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Abstract—The fireworks algorithm is a lately developed 

algorithm based on fireworks in the night sky. It is a swarm 

intelligence algorithm with a broad range of use. In this paper 

the algorithm is introduced and discussed. Furthermore, an 

implementation of the algorithm for optimizing the travelling 

salesman problem is introduced. Prior to implementation the 

adjustments to the algorithm will be provided. The 

implementation is based on Java and the layer based and 

extendable architecture of the implemented application is 

introduced. The performance of the implementation and the 

impact of the parameters on the behavior of the algorithm will 

be tested and analyzed. The results show that the fireworks 

algorithm is a efficient and performant algorithm to optimize 

the combinatorial problem of the travelling salesman. 

 
Index Terms—Travelling salesman problem, combinatorial 

problem optimization, fireworks algorithm.  

 

I. INTRODUCTION 

The traveling salesman problem (TSP) is a well-known 

combinatorial problem. Although the idea behind the 

problem may not sound too complex, the TSP is representing 

a difficult combinatorial optimization problem. The goal is to 

find the minimum route over a given set of cities while the 

starting location is also the ending location and each city is 

visited once [1]. 

In this paper a java-based implementation of the fireworks 

algorithm (FWA) framework for optimizing the TSP will be 

introduced together with the needed foundations. The 

fireworks algorithm is a recently developed algorithm. It is a 

swarm intelligence algorithm based on the explosions of 

fireworks in the night sky. Swarm intelligence has attracted 

interest in researchers globally in the recent years [2]-[4]. 

 The paper is organized as follows. In Section II, the 

foundations of the TSP and the fireworks algorithm are 

introduced. The discrete fireworks algorithm for the TSP is 

presented in Section III. Section IV describes the software 

architecture of the implemented application. The proof of 

concept for the application and results of the parameter 

analysis are given in details in Section V. 

 

 

 

 

II. FOUNDATIONS 

The foundations for this paper are the travelling salesman 

problem together with the fireworks algorithm. Within this 

chapter the foundations for these two parts will be provided. 

In the following chapters the foundations will be used to 

implement the software architecture. 

A. The Travelling Salesman Problem 

For this paper the following definition of the travelling 

salesman problem will be used within this paper: Given a set 

of N cities 
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Furthermore, this paper only uses symmetrical problems, 

so that the distance between two cities is the same for all 

directions [1]. 

B. Foundations of the Fireworks Algorithm 

This subsection will describe the overall working 

mechanism and the foundations of the fireworks algorithm 

and its four core components: the explosion operation, the 

mutation operation, the mapping rule and the selection 

strategy. In the next chapter III a detailed view into the 

working mechanism of the implemented algorithm will be 

given. 

The fireworks algorithm introduced by Y. Tan originates 

from, like the name already announces, fireworks in the night 

sky. Based on the behavior of the explosions from the 

fireworks the way to search the solution space will be adapted 

in this algorithm [5]. 

The algorithm is working in an iterative way like 

evolutional algorithms where each iteration is using 

information from the previous one. In each iteration all four 

components of the fireworks algorithm are applied to the 

problem. The algorithm will run until a defined ending 

criteria is met; either the maximum number of iterations or 

the accuracy requirement of the problem.  The components 

within the fireworks algorithm are designed to adopt the 

behavior of the real counterparts: the explosion operation, the 
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mutation operation, the mapping rule and the selection 

strategy [6], [7]. 

Fig. 1 briefly shows the basic process of the algorithm. 
 

 
Fig. 1. Pseudocode for the fireworks algorithm. In an iterative way each 

component of the algorithm is applied until an ending criteria is met. Own 
illustration. 

 

In the following the four components of the algorithm and 

their purpose will be described [5], [8]-[11]: 

1) Explosion operation 

The first component of the fireworks algorithm is the 

explosion operation. Its main purpose is to generate new 

sparks from the existent fireworks. The component contains 

three parts: the explosion strength, the amplitude and the 

displacement operation. The explosions strength controls, 

how many sparks are generated by each firework. For a 

efficient exploration of the feasible space fireworks with a 

good fitness value (good explosions) will generate more 

sparks than fireworks with worse fitness values (bad 

explosions). The amplitude will control the radius of the 

explosion and therefore enhance the local or global search 

aspect of the explosion. A good explosion will have a higher 

amplitude and thus focus on a local search to improve the 

fitness value while a bad explosion will focus on the global 

space. The last part of the explosion operation is the 

displacement operation. For each firework the amplitude will 

be randomly adjusted with the displacement operation. This 

is done to ensure a diversity of the fireworks. 

2) Mutation operation 

After the explosion operation the mutation operation takes 

place to furthermore improve the diversity of the population. 

The mutation operation will pick a (e.g. random) number of 

fireworks and apply a mutation operation. What kind of 

mutation operation will be applied to the fireworks is 

dependent on the problem which should be optimized. 

3) Mapping rule 

If there is a feasible space for the problem and a firework is 

near the boundary of this space some of the generated sparks 

of the firework could be out of the feasible space. These 

generated sparks may be useless and thus the mapping rule 

takes place to bring them back into the feasible space. With 

this operation we guarantee that every solution is in the 

feasible space. 

4) Selection strategy 

The last step in each iteration is the selection strategy. This 

operation selects the sparks which will be used for the next 

iteration. The best spark will always be selected, for the rest 

of the sparks the selection strategy will select them on a 

random and distance-based method. This is done to ensure a 

diversity of the fireworks. Thus, sparks with a greater 

distance to other sparks will have a higher probability of 

being selected for the next iteration. 

III. OBJECT-ORIENTED RESEARCH FRAMEWORK 

The core fireworks algorithm described in II.B needs to be 

customized to optimize the travelling salesman problem. The 

behavior of the algorithm stays mainly the same as seen in 

Fig. 2. Major changes are the introduction of the two 

explosion operators. The amplitude of the explosion 

operation will also made to a global parameter throughout the 

algorithm. The mutation operation will be used for further 

exploration of the feasible space and the mapping rule 

becomes obsolete due to the nature of the problem and the 

explosion and mutation operation. All these changes will be 

described in the following. Furthermore, a detailed view into 

the mechanisms in each component will be given [5]. 

 

 
Fig. 2. Flowchart for the discrete fireworks algorithm for optimizing the 

travelling salesman problem. Own illustration after [5]. 
 

To demonstrate the behavior of the operations and their 

relationships a numerical example will be used throughout 

this chapter. Given a set of six cities with index and 

coordinates: 1 (1/1), 2 (4/1), 3 (8/2), 4 (6/7), 5 (2/6), 6 (3/4). 

A random initial route which should be optimized is set as 1 – 

6 – 3 – 4 – 2 – 5 – 1 with an overall distance of 31, 18 length 

units (see Fig. 3).  

 

 
Fig. 3. Numerical example instance of the travelling salesman problem with 

six cities. This instance with the shown initial route is used in this paper for 
demonstrating the behavior of the components of the fireworks algorithm. 

 

A. Explosion Operation 

The explosion operation undergoes major changes to 

optimize the travelling salesman problem. One major change 

is the function and behavior of the amplitude. In the core 

fireworks algorithm the amplitude is calculated for each 

firework depending on the fitness value. It controls the 

behavior of the searching function of the explosion operation 

in terms of local or global search. In the discrete algorithm 

this variable will have the same function, but it will be a 

global parameter for all fireworks. The amplitude will be 

adjusted after each iteration. To avoid getting stuck in a local 

optimum the algorithm will adjust the amplitude after a fixed 

Initialize population 

while Ending criteria not fulfilled do  

Explosion operation  

Mutation operation  

Mapping rule  

Selection strategy  

end while 
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number of iterations (which we will call β) without a 

decreasing distance to enhance the global search 

functionality. The explosion operation from the fireworks 

algorithm will be split into two operations in the discrete 

algorithm: explosion operation I and II. The two operation 

explosions are based upon optimization algorithms for the 

travelling salesman problem. Before each operation the 

number of sparks for each firework, i.e. the explosion 

strength, is calculated with 

 

 sparks normalized*i

i

x
sparks M x   (2) 

 

where 
ix  is the current firework, the constant sparksM  is the 

maximum number of sparks per firework and 
normalized

ix  is a 

normalized value based on the distance of the current 

firework between 0 and 1. The better the fitness, i.e. the 

distance of the trip, the better the value. The best trip will 

have normalized

ix  set as 1 and the worst as 0. The normalization 

is done with 
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where ix
L  is the distance of the current firework and maxL  

and minL are the worst and best distance in the current 

population. [5] 

Each explosion operation is based on an optimization 

method and tries to generate sparks with a better fitness value. 

Although sparks with a worse fitness value will be discarded 

there is a chance that a worse spark will be accepted for the 

next operations. The probability for accepting a worse spark 

is calculated with 

 
*

m

o

L

L

a
p e




 .  (4) 

where pa is the probability, oL  is the original fitness of the 

spark, mL  the mutated fitness of the newly generated spark 

and α is the global amplitude. A closer distance between mL  

and oL  will increase the probability of accepting the worse 

solution. 

1) Explosion operation I 

Explosion operation I is based on the two-opt optimization 

method for the travelling salesman problem which takes two 

edges in the route and swaps them. It is a post optimization 

method which goes over each city and selects the cities 

,a random  1,b a   ,c currentCity  1d c   

whereas it skips the intersections and calculates the original 

distance ( , ) ( , )
o

L d a b d c d   and the mutated distance 

( , ) ( , )
m

L d a c d b d  . If 
m

L is shorter the changes will be 

applied to the firework and thus a new spark is generated 

[12]. 

If a worse solution gets accepted during the operation an 

additional two-opt optimization will be applied to the worse 

solution to decrease the probability of missing a potential 

solution in the local space [5]. 

Fig. 4 shows a possible result of the first explosion 

operation applied to the initial example route. The edges 6 – 3 

and 2 – 5 are swapped with 6 – 2 and 3 – 5 which results in a 

shorter distance and thus the new generated trip will be 

accepted. 

 

 
Fig. 4. Possible result of applying the first explosion operation to a travelling 

salesman problem. Left: initial example. Right: route after explosion. The 
affected edges are dotted.  

 

2) Explosion operation II 

Explosion operation II is based on the three-opt 

optimization method [13] and is working in a similar way like 

the first explosion operation. Although in this operation three 

edges are swapped instead of two. Cities , , , , ,a b c d e f are 

selected (similar to explosion operation I) and 

( , ) ( , ) ( , )
o

L d a b d c d d e f    and the possible mutations 

m
L  (e.g. ( , ) ( , ) ( , )

m
L d a d d e b d c f   ) are calculated. If 

one of the new mutations are shorter, a new spark will be 

generated. Like in the first explosion operation, if a worse 

solution will be accepted it will be immediately further [5]. 

While explosion operation I is only swapping two edges, it 

may miss out some routes which can only be created when 

swapping more edges at a time. Thus, the explosion operation 

II is introduced to gain diversity and enhance the searchable 

space.  

Fig. 5 demonstrates the working behavior of the explosion 

operation II applied to the initial route. The edges 1 – 6, 3 – 4 

and 2 – 5 are replaced by the new edges 1 – 4, 2 – 6 and 3 – 5. 

The new route is now longer and will only be accepted when 

pa is met. 

 

 
Fig. 5. Possible result (right) of the explosion operation II applied to the 

initial example route (left). Affected edges are dotted. Although the new 

route is now longer it may be accepted if the probability pa is met. 

 

B. Mutation Operation 

For an optimal exploration of the feasible space and to 

further maintain diversity the mutation operation is used in 

addition to the explosion operations. During the operation a 

loop will iterate over each city i  in the route and another 

random city z  will be selected. If there is no direct 

connection between these two cities the city z  will be set in 

the place between i  and 1i   so that the route is now 
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1{..., , , ,...}i z zc c c 
. When a shorter route is found the 

changes will be applied to the spark [5]. 

Because of the optimization methods used in the explosion 

operations only multiple edges at once are swapped. Thus, 

some routes can be hard to optimize. Therefore, the mutation 

operation comes in place to fill this gap. Fig. 6 shows a 

possible result of the mutation operation where city 6 moved 

in between city 5 and 2 to create a new route which couldn’t 

be created by the explosion operations. 

 

 
Fig. 6. The right side demonstrates the mutation operation applied to the 

initial example route on the left side. City 6 is taken from its original position 

and moved in between city 5 and 2. The edges affected by this operation are 

dotted. 

 

C. Mapping Rule 

The purpose of the mapping rule was to take solutions out 

of the feasible space and map them back into the feasible 

space. Due to the nature of the explosion operations and the 

mutation operation it is impossible to create a solution out of 

the feasible space. Thus, there is no need of mapping rule 

anymore [5]. 

D. Selection Strategy 

For the discrete fireworks algorithm we adopt the behavior 

of the core algorithm. The best spark is always kept for the 

next iteration. For the rest we normalize the distances (eq. (3)) 

and select randomly based on the normalized distances. So, 

sparks with a better fitness value have a better chance to get 

selected for the next iteration. 

E. Parameters of the Discrete Fireworks Algorithm 

For the discrete fireworks algorithm we have multiple 

parameters which control the behavior of the algorithm. 

1) Explosion amplitude α 

The explosion amplitude   controls the search behavior. 

A high amplitude will enhance local search while a low 

amplitude will enhance the global search behavior by 

accepting worse solutions in the explosion operations. In the 

beginning the explosion amplitude is set to a neutral value 

and will be automatically adjusted by the algorithm during 

runtime. 

2) Population size 

Sets the number of fireworks, i.e. trips, which will be 

generated and used for optimization. 

3) Maximum amount of sparks per explosion 

Sets the maximum amount of sparks a firework can 

generate per explosion. 

4) Factor β 

After each iteration the amplitude will be adjusted to either 

improve local or global search. When the algorithm doesn’t 

find a better solution after a given number of iterations, it will 

automatically enhance the global search behavior to further 

explore the feasible space. This factor sets the number of 

iterations, after which the global search will be increased. 

5) Minimum distance 

This is an ending criteria for the algorithm. When the given 

minimum distance is met by one firework the algorithm will 

stop. 

6) Number of iterations 

Next to the minimum distance, the number of iterations is 

the second ending criteria of the algorithm. When the 

minimum distance is not met the algorithm will stop after a 

given number of iterations. 

 

IV. SOFTWARE ARCHITECTURE 

The software architecture of the implemented application 

is split into three layers: the presentation, application and 

persistence layer. 

Each layer is independent of each other. The application 

layer contains the core component of the application: the 

fireworks algorithm as introduced in Section III. Furthermore, 

the application layer contains the logic for the TSP. The 

persistence layer has three main responsibilities: reading in 

TSPs from text files and providing the information to the 

application layer, reading and writing the parameter 

configuration for the fireworks algorithm and reading and 

writing the data from the algorithm which is produced during 

runtime. Fig. 7 shows a visualization of the three layers and 

their responsibilities.  

The layers will be described in the following. 

 

 
Fig. 7. Overview of the software layers and their responsibilities. 

 

A. Presentation Layer 

The presentation layer is implemented using JavaFX to 

provide a graphical user interface to control the application 

layer. Within the user interface, the user can load a TSP from 

a text file. After successfully loading a text file the parameters 

for the algorithm (see Section III.E) can be adjusted. Finally, 

the algorithm can be started. During runtime the graphical 

user interface provides the runtime data from the algorithm 

and an option to stop the execution. 

B. Persistence Layer 

The persistence layer provides three major functionalities 

throughout the application: Reading the given tsp problem as 

a text-file, reading and writing the parameters for the 

algorithm and storing the run time algorithm data. To store 

the data the in-memory database HSQLDB is used. This 

allows the application layer to subsequently access the 

runtime data afterwards to export the information for analysis. 
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Fig. 8 shows the class diagram for the three main classes for 

the persistence layer: the Configuration, the 

HSQLDBManager and the TSPReader. 

 

 
Fig. 8. Class diagram of the fireworks algorithm components. 

 

C. Application Layer 

The application layer is the main part of the software 

architecture. It contains multiple parts: the implementation of 

the tsp, the central mediator for controlling the algorithm and 

the implementation of the fireworks algorithm as described in 

Section III whereas the algorithm and the tsp implementation 

are the core of the application layer.  

 

 
Fig. 9. Class diagram of the fireworks algorithm components and the 

algorithm controller. 

 

The fireworks algorithm is separated in the three 

components of the discrete algorithm controlled by single 

class: the explosion operation, the mutation operation and the 

selection strategy. Each component is implemented 

independently of each other and accessed by defined 

interfaces. The main class is implemented for controlling the 

algorithm and accessing each component. Thus, an exchange 

or modification of each component can be done easily. Fig. 9 

shows the mediator class for the algorithm the class diagrams 

for the interfaces of the components and their 

implementation.  

After first tests of the implemented algorithm a huge 

bottleneck in the explosion and mutation components was 

found due to the sequential implementation in the beginning. 

Due to this both components have been overhauled. By using 

Java Streams a great amount of parallelism was achieved 

within the components. This improvement increased the 

overall performance of the algorithm by more than 50%. 

 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

In the first part of this section the parameter impact on the 

algorithm will be discussed and analyzed. The second part 

will focus on the results of the test runs of the parameter 

analysis and the overall performance of the implemented 

application. For the parameter analysis twelve individual 

scenarios (see TABLE  for the parameter setup and Fig. 10 

for the boxplots of each scenario result) are run on the 

implemented application against the TSP a280. The current 

optimum for the TSP a280 is 2579.  

 
TABLE I: TESTED SCENARIOS FOR THE PROOF OF CONCEPT. ALL 

SCENARIOS ARE RUN AGAINST THE TSP A280 

Scenario 

# 
Max. Sparks 

Population 

Size 
Factor β 

Number of 

Iterations 

#1 1 5 10  

#2 3 5 10  

#3 5 5 10  

#4 10 5 10  

#5 15 5 10  

#6 20 5 10 20.000 

#7 10 10 10  

#8 15 10 10  

#9 20 10 10  

#10 10 10 15  

#11 15 10 15  

#12 20 10 15  

 

All the scenarios are run on an Intel® Core™ i5-6300U 

CPU with 8 GB RAM running Windows 10 64bit. For all 

scenarios the maximum number of iterations is set to 20.000 

iterations. The maximum number of sparks per explosion will 

be tested with the values 10, 15 and 20 with a population size 

with 5 and 10 each plus an additional three scenarios with the 

maximum sparks of 1, 3 and 5. Factor β is set to 10 for all the 

scenarios except the last three. For these scenarios the impact 

of a higher factor β on the behavior of the algorithm is 

analyzed.  

The longer upper whiskers in the boxplots from Fig. 10 

show that almost all scenarios are quickly heading towards a 

suboptimum during the optimization process. The shorter 

lower whisker on most of the scenarios demonstrates the 

good overall performance of staying close to the suboptimum. 

As seen in Fig. 11 the runtime is affected from both the 
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population size and the maximum number of sparks. Both 

parameters affect the runtime in a linear manner. While the 

last two scenarios are not affected by the higher factor β 

scenario #10 is an outlier with an 50% longer runtime 

compared to scenario #7 with the same parameters except the 

lower β. 

 
Fig. 10. Boxplot overview within the range of 2700 up to 3700 for each test scenario. Some significant information shown by the boxplot for example is the 
direct influence of the Factor β in scenario #10, #11 and #12 compared to #7, #8 and #9 which is represented in a drastically increased range of relevant results. 

Also shown are the good drilling capabilities of the algorithm by using small parameters for the maximum number of sparks and the population size in the first 

three scenarios. 
 

 
Fig. 11. Runtimes in minutes of the test scenarios shown in TABLE . 

 

 
Fig. 12. Best and average distance of the test scenarios shown in TABLE . 

 

Fig. 12 shows the best and average distance of each test 

scenario. Even with the high amount of parallelism the 

performance of the algorithm reduces with a growing 

population or spark number while giving no major 

improvements of the produced solution quality. Scenario #2 

provides the optimal results of all scenarios with a best 

distance of 2746 which is equal to a solution quality of 

93.25% for this TSP instance. With a runtime of 41 minutes 

this demonstrates the drilling capability of the algorithm with 

small parameters of a population of 5 and a maximum 

amount of 3 sparks per explosion operation.  

 

VI. CONCLUSION 

This paper proposes an implementation of the fireworks 

algorithm for the TSP. Based on the fireworks algorithm 

proper changes are introduced to optimize the TSP.  

The explosion operation is split into two operations. The 

purpose of the mutation operation becomes to support the 

explosion operation and the mapping rule is not required in 

this case. A major advantage of the implemented fireworks 

algorithm is the component-based architecture.  

An introduction of new mechanics for the single 

components can be done with a minimum amount of changes 

to the overall algorithm. For example, in addition to the 

two-opt and three-opt optimization methods implemented 

with the explosion operation I and II some additional 

optimization methods for the TSP could be introduced 

alongside.  

The performance of the implementation provides a proof 

of concept by finding a suboptimum of 2746. The quality of 

the found suboptimum is equal to 93.25% based on the 

current optimum of 2579 for the TSP a280. Though the 

provided implementation still can be optimized, this work 

shows the efficiency and performance of the fireworks 

algorithm. 
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