



Abstract—The fireworks algorithm is a lately developed

algorithm based on fireworks in the night sky. It is a swarm

intelligence algorithm with a broad range of use. In this paper

the algorithm is introduced and discussed. Furthermore, an

implementation of the algorithm for optimizing the travelling

salesman problem is introduced. Prior to implementation the

adjustments to the algorithm will be provided. The

implementation is based on Java and the layer based and

extendable architecture of the implemented application is

introduced. The performance of the implementation and the

impact of the parameters on the behavior of the algorithm will

be tested and analyzed. The results show that the fireworks

algorithm is a efficient and performant algorithm to optimize

the combinatorial problem of the travelling salesman.

Index Terms—Travelling salesman problem, combinatorial

problem optimization, fireworks algorithm.

I. INTRODUCTION

The traveling salesman problem (TSP) is a well-known

combinatorial problem. Although the idea behind the

problem may not sound too complex, the TSP is representing

a difficult combinatorial optimization problem. The goal is to

find the minimum route over a given set of cities while the

starting location is also the ending location and each city is

visited once [1].

In this paper a java-based implementation of the fireworks

algorithm (FWA) framework for optimizing the TSP will be

introduced together with the needed foundations. The

fireworks algorithm is a recently developed algorithm. It is a

swarm intelligence algorithm based on the explosions of

fireworks in the night sky. Swarm intelligence has attracted

interest in researchers globally in the recent years [2]-[4].

 The paper is organized as follows. In Section II, the

foundations of the TSP and the fireworks algorithm are

introduced. The discrete fireworks algorithm for the TSP is

presented in Section III. Section IV describes the software

architecture of the implemented application. The proof of

concept for the application and results of the parameter

analysis are given in details in Section V.

II. FOUNDATIONS

The foundations for this paper are the travelling salesman

problem together with the fireworks algorithm. Within this

chapter the foundations for these two parts will be provided.

In the following chapters the foundations will be used to

implement the software architecture.

A. The Travelling Salesman Problem

For this paper the following definition of the travelling

salesman problem will be used within this paper: Given a set

of N cities
1 2 3

{ , , , ..., }
n

c c c c the distance between two cities

a b
c c is described with (),

a b
d c c whereas for the

optimization of the problem a permutation x of the cities N is

to be found with a minimum tour length. In this tour all the

cities must be visited exactly once, and the beginning of the

tour must also be the ending point of the tour. The tour length

of the permutation x with the last city as
xn

c is defined with

1 1

1

1

() (,) (,)
i i n

N

x x x x

i

L x d c c d c c






  (1)

Furthermore, this paper only uses symmetrical problems,

so that the distance between two cities is the same for all

directions [1].

B. Foundations of the Fireworks Algorithm

This subsection will describe the overall working

mechanism and the foundations of the fireworks algorithm

and its four core components: the explosion operation, the

mutation operation, the mapping rule and the selection

strategy. In the next chapter III a detailed view into the

working mechanism of the implemented algorithm will be

given.

The fireworks algorithm introduced by Y. Tan originates

from, like the name already announces, fireworks in the night

sky. Based on the behavior of the explosions from the

fireworks the way to search the solution space will be adapted

in this algorithm [5].

The algorithm is working in an iterative way like

evolutional algorithms where each iteration is using

information from the previous one. In each iteration all four

components of the fireworks algorithm are applied to the

problem. The algorithm will run until a defined ending

criteria is met; either the maximum number of iterations or

the accuracy requirement of the problem. The components

within the fireworks algorithm are designed to adopt the

behavior of the real counterparts: the explosion operation, the

Object-Oriented Research Framework for the Fireworks

Algorithm with the Focus on the Travelling Salesman

Problem

Robert Ehni and Carsten Müller

International Journal of Computer Theory and Engineering, Vol. 10, No. 5, October 2018

139DOI: 10.7763/IJCTE.2018.V10.1215

Finally, the conclusion summarizes in final Section VI.

Manuscript received July 15, 2018; revised October 8, 2018.
Robert Ehni is with the Department of Applied Informatics, Swarm

Intelligence Research, Baden-Wuerttemberg Cooperative State University

Mosbach, Lohrtalweg 10, 74821 Mosbach, Germany (e-mail:
rob.ehni.15@lehre.mosbach.dhbw.de).

Carsten Müller is with the Department of Information Technologies,

University of Economics, Faculty of Informatics and Statistics, W. Churchill
Sq. 4, 130 67 Prague 3, Czech Republic (e-mail: research@ieoca.org).

mailto:rob.ehni.15@lehre.mosbach.dhbw.de
mailto:research@ieoca.org

mutation operation, the mapping rule and the selection

strategy [6], [7].

Fig. 1 briefly shows the basic process of the algorithm.

Fig. 1. Pseudocode for the fireworks algorithm. In an iterative way each

component of the algorithm is applied until an ending criteria is met. Own
illustration.

In the following the four components of the algorithm and

their purpose will be described [5], [8]-[11]:

1) Explosion operation

The first component of the fireworks algorithm is the

explosion operation. Its main purpose is to generate new

sparks from the existent fireworks. The component contains

three parts: the explosion strength, the amplitude and the

displacement operation. The explosions strength controls,

how many sparks are generated by each firework. For a

efficient exploration of the feasible space fireworks with a

good fitness value (good explosions) will generate more

sparks than fireworks with worse fitness values (bad

explosions). The amplitude will control the radius of the

explosion and therefore enhance the local or global search

aspect of the explosion. A good explosion will have a higher

amplitude and thus focus on a local search to improve the

fitness value while a bad explosion will focus on the global

space. The last part of the explosion operation is the

displacement operation. For each firework the amplitude will

be randomly adjusted with the displacement operation. This

is done to ensure a diversity of the fireworks.

2) Mutation operation

After the explosion operation the mutation operation takes

place to furthermore improve the diversity of the population.

The mutation operation will pick a (e.g. random) number of

fireworks and apply a mutation operation. What kind of

mutation operation will be applied to the fireworks is

dependent on the problem which should be optimized.

3) Mapping rule

If there is a feasible space for the problem and a firework is

near the boundary of this space some of the generated sparks

of the firework could be out of the feasible space. These

generated sparks may be useless and thus the mapping rule

takes place to bring them back into the feasible space. With

this operation we guarantee that every solution is in the

feasible space.

4) Selection strategy

The last step in each iteration is the selection strategy. This

operation selects the sparks which will be used for the next

iteration. The best spark will always be selected, for the rest

of the sparks the selection strategy will select them on a

random and distance-based method. This is done to ensure a

diversity of the fireworks. Thus, sparks with a greater

distance to other sparks will have a higher probability of

being selected for the next iteration.

III. OBJECT-ORIENTED RESEARCH FRAMEWORK

The core fireworks algorithm described in II.B needs to be

customized to optimize the travelling salesman problem. The

behavior of the algorithm stays mainly the same as seen in

Fig. 2. Major changes are the introduction of the two

explosion operators. The amplitude of the explosion

operation will also made to a global parameter throughout the

algorithm. The mutation operation will be used for further

exploration of the feasible space and the mapping rule

becomes obsolete due to the nature of the problem and the

explosion and mutation operation. All these changes will be

described in the following. Furthermore, a detailed view into

the mechanisms in each component will be given [5].

Fig. 2. Flowchart for the discrete fireworks algorithm for optimizing the

travelling salesman problem. Own illustration after [5].

To demonstrate the behavior of the operations and their

relationships a numerical example will be used throughout

this chapter. Given a set of six cities with index and

coordinates: 1 (1/1), 2 (4/1), 3 (8/2), 4 (6/7), 5 (2/6), 6 (3/4).

A random initial route which should be optimized is set as 1 –

6 – 3 – 4 – 2 – 5 – 1 with an overall distance of 31, 18 length

units (see Fig. 3).

Fig. 3. Numerical example instance of the travelling salesman problem with

six cities. This instance with the shown initial route is used in this paper for
demonstrating the behavior of the components of the fireworks algorithm.

A. Explosion Operation

The explosion operation undergoes major changes to

optimize the travelling salesman problem. One major change

is the function and behavior of the amplitude. In the core

fireworks algorithm the amplitude is calculated for each

firework depending on the fitness value. It controls the

behavior of the searching function of the explosion operation

in terms of local or global search. In the discrete algorithm

this variable will have the same function, but it will be a

global parameter for all fireworks. The amplitude will be

adjusted after each iteration. To avoid getting stuck in a local

optimum the algorithm will adjust the amplitude after a fixed

Initialize population

while Ending criteria not fulfilled do

Explosion operation

Mutation operation

Mapping rule

Selection strategy

end while

International Journal of Computer Theory and Engineering, Vol. 10, No. 5, October 2018

140

number of iterations (which we will call β) without a

decreasing distance to enhance the global search

functionality. The explosion operation from the fireworks

algorithm will be split into two operations in the discrete

algorithm: explosion operation I and II. The two operation

explosions are based upon optimization algorithms for the

travelling salesman problem. Before each operation the

number of sparks for each firework, i.e. the explosion

strength, is calculated with

 sparks normalized*i

i

x
sparks M x (2)

where
ix is the current firework, the constant sparksM is the

maximum number of sparks per firework and
normalized

ix is a

normalized value based on the distance of the current

firework between 0 and 1. The better the fitness, i.e. the

distance of the trip, the better the value. The best trip will

have normalized

ix set as 1 and the worst as 0. The normalization

is done with

min

normalized

max min

1
ii x

L L
x

L L


 


 (3)

where ix
L is the distance of the current firework and maxL

and minL are the worst and best distance in the current

population. [5]

Each explosion operation is based on an optimization

method and tries to generate sparks with a better fitness value.

Although sparks with a worse fitness value will be discarded

there is a chance that a worse spark will be accepted for the

next operations. The probability for accepting a worse spark

is calculated with

*

m

o

L

L

a
p e




 . (4)

where pa is the probability, oL is the original fitness of the

spark, mL the mutated fitness of the newly generated spark

and α is the global amplitude. A closer distance between mL

and oL will increase the probability of accepting the worse

solution.

1) Explosion operation I

Explosion operation I is based on the two-opt optimization

method for the travelling salesman problem which takes two

edges in the route and swaps them. It is a post optimization

method which goes over each city and selects the cities

,a random 1,b a  ,c currentCity 1d c 

whereas it skips the intersections and calculates the original

distance (,) (,)
o

L d a b d c d  and the mutated distance

(,) (,)
m

L d a c d b d  . If
m

L is shorter the changes will be

applied to the firework and thus a new spark is generated

[12].

If a worse solution gets accepted during the operation an

additional two-opt optimization will be applied to the worse

solution to decrease the probability of missing a potential

solution in the local space [5].

Fig. 4 shows a possible result of the first explosion

operation applied to the initial example route. The edges 6 – 3

and 2 – 5 are swapped with 6 – 2 and 3 – 5 which results in a

shorter distance and thus the new generated trip will be

accepted.

Fig. 4. Possible result of applying the first explosion operation to a travelling

salesman problem. Left: initial example. Right: route after explosion. The
affected edges are dotted.

2) Explosion operation II

Explosion operation II is based on the three-opt

optimization method [13] and is working in a similar way like

the first explosion operation. Although in this operation three

edges are swapped instead of two. Cities , , , , ,a b c d e f are

selected (similar to explosion operation I) and

(,) (,) (,)
o

L d a b d c d d e f   and the possible mutations

m
L (e.g. (,) (,) (,)

m
L d a d d e b d c f  ) are calculated. If

one of the new mutations are shorter, a new spark will be

generated. Like in the first explosion operation, if a worse

solution will be accepted it will be immediately further [5].

While explosion operation I is only swapping two edges, it

may miss out some routes which can only be created when

swapping more edges at a time. Thus, the explosion operation

II is introduced to gain diversity and enhance the searchable

space.

Fig. 5 demonstrates the working behavior of the explosion

operation II applied to the initial route. The edges 1 – 6, 3 – 4

and 2 – 5 are replaced by the new edges 1 – 4, 2 – 6 and 3 – 5.

The new route is now longer and will only be accepted when

pa is met.

Fig. 5. Possible result (right) of the explosion operation II applied to the

initial example route (left). Affected edges are dotted. Although the new

route is now longer it may be accepted if the probability pa is met.

B. Mutation Operation

For an optimal exploration of the feasible space and to

further maintain diversity the mutation operation is used in

addition to the explosion operations. During the operation a

loop will iterate over each city i in the route and another

random city z will be selected. If there is no direct

connection between these two cities the city z will be set in

the place between i and 1i  so that the route is now

International Journal of Computer Theory and Engineering, Vol. 10, No. 5, October 2018

141

1{..., , , ,...}i z zc c c 
. When a shorter route is found the

changes will be applied to the spark [5].

Because of the optimization methods used in the explosion

operations only multiple edges at once are swapped. Thus,

some routes can be hard to optimize. Therefore, the mutation

operation comes in place to fill this gap. Fig. 6 shows a

possible result of the mutation operation where city 6 moved

in between city 5 and 2 to create a new route which couldn’t

be created by the explosion operations.

Fig. 6. The right side demonstrates the mutation operation applied to the

initial example route on the left side. City 6 is taken from its original position

and moved in between city 5 and 2. The edges affected by this operation are

dotted.

C. Mapping Rule

The purpose of the mapping rule was to take solutions out

of the feasible space and map them back into the feasible

space. Due to the nature of the explosion operations and the

mutation operation it is impossible to create a solution out of

the feasible space. Thus, there is no need of mapping rule

anymore [5].

D. Selection Strategy

For the discrete fireworks algorithm we adopt the behavior

of the core algorithm. The best spark is always kept for the

next iteration. For the rest we normalize the distances (eq. (3))

and select randomly based on the normalized distances. So,

sparks with a better fitness value have a better chance to get

selected for the next iteration.

E. Parameters of the Discrete Fireworks Algorithm

For the discrete fireworks algorithm we have multiple

parameters which control the behavior of the algorithm.

1) Explosion amplitude α

The explosion amplitude  controls the search behavior.

A high amplitude will enhance local search while a low

amplitude will enhance the global search behavior by

accepting worse solutions in the explosion operations. In the

beginning the explosion amplitude is set to a neutral value

and will be automatically adjusted by the algorithm during

runtime.

2) Population size

Sets the number of fireworks, i.e. trips, which will be

generated and used for optimization.

3) Maximum amount of sparks per explosion

Sets the maximum amount of sparks a firework can

generate per explosion.

4) Factor β

After each iteration the amplitude will be adjusted to either

improve local or global search. When the algorithm doesn’t

find a better solution after a given number of iterations, it will

automatically enhance the global search behavior to further

explore the feasible space. This factor sets the number of

iterations, after which the global search will be increased.

5) Minimum distance

This is an ending criteria for the algorithm. When the given

minimum distance is met by one firework the algorithm will

stop.

6) Number of iterations

Next to the minimum distance, the number of iterations is

the second ending criteria of the algorithm. When the

minimum distance is not met the algorithm will stop after a

given number of iterations.

IV. SOFTWARE ARCHITECTURE

The software architecture of the implemented application

is split into three layers: the presentation, application and

persistence layer.

Each layer is independent of each other. The application

layer contains the core component of the application: the

fireworks algorithm as introduced in Section III. Furthermore,

the application layer contains the logic for the TSP. The

persistence layer has three main responsibilities: reading in

TSPs from text files and providing the information to the

application layer, reading and writing the parameter

configuration for the fireworks algorithm and reading and

writing the data from the algorithm which is produced during

runtime. Fig. 7 shows a visualization of the three layers and

their responsibilities.

The layers will be described in the following.

Fig. 7. Overview of the software layers and their responsibilities.

A. Presentation Layer

The presentation layer is implemented using JavaFX to

provide a graphical user interface to control the application

layer. Within the user interface, the user can load a TSP from

a text file. After successfully loading a text file the parameters

for the algorithm (see Section III.E) can be adjusted. Finally,

the algorithm can be started. During runtime the graphical

user interface provides the runtime data from the algorithm

and an option to stop the execution.

B. Persistence Layer

The persistence layer provides three major functionalities

throughout the application: Reading the given tsp problem as

a text-file, reading and writing the parameters for the

algorithm and storing the run time algorithm data. To store

the data the in-memory database HSQLDB is used. This

allows the application layer to subsequently access the

runtime data afterwards to export the information for analysis.

International Journal of Computer Theory and Engineering, Vol. 10, No. 5, October 2018

142

Fig. 8 shows the class diagram for the three main classes for

the persistence layer: the Configuration, the

HSQLDBManager and the TSPReader.

Fig. 8. Class diagram of the fireworks algorithm components.

C. Application Layer

The application layer is the main part of the software

architecture. It contains multiple parts: the implementation of

the tsp, the central mediator for controlling the algorithm and

the implementation of the fireworks algorithm as described in

Section III whereas the algorithm and the tsp implementation

are the core of the application layer.

Fig. 9. Class diagram of the fireworks algorithm components and the

algorithm controller.

The fireworks algorithm is separated in the three

components of the discrete algorithm controlled by single

class: the explosion operation, the mutation operation and the

selection strategy. Each component is implemented

independently of each other and accessed by defined

interfaces. The main class is implemented for controlling the

algorithm and accessing each component. Thus, an exchange

or modification of each component can be done easily. Fig. 9

shows the mediator class for the algorithm the class diagrams

for the interfaces of the components and their

implementation.

After first tests of the implemented algorithm a huge

bottleneck in the explosion and mutation components was

found due to the sequential implementation in the beginning.

Due to this both components have been overhauled. By using

Java Streams a great amount of parallelism was achieved

within the components. This improvement increased the

overall performance of the algorithm by more than 50%.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In the first part of this section the parameter impact on the

algorithm will be discussed and analyzed. The second part

will focus on the results of the test runs of the parameter

analysis and the overall performance of the implemented

application. For the parameter analysis twelve individual

scenarios (see TABLE for the parameter setup and Fig. 10

for the boxplots of each scenario result) are run on the

implemented application against the TSP a280. The current

optimum for the TSP a280 is 2579.

TABLE I: TESTED SCENARIOS FOR THE PROOF OF CONCEPT. ALL

SCENARIOS ARE RUN AGAINST THE TSP A280

Scenario

Max. Sparks

Population

Size
Factor β

Number of

Iterations

#1 1 5 10

#2 3 5 10

#3 5 5 10

#4 10 5 10

#5 15 5 10

#6 20 5 10 20.000

#7 10 10 10

#8 15 10 10

#9 20 10 10

#10 10 10 15

#11 15 10 15

#12 20 10 15

All the scenarios are run on an Intel® Core™ i5-6300U

CPU with 8 GB RAM running Windows 10 64bit. For all

scenarios the maximum number of iterations is set to 20.000

iterations. The maximum number of sparks per explosion will

be tested with the values 10, 15 and 20 with a population size

with 5 and 10 each plus an additional three scenarios with the

maximum sparks of 1, 3 and 5. Factor β is set to 10 for all the

scenarios except the last three. For these scenarios the impact

of a higher factor β on the behavior of the algorithm is

analyzed.

The longer upper whiskers in the boxplots from Fig. 10

show that almost all scenarios are quickly heading towards a

suboptimum during the optimization process. The shorter

lower whisker on most of the scenarios demonstrates the

good overall performance of staying close to the suboptimum.

As seen in Fig. 11 the runtime is affected from both the

International Journal of Computer Theory and Engineering, Vol. 10, No. 5, October 2018

143

population size and the maximum number of sparks. Both

parameters affect the runtime in a linear manner. While the

last two scenarios are not affected by the higher factor β

scenario #10 is an outlier with an 50% longer runtime

compared to scenario #7 with the same parameters except the

lower β.

Fig. 10. Boxplot overview within the range of 2700 up to 3700 for each test scenario. Some significant information shown by the boxplot for example is the
direct influence of the Factor β in scenario #10, #11 and #12 compared to #7, #8 and #9 which is represented in a drastically increased range of relevant results.

Also shown are the good drilling capabilities of the algorithm by using small parameters for the maximum number of sparks and the population size in the first

three scenarios.

Fig. 11. Runtimes in minutes of the test scenarios shown in TABLE .

Fig. 12. Best and average distance of the test scenarios shown in TABLE .

Fig. 12 shows the best and average distance of each test

scenario. Even with the high amount of parallelism the

performance of the algorithm reduces with a growing

population or spark number while giving no major

improvements of the produced solution quality. Scenario #2

provides the optimal results of all scenarios with a best

distance of 2746 which is equal to a solution quality of

93.25% for this TSP instance. With a runtime of 41 minutes

this demonstrates the drilling capability of the algorithm with

small parameters of a population of 5 and a maximum

amount of 3 sparks per explosion operation.

VI. CONCLUSION

This paper proposes an implementation of the fireworks

algorithm for the TSP. Based on the fireworks algorithm

proper changes are introduced to optimize the TSP.

The explosion operation is split into two operations. The

purpose of the mutation operation becomes to support the

explosion operation and the mapping rule is not required in

this case. A major advantage of the implemented fireworks

algorithm is the component-based architecture.

An introduction of new mechanics for the single

components can be done with a minimum amount of changes

to the overall algorithm. For example, in addition to the

two-opt and three-opt optimization methods implemented

with the explosion operation I and II some additional

optimization methods for the TSP could be introduced

alongside.

The performance of the implementation provides a proof

of concept by finding a suboptimum of 2746. The quality of

the found suboptimum is equal to 93.25% based on the

current optimum of 2579 for the TSP a280. Though the

provided implementation still can be optimized, this work

shows the efficiency and performance of the fireworks

algorithm.

REFERENCES

[1] E. Lawler, J. K. Lenstra, A. H. G. Rinnoy Kan, and D. Shmoys, The

Traveling Salesman Problem - A Guided Tour of Combinatorial

Optimization, East Kilbrite: Courier International Limited, 1992.
[2] S. Garnier, J. Gautrais, and G. Theraulaz, “The biological principles of

swarm intelligence,” Swarm Intelligence, 2007.

[3] J. Kennedy, “Particle swarm optimization,” in Encyclopedia of
Machine Learning, C. Sammut and G. I. Webb, Eds. Boston, MA:

Springer US, 2010, pp. 760-766.

[4] P. E. Andries and P. Engelbrecht, Fundamentals of Computational
Swarm Intelligence. Wiley, 2005.

[5] Y. Tan, Fireworks Algorithm - A Novel Swarm Intelligence

Optimization Method, Heidelberg: Springer-Verlag Berlin Heidelberg,
2015.

[6] X. G. Li, S. F. Han, and C. Q. Gong, “Analysis and improvement of

fireworks algorithm,” Algorithms, 2017.
[7] Y. Tan and Y. Zhu, “Fireworks algorithm for optimization,” Advances

in Swarm Intelligence, 2010.

[8] Y. Tan, Y. Chao, S. Zheng, and K. Ding, “Introduction to fireworks
algorithm,” International Journal of Swarm Intelligence Research

(IJSIR), 2013.

International Journal of Computer Theory and Engineering, Vol. 10, No. 5, October 2018

144

[9] J. Li, S. Zheng, and Y. Tan, “Adaptive fireworks algorithm,” in Proc.

the 2014 IEEE Congress on Evolutionary Computation (CEC), Jul.

2014, pp. 3214-3221.
[10] S. Zheng, A. Janecek, and Y. Tan, “Enhanced fireworks algorithm,” in

Proc. the 2013 IEEE Congress on Evolutionary Computation (CEC),

2013.
[11] J. Liu, S. Zheng, and Y. Tan, “The improvement on controlling

exploration and exploitation of firework algorithm,” Advances in

Swarm Intelligence, 2013.
[12] G. Croes, “A method for solving traveling salesman problems,”

Operations Research, 1958.

[13] S. Lin, “Computer solutions of the traveling salesman problem,” Bell
System Technical Journal, 1965.

Robert Ehni was born on the 21 October, 1992 in

Sinsheim, Germany. He is currently studying applied

computer science at the Cooperative State University
Mosbach where he will graduate with a bachelor of

science in September 2018.

Before he started studying he did an apprenticeship
to become an IT businessman after which he worked as

an IT systems administrator at the City Administration

of Sinsheim.
During the apprenticeship he discovered his passion for computer science

and software development and thus he attained his advanced technical

college entrance qualification to start studying applied computer science.

International Journal of Computer Theory and Engineering, Vol. 10, No. 5, October 2018

145

