, including network latency

 the management of dependencies and

deployment is more complex

TABLE II: RULE 2- SINGLE RESPONSIBILITY PRINCIPLE

Assumption

A monolithic application has suffered from tight

coupling and dependencies between modules.

Ls _D= legacy system dependency;

Condition

Decomposing a system into small services

minimise dependencies and become loose

coupling by applying the Single Responsibility

Principle (SRP) concept. In addition, separating

the dependent service can improve scalability of

each service [9].

This allows the developer to change the

implementation or modify the service and

replace them without any downstream impact.

Ms_SRP = microservice architecture based on

the single responsibility principle;

Ls _ D = legacy system dependency;

D = dependency;

Sc = scalability;

While (Ls_D)

{

 Create Ms _SRP;

 D_min Sc_ max;

}

Impact on

features

The core complexity of this approach is

increasing memory consumption.

TABLE III: RULE 3- SEPARATE DATABA

Assumption

A monolithic application has been decomposed

into a set of services to ensure that the services

are loosely coupled (i.e. they can be developed,

deployed and scaled independently from other

services).

Ls = legacy system;

Ms = Microservice architecture;

Condition

Keeping separate data store for each service.

Ms _ DB = microservice architecture with

separate data store;

Ls_TC = legacy system _tightly coupled;

D = dependency;

While (Ls_TC)

{

 Creat Ms_DB;

 D_min;

}

Impact on

features

Breaking data can make data management more

complicated.

Implementing queries that join data is becoming

a new challenge.

TABLE IV: RULE 4- CIRCUIT BREAKER

Assumption

If one or more services is not available or might

suffer from high latency that will result in a

cascading failure.

Condition

The circuit breaker is the best solution to prevent

this failure across multiple services in order to

improve the stability and resiliency of an

application [3].

Impact on

features

How to handle the exceptions if the services are

not available. For example, a remote service

might be crashed.

TABLE V: RULE 5- COMPUTATION TASK

Assumption

Decomposing the legacy application to

microservice architecture has a serious effect on

the response time.

Ls= legacy system;

P= performance;

LS = P_max.

Condition

The response time of a request is an important

indicator for the user perceived performance of

the system. The response time should decrease

compared to the monolithic application, in order

to improve the computation task of the service.

Response time ↔ Computation Task (trade off)

Ms_t = microservice response time;

Ms_ct = microservice computation task

P_m = performance max;

Ls_t = legacy system response time;

While (Ms_t > Ls_t)

{

 Increased Ms_ct;

 Increased P_m;

}

Impact on

features

Improved computation task and minimised

response time by distributing the workload

between services.

ct = computation task;

t= response time;

 ct, t;

 ct_max t_min;

Services are independently deployed and

developed.

TABLE VI: RULE 6- I/O PROCESSING

Assumption In order to enhance the legacy

system performance precisely

response time, the system will be

decomposed to a set of services.

P= performance;

Ms = microservice architecture;

Ms= p_max.

Action The response time of a request is

an important indicator for the

user-perceived better performance

of the system.

Response Time ↔ I/O Processing

(Trade off)

Ms_t = microservice response

time;

P_m = performace max;

Ls_pf= legacy system I/O

processing function;

While (Ms_t > Ls_pf)

{

 Increased P_m;

}

Impact on features Improved performance of the

system by reducing the number of

unnecessary I/O processing

International Journal of Computer Theory and Engineering, Vol. 10, No. 5, October 2018

167

should be reducing.

P = performance;

Pf= i/o processing function;

Ms= microservice architecture;

 p, pf;

Ms = P_max pf_min

TABLE VII: RULE 7- THROUGHPUT

Assumption

In order to improve the legacy system network

throughput, the system will be constructed into a

set of services.

Th = network throughput;

Ms = microservice architecture;

Ms = Th_max.

Condition

It is important to rise the number of the

throughput (i.e. messages processed by) of

microservices, by comparing with the

monolithic application and reducing the number

of the memory intensive function.

Throughput ↔ Memory Intensive (trade off)

Th= network throughput;

Ms= microservice architecture;

Mi = memory intensive function;

P = PERFORMANCE;

While (Ms_Th > Ms_mi)

{

 Increased P_Ms;

}

Impact on

features

Improved throughput by making sure the system

has sufficient use of the memory spaces.

Ms= microservice architecture;

Mi = memory intensive function;

Th= network throughput;

 Th, Mi;

Ms_P = Th_max Mi_min

IV. CASE STUDY

The framework presented in Fig. 3 shows an existing

legacy system architecture. Given that, the legacy system

includes a user interface, business logic and a file system.

This architecture has all the application modules, and files in

one package. To apply microservice architecture, the system

should be reconstructed and separated into module based on

the above rules.

In this case study, we used a simple open source legacy

code (i.e. ferry booking system) from GitHub [10]. The

system had been designed as a console application and the

system provided booking and management services. As well

as providing information about ferry crossing, ferry module

and types and different routes for each type of ferry. The

system also presented an information about each port which

includes, port origin, port destination, departure time and

journey time. To construct a microservice architecture, the

system was analysed by understanding the whole system

architecture. Redesigning the legacy system was a difficult

process; the legacy code was inefficient and there was a

shortage of the system documentation.

The process that used to decompose the system into

microservice architecture are:

1) Understanding the code and defining system boundaries.

2) Building a class diagram for the existing system helps to

understand the relationships between the system class and

plays an essential role in determining the service.

3) Recognising and determining which rule is going to apply.

In this case, three rules have been considered to

implement, which are decomposing legacy to

microservice, SRP and separate database rules.

Fig. 3. Existing legacy system architecture.

The first step was to reconstruct the existing system to

determine the service elements from the legacy code.

Building up the microservice was achieved by applying the

first and second rules: decomposing the legacy system into

microservice as mentioned on Table II and using the Single

Responsibility Principles (SRP) rules as presented on Table

II. Implementing a set of persistent and cohesive services will

be achieved by using SRP rule.

As a result, three services were selected from the legacy

java code; Table VIII indiscates the three services and the

functional task that relates to each service.

TABLE VIII: SERVICES CANDIDATE

Service Functionality

Booking This service allows the user to make a booking

and can easily cancel or amend the booking.

Ferry This service provides different types of ferry

and different routes the associate with each one

Port A port origin, port destination, departure time

and journey time will be determined by this

service.

In addition, the ferry system uses a file system to manage

and manipulate the data; this leads to many problems, like

data integrity, and this type of issue can be avoided by using

an isolated database based on the separate database rule as

described on Table III. This rule will be applied to the already

identified candidate services to ensure that each data service

is independent of the other as shown in Fig. 4.

Fig. 4. Microservice architecture.

The approach of the system evolution discussed in this

paper led to reduced coupling, improved modularity,

scalability and improved response time by reducing the

unnecessary I/O processing.

International Journal of Computer Theory and Engineering, Vol. 10, No. 5, October 2018

168

V. CONCLUSION AND FUTURE WORK

The research aims to develop an approach to evolve legacy

systems, which will incorporate the microservices technique,

through developing framework architecture to determine how

effective the new service is in terms of security, performance

and functionality. This framework focuses on the

microservice rule repository and how these rules support

these three features. At a later stage, more rules will be added

to satisfy the system‟s needs.

The future work will include applying the above and

enhanced evolution rules to a medium to large enterprise

system to evaluate the rules and make sure that the approach

is scalable for the transformation to industrial scaled

microservice-based architecture and meanwhile maintains

acceptable performance, functional and security.

REFERENCES

[1] P. D. Francesco, I. Malavolta, and P. Lago, “Research on architecting

microservices: Trends, focus, and potential for industrial adoption,” in

Proc. 2017 IEEE International Conference on Software Architecture
(ICSA), 2017.

[2] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping study in

microservice architecture,” in Proc. 2016 IEEE 9th International
Conference on Service-Oriented Computing and Applications (SOCA),

pp. 44-51, 2016.

[3] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices
migration patterns,” Technical Report no. 1 TR-SUTCE-ASE-2015-01.

Automated Software Engineering Group, Sharif University of

Technology, Tehran, Iran, 2015.
[4] N. Dragoni, S. Dustdar, S. T. Larsen, and M. Mazzara. (2017).

Microservices: Migration of a mission critical system. [Online].

Available: https://arxiv.org/abs/1704.04173
[5] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R.

Casallas, and S. Gil, “Evaluating the monolithic and the microservice

architecture pattern to deploy web applications in the cloud,” in Proc.
Computing Colombian Conference , pp. 583-590, 2015.

[6] A. Levcovitz, R. Terra, and M. T. Valente, “Towards a technique for

extracting microservices from monolithic enterprise systems,” in Proc.
3rd Brazilian Workshop on Software Visualization, Evolution and

Maintenance (VEM), pp. 97-104, 2015.

[7] P. Mell and T. Grance, “The NIST definition of cloud computing,”
NIST Special Publication 800-145, U.S. Department of Commerce,

2011.

[8] O. Mazhelis and P. Tyrväinen, “Economic aspects of hybrid cloud
infrastructure: User organization perspective,” Information Systems

Frontiers, vol. 14, no. 4, pp. 845-869, 2012.

[9] C. Richardson. Microservice architecture. [Online]. Available:
http://microservices.io/patterns/microservices.html

[10] Github. [Online]. Available:
https://github.com/Kirschstein/legacy-ferry-booking-system

Safa Habibullah is a PhD candidate in School of

Computing in Edinburgh Napier university, UK. She

holds a master degree in software technology for the
web from Edinburgh Napier University, UK. She is a

lecturer at the School of Computing, King Abdulaziz

University, Saudi Arabia.

Xiaodong Liu received his PhD in computer science
from De Montfort University and joined Napier in

1999. He is currently leading the software systems

research group in the SoC, Edinburgh Napier
University. He is an active researcher in software

engineering with internationally excellent reputation

and leading expertise, focusing on its emerging
themes including pervasive systems (internet of

things), services-oriented architecture, evolution of

cloud services, and intelligence-driven software engineering. Prof. Liu has led
10 externally funded projects as the PI, and published over 100 papers in

established international journals and conferences, 5 book chapters and 3
research handbooks. He is the inventor of 1 patent registered in UK and USA

and the founder of a spin-out company. He has been the chair, co-chair or PC

member of a number of IEEE and IASTED international conferences. He is
the editorial board member of 4 international journals and editor of 3 research

books and 2 journals special issues. He is a member of IEEE Computer

Society.

Zhiyuan Tan holds a Ph.D. degree in computer
systems from the University of Technology, Sydney,

Australia. He is a lecturer at the School of Computing,

Edinburgh Napier University (ENU), the United
Kingdom. Prior to joining ENU, Dr. Tan held a

postdoctoral research fellowship at the University of

Twente, the Netherlands and the University of
Technology Sydney, Australia respectively. His

research has been supported by various funding

agencies, including the Commonwealth Scientific and
Industrial Research Organisation, Australia. His recent research findings have

been published in leading journals, including IEEE Transactions on Parallel

and Distributed Systems (TPDS), IEEE Transactions on Computer (TC),
IEEE Transactions on Cloud Computing (TCC), Future Generation Computer

Systems (FGCS), Computer Networks (CN) etc. Due to his research

achievements in cybersecurity, Dr. Tan has been granted different research
awards including the National Research Award 2017 from the Research

Council of the Sultanate of Oman. Dr. Tan has been invited to serve as a

reviewer for top-rated international journals, including IEEE TPDS, IEEE
TC, IEEE Transactions on Information Forensics & Security (T-IFS), IEEE

Transactions on Dependable and Secure Computing (TDSC), FGCS, Journal

of Network and Computer Applications (JNCA), etc. He also has engaged in
various research venues as a technical committee member, an organising

chair, and a guest editor respectively.

International Journal of Computer Theory and Engineering, Vol. 10, No. 5, October 2018

169

http://microservices.io/patterns/microservices.html

