
  

 

Abstract—This research paper presents an End-to-End 

Software Architecture based on Deep Neural Networks for 

Automatic Learning in Chess. Initially classifying and 

regressive approaches are explored to evaluating game 

configurations by employing deep belief networks. A third 

research approach which combines these, is then developed by 

quantizing the value range of the evaluation function. The 

neural network learns to assess game positions accurately 

during an unsupervised pre-training and supervised fine-tuning 

phase, using a dataset solely consisting of binary vector 

representations of the board and corresponding evaluations. An 

alpha beta tree search is used to complement the chess engine for 

finding optimal moves. The experiments show how artificial 

neural networks can develop a deep understanding of the 

application domain, despite having no prior knowledge of the 

game rules or strategies. 

 
Index Terms—Chess, chess engine, artificial intelligence, deep 

learning, artificial neural 5networks, deep belief network, alpha 

beta pruning, alpha beta tree search. 

 

I. INTRODUCTION 

Artificial Intelligence (AI) is this generation's mantra. In 

particular, Deep Learning as part of Machine Learning, which 

is one of the subdomains of AI, has produced phenomenal 

results. In 2015, DeepMind's “AlphaGo” defeated one of the 

world's leading Go players for the first time; according to the 

estimates, this was not expected to happen until 2030 [1], but 

was particularly enabled by the development of Artificial 

Neural Networks [2], [3].  

Chess is one of the most popular strategic board games in 

the world. Its complexity makes it a popular target for the 

development of Artificial Intelligence. In 1996, IBM was the 

first to succeed in defeating the then reigning world chess 

champion, Garry Kasparov, with the chess computer “Deep 

Blue” [4]. This success was the result of more than ten years 

of research and development by project leader Feng-hsiung 

Hsu. Even today, chess computers are often optimized by 

precise, year-long fine-tuning with chess experts, to provide 

unsurpassed excellence. A great deal of specialist knowledge 

is needed to master the many aspects and strategies of the 

game. 

 

 

 

This research work demonstrates how self-learning „deep 

learning‟ algorithms are used to develop a chess computer 

which independently learns strategic intelligent moves, 

without any prior knowledge of the board game and its rules. 

 

II. SOFTWARE ARCHITECTURE 

To play chess successfully, one needs to gain the deepest 

possible understanding of the effect of different moves [5]. 

Conventional chess engines use linear evaluation functions 

to combine various features of the game board to calculate a 

number which represents the quality of a position. 

For example, the multitude and position of the pieces, 

safety of the king, central position occupancy, etc. are taken 

into account in order to arrive at a value by using a linear 

combination of these properties. The human understanding of 

any situation, however, goes far beyond that; each situation in 

the game requires an individual estimation of the 

configuration of the pieces and possible benefits. To mimic 

this abstract process through machine learning, we use 

artificial neural networks trained for the nonlinear evaluation 

of game positions. 

A consecutive tree search then allows all possible 

consequences to be evaluated to determine the optimal move. 

The basis of our software architecture is the development 

of a Deep Belief Network (DBN). To ensure a flawless design, 

it follows the SOLID-principles. Appendix A shows the UML 

modeling of our finished software. 

A. Application Layer 

The application is divided into two processes: training and 

prediction. The training phase is used for the highly accurate 

adaptation of the weights and biases of the artificial neurons 

and consists of two consecutive sub-processes. These are 

subdivided into pre-training and fine-tuning. Pre-training is 

used to optimize the training behavior and to avoid the 

vanishing gradient problem. “[...] particular to deeper nets [...] 

the gradients will either shrink towards zero or blow up as 

they are back-propagated, making learning of the weights 

before the last few layers nearly impossible” [6]. For this 

reason, we perform an unsupervised pre-training. 

B. Pre-training 

Before the actual training of the model there will be an 

unsupervised pre-training of every single hidden layer. 

“During each phase of the greedy unsupervised training 

strategy, layers are trained to represent the dominant factors 

of variation extant in the data. This has the effect of 

leveraging knowledge of X to form, at each layer, a 

representation of X consisting of statistically reliable features 
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of X that can then be used to predict the output [...]” [7]. In 

each of the hidden layers, patterns are extracted from within 

the data. At this point, the network is not yet aware of any 

information about target data, such as class affiliation or 

rating of the data record. In order to train each layer separately 

in advance, so-called Restricted Boltzmann Machines (RBMs) 

are used. An RBM is a non-directional model consisting of a 

visible and a hidden layer with symmetrically connected units 

[8]. This model is trained using the Contrastive Divergence 

algorithm [9], [10]. 

Thus, the various hidden layers of the DBN are trained in 

succession, starting with the input layer and the subsequent 

hidden layer. Once a layer has completed the pre-training, the 

network is used as a normal Feed-Forward Neural Network, 

whereupon this layer takes over the task of being the visible 

layer within the RBM [11]. 

C. Fine-tuning 

The weights of the network have now been adapted to the 

patterns within the training data. The network does not know 

any characteristics of the data yet. 

The fine-tuning has the following tasks: 

 Add an output layer and perform supervised training. 

 Final adjustments of the network parameters. 

Since the hidden layers have already been trained, it is 

sufficient in this phase to adapt the parameters of the output 

layer. All the network parameters are readjusted using the 

Stochastic Gradient Descent Algorithm [12], [13]. 

D. Prediction 

After the training has been completed, the model can be 

used to predict the characteristics of new datasets. This 

process can be represented as a simple matrix multiplication. 

Thus, on each artificial neuron j of a layer l, the incoming data 

a is summed, after multiplying it with its weights wj. The 

value that is obtained from adding a bias bj to the neuron and 

performing an activation function σ over this sum, is then 

propagated to the next layer, until the output layer eventually 

provides a result. 
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E. Persistence Layer 

For the administration of the dataset, we fill an HSQL 

database table with the dataset created in the form of a CSV 

file in advance. The connection of this database to the DBN 

avoids the need to parse the data records during the training 

process and additional computational effort during runtime. 

F. Presentation Layer 

During the training phase the output visualizes key figures 

on the current epoch, the accuracy and the error rate of the 

network as well as the current training process. 

The intuitive Forsyth-Edwards Notation for the chess 

engine is used to represent positions in the game and the 

detailed algebraic notation for playing moves. 

 

III. TRAINING OF THE MODELS 

The goal is to provide the models with as little prior 

knowledge as possible to examine how well the models were 

able to learn on their own. 

A. Dataset and Model Approaches 

For the dataset, one hundred thousand random game 

positions from high quality games (ELO rating ≥ 2400) were 

extracted from the “FICS Games Database 

(www.ficsgames.org)” in PGN file format. To convert these 

game positions into a DBN-compatible input format, the 

respective game boards are transformed into binary vectors. 

For each playing field, the presence or absence of one of 

the twelve individual figures is represented by a zero or one, 

resulting in a vector of length 12 × 64 = 768 for each game 

position. In addition the four castling rights were passed on, as 

these cannot be derived from the game position. Thus, each 

data record is represented by a binary vector of length 772, 

which represents the number of input neurons of the DBN. 

In the first approach, the model should learn to determine 

whether each individual position would result in a victory or a 

defeat. The dependent variables for this approach are 

therefore three exclusive classes: victory, draw and defeat. 

For the regressive approach, the dependent variables are 

determined in the form of a numerical value using the 

evaluation function of Stockfish, the best open source chess 

engine to date. These numbers, in the range [-300; 300], were 

normalized. 

In the third approach developed, these numerical values 

are quantized into seven classes in order to again use the 

superiority of classifying models over regressive models. 

Equation 2 represents the function by which we subdivided 

the value range of the dependent variable of the regressive 

approach into different classes. 
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B. Parameter Settings 

In this research three models for each of the three 

approaches are examined, each with the following parameter 

settings. The selection is based on results from research work 

[14], [15]. 

 Neurons per hidden layer: 

-  1st
 model: [772, 100, 100, 100] 

-  2nd
 model: [772, 400, 200, 100] 

-  3rd
 model: [772, 600, 400, 200, 100] 

 Learning rate: 0.005 × 0.98
Epoch

 

 Batchsize: 32 

 Pre-training epochs per layer: 50 

 Fine-tuning epochs: 200 

 Hidden layer activation: rectified linear unit 

 Output layer activation and loss function: 

-  Classification: Normalized exponential function and 

categorical crossentropy 
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-  Regression: Tangens hyperbolicus and huber loss 

In order to ensure optimal generalization through the 

models, a Dropout Regularization is used for each of the 

hidden layers at a rate of 0.5 during fine-tuning. “By doing 

this scaling, 2n networks with shared weights can be 

combined into a single neural network to be used at test time. 

Training a network with dropout and using this 

approximate averaging method at test time leads to 

significantly lower generalization error on a wide variety of 

classification problems compared to training with other 

regularization methods” [16], where n is the number of 

artificial neurons in the network. 

C. Model Evaluation 

In order to objectively assess our models, a 10-fold cross 

validation for each of them is performed. The classifying 

approach achieves a very high maximum accuracy of 99.0%. 

In contrast, the regressive approach, shows no improvement 

in accuracy (<15%), with the attribute regarding the difficulty 

of accurately predicting floating-point numbers. Since the 

loss of the corresponding models nevertheless decreases, it is 

assumed that the training process is successful. Both 

approaches show a generalized learning process without 

overfitting based on the Dropout Regularization. The 

quantized classification approach achieves a maximum 

accuracy of 85.24%. 

In addition, a significant over-adaptation after a small 

number of epochs is observed. Fig. 1 shows the monitored 

supervised fine-tuning error rates for the three model 

approaches. Since no significant improvement was apparent 

between the different configurations and the number of 

artificial neurons per hidden layer, the models were selected 

with 772-100-100-100 neurons per hidden layer as favorites, 

because of the lower computational effort needed. 

 
Fig. 1. Plotted loss of our models. 

 

IV. PROOF OF CONCEPT 

To complement the capabilities of the DBN to evaluate 

chess positions and implementing a powerful software 

architecture for an end-to-end chess computer, and therefore 

to examine its playing strength, an Alpha-Beta Tree Search is 

adapted. 

The aim of this search is to iteratively examine possible 

follow-up positions of a game position to the highest possible 

game depth, in order to be able to make the best choice in 

advance. 

A. Alpha-Beta-Search 

The principle of the algorithm is to update the α and β 

values for each node in the course of a depth-first search, in 

order to remove those subtrees with root nodes above or 

below the respective maximum or minimum for α or β [17]. 

α is the minimum result that player A will reach, and β, the 

maximum value that player B will achieve. The effectiveness 

of the algorithm depends heavily on the order in which the 

best moves are investigated. In the optimal case, the algorithm 

can reduce the exponential search complexity to O(b
d/2

), 

where b is the number of average successor nodes of each 

node (about 35 in chess) and d is the search depth. The worst 

case complexity would be O(b
d
) [17]. 

By using a transposition table in the form of a hashmap we 

achieve two additional advantages: On the one side, the 

search depth are increased iteratively by keeping the results of 

the search tree within the hashmap, on the other side, multiple 

evaluation of nodes with the same game position is not needed, 

which considerably reduces the computational effort. “Using 

a transposition table can have a dramatic effect, sometimes as 

much as doubling the reachable search depth in chess” [17]. 

B. Skill Level 

In order to compare the strength of the three approaches in 

the first step, the three models were compared in 100 games. 

They all used the same search algorithm and had to 

demonstrate how they use their learned evaluation function to 

select the optimal sub-tree leading to the strongest move. 

The quantized classifying model proved to be most 

successful, with a slight lead over the regressive approach 

while the simple classifying model was clearly inferior. Out of 

a total of 300 games, the best scored 121 wins, the second 117 

wins and the last, 62 wins. Hence, the quantized classifying 

model is used for further research experiments. 

In the next step, the learned skill level was qualitatively 

examined. Thus various problems were identified for both 

sides of the game, black and white, based on which the model 

had to prove its degree of understanding of the game. Fig. 2 

illustrates three of these problems. In this case, the moves of 

the chess computer are marked orange, whereas 

predetermined logical reactions of the other side are marked 

in blue. 

The research experiments showed that the Deep Belief 

Network is not only able to learn simple concepts, such as the 
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roles and rules of the characters and checkmate independently, 

but also to develop advanced techniques, such as sacrificing 

pieces and foresighted positioning. Because of the high 

configuration count of all possible chess games (after 40 

moves between 10
115

 and 10
120

 [18]), it is assumed that the 

DBN has not yet seen every play position. Hence it is evident 

that a learning process has successfully taken place. 

In the final step, two instances of the same chess computer 

are placed side-by-side in a game against each other at a 

search depth of 8, to examine its playing behavior. The 

excerpt in Appendix B demonstrates how the DBN has 

learned to tactically plan ahead and think positionally. 

 

 
Fig. 2. Three different Test Challenges solved by our Application. 

 

V. CONCLUSION 

This research work demonstrates that the developed 

software architecture based on DBN is able to successfully 

learn paradigms and rules of chess independently. In contrast 

to the linear combination of various game board features of 

the evaluation function of conventional chess computers, 

these functions are expressed as a powerful purely 

mathematical matrix operation, thus laying the foundation for 

a highly parallelizable chess engine. 

The experiments demonstrate only a fraction of the 

potential of the software by using only a single processor with 

about 50 GFLOPs and a very limited number of data sets, for 

example compared to Google's Alpha Zero chess computer 

with 5000 TPUs (180 TFLOPS / TPU) used for training [19]. 

It was presented how machine-based learning develops a 

human-like understanding of the field of application without a 

priori knowledge. This research work is a fundamental basis 

for the further development of chess computers in the future. 

APPENDIX A 

UML-MODEL OF OUR SOFTWARE ARCHITECTURE 

DeepBeliefNetwork

-inputNeurons: int
-outputNeurons: int
-amountHiddenLayers: int
-hiddenLayers: HiddenLayer[]
-hiddenLayerSizes: int[]
-rbmLayers: RestrictedBoltzmannMachine[]
-outputLayer: OutputLayer

+pretrain( traindata: double[][][],
layer: int,
learningRate: double)

+finetune(traindataX: double[][][],
traindataY: double[][][],
learningRate: double)

+finetuneDropout(traindataX: double[][][],
               traindataY: double[][][],
               learningRate: double)

+predict(x: double[]): double[]
+serialize()
+deserialize(): DeepBeliefNetwork
-dropout(neurons: double[]): int[]

-activation: DoubleFunction<Double>
-activationDerived: DoubleFunction<Double>

+propagateForward(x: double[]): double[]
+propagateBackward(traindataX: double[][],

  traindataY: double[][],
  previousError: double[],
  previousWeights: double[][],
  learningRate: double): double[][]

+outputBinomial(x: int[]): int[]
-output(x: double[]): double[]

+contrastiveDivergence(traindata: int[][],
      learningRate: double)

-gibbsSampling(initialHiddenSample: int[],
          nextVisibleMeans: double[],
          nextVisibleSamples: int[],
          nextHiddenMeans: double[],
          nextHiddenSamples: int[])

-sampleVisible( initialVisibleSample: int[], 
          sample: int[],
          mean: double[])

-sampleHidden(initialHiddenSample: int[], 
          sample: int[],
          mean: double[])

-propagateUp(visibleUnits: int[],
        weights: double[],
        bias: double)

-propagateDown(hiddenUnits: int[],
             neuronIndex: int,
             bias: double)

LogisticLayer

#activate(preActivation: 
double[]): double[]

RegressionLayer

#activate(preActivation: 
double[]): double[]

n

1

1

n

1

1

<<Enumeration>>

TrainingRecorder

instance
-connection: Connection

+insert(statement: String)
<<Enumeration>>

DataProvider

instance
-connection: Connection

+count(): int
+getXSamples(minibatchSize: int,

        index: int): double[][]
+getYClassSamples(minibatchSize: int,

                index: int): double[][]
+getYScoreSamples(minibatchSize: int,

                  index: int): double[][]
-loadCSV()

1

1

<<Enumeration>>

Configuration

instance

1

1

CSVParser

-file: String
-scanner: Scanner

+hasNext(): boolean
+getNext(): List<String>

ActivationFunction

+sigmoid(x: double): double
+dsigmoid(y: double): double
+tanh(x: double): double
+dtanh(y: double): double
+relu(x: double): double
+drelu(y: double): double)

RandomGenerator

+uniform(min: double, 
                  max: double): double
+binomial(max: int,

probability: double): int
+argmax(vector: double[]): int
+argmin(vectir: double[]): int

+predict(x: double[]): double[]
+train(layerInput: double[][],
            traindataY: double[][],
            learningRate: double)
-output(x: double[]): double[]
#activate(preActivation: double[]): double[][]
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DeepBeliefNetwork

-inputNeurons: int
-outputNeurons: int
-amountHiddenLayers: int
-hiddenLayers: HiddenLayer[]
-hiddenLayerSizes: int[]
-rbmLayers: RestrictedBoltzmannMachine[]
-outputLayer: OutputLayer

+pretrain( traindata: double[][][],
layer: int,
learningRate: double)

+finetune(traindataX: double[][][],
traindataY: double[][][],
learningRate: double)

+finetuneDropout(traindataX: double[][][],
               traindataY: double[][][],
               learningRate: double)

+predict(x: double[]): double[]

HiddenLayer

-inputNeurons: int
-outputNeurons: int
-weights: double[][]
-biases: double[]
-activation: DoubleFunction<Double>
-activationDerived: DoubleFunction<Double>

+propagateForward(x: double[]): double[]
+propagateBackward(traindataX: double[][],

  traindataY: double[][],
  previousError: double[],
  previousWeights: double[][],
  learningRate: double): double[][]

+outputBinomial(x: int[]): int[]
-output(x: double[]): double[]

RestrictedBoltzmannMachine

-visibleNeurons: int
-hiddenNeurons:int
-weights: double[][]
-visibleBias: double[]
-hiddenBias: double[]

+contrastiveDivergence(traindata: int[][],
      learningRate: double)

-gibbsSampling(initialHiddenSample: int[],
          nextVisibleMeans: double[],
          nextVisibleSamples: int[],
          nextHiddenMeans: double[],
          nextHiddenSamples: int[])

-sampleVisible( initialVisibleSample: int[], 
          sample: int[],
          mean: double[])

-sampleHidden(initialHiddenSample: int[], 
          sample: int[],
          mean: double[])

-propagateUp(visibleUnits: int[],
        weights: double[],
        bias: double)

-propagateDown(hiddenUnits: int[],
             neuronIndex: int,
             bias: double)

LogisticLayer

#activate(preActivation: 
double[]): double[]

RegressionLayer

#activate(preActivation: 
double[]): double[]

1 1

<<Enumeration>>

TrainingRecorder

instance
-connection: Connection

+insert(statement: String)
<<Enumeration>>

DataProvider

instance
-connection: Connection

+count(): int
+getXSamples(minibatchSize: int,

        index: int): double[][]
+getYClassSamples(minibatchSize: int,

                index: int): double[][]
+getYScoreSamples(minibatchSize: int,

                  index: int): double[][]
-loadCSV()

1

1

<<Enumeration>>

Configuration

instance

1

1

CSVParser

-file: String
-scanner: Scanner

+hasNext(): boolean
+getNext(): List<String>

ActivationFunction

+sigmoid(x: double): double
+dsigmoid(y: double): double
+tanh(x: double): double
+dtanh(y: double): double
+relu(x: double): double
+drelu(y: double): double)

RandomGenerator

+uniform(min: double, 
                  max: double): double
+binomial(max: int,

probability: double): int
+argmax(vector: double[]): int
+argmin(vectir: double[]): int

OutputLayer

-inputNeurons: int
-outputNeurons: int
-weights: double[][]
-biases: double[]

+predict(x: double[]): double[]
+train(layerInput: double[][],
            traindataY: double[][],
            learningRate: double)
-output(x: double[]): double[]
#activate(preActivation: double[]): double[][]
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