



Abstract—In the past, the number of malware was small, and

signature-based anti-virus program could be used to effectively

protect the system. Cyber attackers create a large number of

variants of malwares with automated tools to avoid

signature-based anti-virus programs. Creating signature for all

the variants is quite expensive task. To solve this problem,

defensive side has been tried to automatically detect the

malware variants. Classifying malware families can be one way

to solve them. In this paper, we extract novel features from

frequency analysis of malware to classify malware family. We

separate the malware into section level and apply DCT/DFT to

each section. Experimental results show that the proposed

method can achieves high accuracy and low operation cost.

Index Terms—Bootstrap aggregating, discrete cosine

transform, frequency analysis, malware family, malware image,

machine learning, Microsoft malware classification challenge.

I. INTRODUCTION

Since the first virus, “Creeper” was created in 1971,

cyber-attacks with malware have been constantly ongoing [1].

Cyber security specialists make the signature such as MD5,

SHA256 and Yara rule to defeat the malwares. However, it is

easy to manipulate the malware to avoid the signature set

made from anti-virus program. For example, it can change

the signature without affecting the program even if only one

byte is modified. Malware variants can be generated

automated tools such as UPX packer, themida, VM Protect

and so on [2]-[4]. However, seed malwares are not that many.

If we can classify malware family based on big data, we do

not need all the signature for malware variants. Since the

attacker side can easily create malware variants automatically,

the defensive side can also handle them automatically.

Related researched has been studied. Bayer et al. studied

about dynamic analysis of malware for collecting execution

traces [5]. They generalized the execution traces into

pre-defined profile and feed them to efficient scalable

clustering algorithm. Their method fundamentally inherits

strong points and weak points of dynamic analysis. Best

benefit of dynamic analysis is that we do not care about the

packing of malware. On memory, packed binary can only be

resolved for behavior. The critical problem is trace

dependency, which is based only on the one or more specific

execution paths. Nataraj et al. proposed the novel method to

visualize malware and classification method [6]. In previous

approaches, researcher consider the malware as only program,

Manuscript received May 19, 2018; revised August 17, 2018. This work

was supported by Agency for Defense Development (ADD).
Changhee Choi, Kyeongsik Lee, Hwaseong Lee, Ilhoon Jeong, and

Hosang Yun are with Agency for Defense Development (ADD), Daejeon,

South Korea (e-mail: changhee84@add.re.kr, n0fate@add.re.kr,
hslee@add.re.kr, ihjeong@add.re.kr, yun_hosang@add.re.kr).

code, or bundle of instruction. However, they represent the

malware as binary string of zeros and ones. They reshape that

into a matrix and viewed as an image. From pre-processed

malware images, they used Gabor filter to extract image

texture pattern. In experiments, 25 malware families with

totally, 9,458 malwares were used. K-nearest neighbors with

Euclidean distance with 320 GIST features. The total

accuracy is about 97.2%. However, there is a greater

contribution to the new approach than the experimental

results. They also plus additional features related with

dynamic analysis of malware and construct huger database

with 63,002 malwares from 531 families [7]. Experimental

results with not a sharp machine learning algorithm and large

number of groups proves that their features are valid for

malware family classification. Ahmadi et al. proposed the

new features set from static analysis of malware [8]. They

tested their method with Microsoft Malware Challenge

dataset in Kaggle [9]. Their method achieved a very high

accuracy with XGBoost [10]. Kirat et al. proposed the new

method to extract feature set by signal processing method

[11]. They handled malware as 2-D images and they resize

them. Sub-band filtering was applied to image and whole

image is sliced into sub-block. Finally, they extract GIST

features from each block. Unfortunately, there is no

experiment on group classification, but there is a great

contribution for presenting new effective feature set. Choi et

al. analyzed the malware with frequency point from signal

processing area [12]. Unlike past researches, they represent

malware as 1-D signal not 2-D image. They pointed out the

code of malware is sequence of instruction and does not have

correlation in reshaped 2-D malware image. Their research

shows that the signal processing techniques can classify

malware families.

In this paper, we analysis structure of the malware code

and borrow signal processing techniques. We extract the new

concept of feature set from transformed malware and classify

the malware family. Experimental results show that the

proposed method achieved the good classification

performance similar to other feature set.

The rest of this paper is organized as follows. Section II

describe the our previous about frequency analysis of

malware briefly. In Section III, the proposed feature set are

explained. Classification algorithm which we used in our

experiments was described in Section IV. In Section V, we

provide the experimental results and their interpretation.

Finally, we conclude our research in Section VI.

II. FREQUENCY ANALYSIS

We analyzed the malware from the viewpoint of frequency

domain of malware signal [12]. Microsoft Malware

Malware Family Classification Based on Novel Features

from Frequency Analysis

Changhee Choi, Kyeongsik Lee, Hwaseong Lee, Ilhoon Jeong, and Hosang Yun

International Journal of Computer Theory and Engineering, Vol. 10, No. 4, August 2018

135DOI: 10.7763/IJCTE.2018.V10.1214

Challenge dataset [9] which they used in study provide two

representation type of malware payload: byte, asm. We found

out asm type file reversed by IDA [13]. It is presumed that

byte type is derived from asm type file by IDA script. To

separate malware by section, address in asm type was

matched with byte type. Note that malware dataset does not

have header to prevent possible abuse of active malware. We

calculated discrete cosine transform in equation (1) with each

section of malware. To raise degree of purity, direct current

(DC) and low alternating current (AC) were neglected. We

analyzed each transformed malware by family as shown in

Fig. 1. Red circle means the malware group signature. Unlike

previous precise signature, our signature is flexible so that

they can accommodate various malware variants. To capture

that flexible signature, we extracted various statistical feature

set in this paper as describe in Section III.

 () ∫ () ()

 (1)

In addition, we test Fourier transform as above procedure

in equation (2) to find out more features. Unlike cosine

transform, there are real part, imaginary part, magnitude and

angle in Fourier transform.

 () ∫ ()

 (2)

Fig. 1. Idata section of malware transformed by discrete cosine transform.

III. FEATURE BANK

A. Statistical Features

We collect statistic features from python “scipy.stats”

module and Wolfram MathWorld [14], [15]. Our feature set

is described in Table I.

TABLE I: FEATURE SET

Feature name Description

Geomean Geometric mean (∏

)

Kurtosis Fourth standardized moment.(

⁄)

Skewness Third standardized moment.(

⁄)

K-stat(k=1~4)

Unique symmetric unbiased estimator of n-th

cumulant .

(

)

K-stat-var(k=1~4)
Variance of k-stat

(()

 ()

)

Trim mean Mean of trimming distribution from both tails.

SNR Signal to noise ratio.()

Bayes_mvs
Bayesian confidence intervals for the mean,

variance, and standard deviation

Sem Standard error of the mean

Iqr Interquartile range of the data

Chisqure Test value of Chisqure test

Power_divergenc

e

Test value of Cressie-Read power divergence

statistic and goodness of fit test

Willconxon Test value of Wilcoxon signed-rank test

Jarque_bera Test value of the Jarque-Bera goodness of fit test

Shapiro Test value of the Shapiro-Wilk test

Anderson Test value of the Anderson-Darling test

Circmean Circular mean.

Circvar Circular variance.

Circstd Circular standard deviation.

Moment(n=1~5)
n-th central moment.

(

∑ (̅

))

B. N-Gram

A n-gram is a continuous sequence of N items from a give

sample of material. In the past, n-gram was used to analyze

the text [16]. But recently, n-gram is regarded as the general

feature that can be used in various fields. For example, it can

be used in author profiling and author classification [17].

There are two ways to apply n-gram to the proposed

method. The first is that compute n-gram with each section of

malware payload. Since same family of malware has similar

instruction sequence and frequency, it can be a valid method.

For the most popular Intel instruction set, the length of

op-code is from 1 to 3 [18]. To perfectly cover the Intel

instruction set, 3-gram is good choice for machine learning.

In case of 3-gram, there are 256 * 256 * 256 = 16,777,216

cases. The number of cases will be the number of columns

and it cannot be handled by current computer performance.

Considering computing power, 1 or 2-gram methods are

generally used. This approach was proved in previous

research paper [8]. Including this features certainly can

import our performance, however, we tested frequency

related features only to analyze the performance of the newly

proposed feature set only. Second way is that make bins of

numerical range. Since maximum and minimum values are

different for each feature, we normalize the feature vector.

Finally, we calculated 1- gram with 255 bins.

IV. GRADIENT BOOSTING TREE

Boosting is a family of machine learning algorithm to

combine weak learners into strong learners for reducing

variance and bias. There are many boosting algorithms such

as adaptive boosting (AdaBoost), linear programming

boosting (LPBoost), boosting, and so on [19]. In order to

International Journal of Computer Theory and Engineering, Vol. 10, No. 4, August 2018

136

accommodate large amounts of data, gradient boosting tree

algorithms are often used in the machine learning field in

recent years. This method has been widely used because of

the well-developed XGBoost library [12]. To summarize this

algorithm, the whole dataset is divided randomly without

replacement into smaller datasets. For each sub-dataset,

classification and regression tree (CART) was constructed

with objective function and it was trained by optimization.

Finally, sub-trees are merged by majority voting algorithm.

Fig. 2 described first boosting algorithm proposed in [20]

simply [21]. In Fig. 2, the CART is used as learner.

Fig. 2. Simple graphical description of boosting algorithm.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Our test system is equipped with Intel Xeon E5-2670 (12

cores, @2.3GHz), NVIDIA GeForce GTX 1060 (1152 cores,

3GB), 128GB memory and 2TB SSD storage. In feature

extraction phase, CPU intensive operation by multi core

system. We use python 3.6 with Anaconda 5.1 which

contains scipy, numpy pandas and sklearn. In machine

learning phase, we used XGBoost [9] library for python. In

our experiments, Microsoft Malware Dataset 2015 was used

(9 families, 10,868 samples with label). Number of each

family is biased as depicted in Fig. 3.

Fig. 3. Malware family distribution in Microsoft malware dataset 2015.

B. Parameter Tuning

To find out best parameter set, we conducted brute-force

technic to classification algorithm. In this phase, subsampling

for boosting tree is not applied due to computing power. We

set the invariant parameter value in tuning process as shown

in Table II and Table III shows the parameters in turning

process.

TABLE II: FEATURE SET

Parameter Name Value

Geomean Geometric mean (∏

)

booster gbtree

objective multi:softprob

scale_pos weight 1

seed 0

predictor gpu-predictor

TABLE III: SPECIFICATION OF PARAMETERS IN TUNING PROCESS

Parameter

Name
Description Start End Step

max_depth Maximum depth of a tree.

It is related with

complexity, accuracy and
overfitting

10 100 20

eta Step size shrinkage used in

update to prevents
overfitting

0.01 1 6

min_child

_weight

Minimum sum of instance

weight in child

0 10 6

colsample

_bytree

Subsample ratio of

columns when constructing

each tree

0.2 1 5

Finally, we can get the best parameter set: max_depth=10,

eta=0.4, min_child_weight=2.0, colsample_bytree=0.6 when

logloss = 0.043.

C. Results

We conducted the 5-fold cross validation with optimized

parameter set in Section V-B. Total accuracy is 0.987 and f1

score is 0.987. Multi-class log loss is 0.0434.

VI. EDITORIAL POLICY

The submitting author is responsible for obtaining

agreement of all coauthors and any consent required from.

Fig. 4. Confusion matrix without bagging.

Fig. 5. Confusion matrix with bagging(bag=10).

International Journal of Computer Theory and Engineering, Vol. 10, No. 4, August 2018

137

The confusion matrix is depicted in Fig. 4. This result is

quite reasonable, however, it is less than the result of winner

of the Kaggle competition [22]. If total accuracy overwhelms

all previous feature set, it could be tremendous contribution.

Since the purpose of this paper is not increase the accuracy

extremely, we focused on invention of novel feature. To

reduce overfitting, we perform the bootstrap aggregating

method with same condition of previous test. This result is

more reliable when unknown test inputs come in. Total

accuracy is 0.985 and f1 score is 0.985. Multi-class log loss is

0.0475 as seen in Fig. 5.

VII. CONCLUSION

In this paper, we investigate the malware code and invent

the novel feature set by using signal processing techniques.

To prove the proposed method, we extract the statistical

features in frequency domain of malware signal. 1-gram

(histogram with 255 bins) is also considered in this research.

In experiments, we can get the quite reasonable total

accuracy 0.985 for classification. Newly invented feature set

are expected to be used as a subset for malware family

classification.

 The grand goal of research of frequency analysis in

malware signal is to transform the domain of malware code

into proper domain for deep learning. In other words, we

want to make homogeneous cells without losing its intrinsic

properties. To achieve this goal, we will find out more

appropriate domain for malware. Also we will modify

previous deep learning network or develop the new one.

REFERENCES

[1] R. A. Clarke and R. Knake, Cyber War, Ecco Press, 2010.

[2] UPX. [Online]. Available: https://upx.github.io
[3] Themida. [Online]. Available: https://www.oreans.com/

[4] VMProtect. [Online]. Available: https://vmpsoft.com

[5] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Krida,
“Behavior-based malware clustering,” in Proc. the 16th Annual

Network and Distributed System Security Symposium, 2009, pp. 8-11.

[6] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware
images: Visualization and automatic classification,” in Proc. the 8th

International Symposium on Visualization for Cyber Security, 2011, p.

4.
[7] L. Nataraj, V. Yegneswaran, P. Porras, and J. Zhang, “A comparative

assessment of malware classification using binary texture analysis and

dynamic analysis,” in Proc. the 4th ACM Workshop on Security and
Artificial Intelligence, 2011, pp. 21-30.

[8] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto,

“Novel feature extraction, selection and fusion for effective malware
family classification,” in Proc. the 6th ACM Conference on Data and

Application Security and Privacy, 2016, pp. 183-194.

[9] XGBoost. (2018). [Online]. Available:
https://github.com/dmlc/xgboost

[10] Microsoft malware classification challenge (Big 2015). Kaggle.

[Online]. Available: http://www.kaggle.com/c/malware-classification

[11] D. Kirat, L. Nataraj, G. Vigna, and B. S. Manjunath, “SigMal: A static

signal processing based malware triage,” in Proc. the 2013 Annual
Computer Security Applications Conference, 2013, pp.89-98.

[12] C. Choi, K. Lee, H. Lee, I. Jeong, C. Yoo, and H. Yun, “Frequency

analysis of malware for family classification,” in Proc. the Autumn
Conference of Korea Institute Military Science and Technology, 2017,

pp.607-608.

[13] IDA. [Online]. Available: http://www.hex-rays.com
[14] SciPy. [Online]. Available: https://scipy.org

[15] Wolfram MathWorld. [Online]. Available:

http://mathworld.wolfram.com

[16] W. B. Cavnar and J. M. Trenkle, “N-gram-based text categorization,”
Journal of Ann Arbormi, vol. 48113, no. 2, pp. 161-175, 1994.

[17] V. Kešelj, F. Peng, N. Cercone, and C. Thomas, “N-gram-based author

profiles for authorship attribution,” In Proc. the Pacific Association for
Computational Linguistics, 2013, pp. 255-264.

[18] Intel, Intel 64 and IA-32 architectures, software developer’s manual.

(2016). [Online]. Available: https://www.intel.com
[19] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pa, Data Mining, Fourth

Edition: Practical Machine Learning Tools and Techniques, San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2016.
[20] R. E. Schapire, “The strength of weak learnability,” Journal of

Machine Learning, vol. 5, no. 2, pp. 197-227, 1990.

[21] R. Polikar, “Ensemble learning,” in Ensemble Machine Learning,
Springer, 2012, pp. 1-34.

[22] Microsoft malware winners’ interview: 1st place, “NO to overfitting!”

(2015). Kaggle. [Online]. Available:
http://blog.kaggle.com/2015/05/26/microsoft-malware-winners-interv

iew-1st-place-no-to-overfitting/

Changhee Choi was born in South Korea in 1984. He

received the B.S in computer science from Yonsei
University of Seoul, South Korea in 2008. He

received the M.S and the Ph.D. in computer science

from KAIST, Daejeon, South Korea in 2010 and
2013, respectively. In 2013, he joined the Agency for

Defense Development (ADD), Daejeon, South Korea.

His current research interests are cyber security,
digital image forensics, machine learning, and image

processing.

Kyeongsik Lee was born in Korea on 1984. He

received the BS degree in computer science from

Sejong University in 2009. He received the MS degree
in information management security, Korea University

in 2011. His research interests are digital forensics and

incident response.

Hwaseong Lee received the M.S and the Ph.D. in

information security from Korea University, Seoul,

Korea. In 2013, she joined the Agency for Defense
Development (ADD).

IlHoon Jung received the M.S in information security

from Korea University, Seoul, Korea, in 2013. He is a
senior researcher in Agency for Defense Development

(ADD) since 2014. His current research interest

focuses on machine learning based cyber security and
digital forensic based incident response analysis

technique.

Hosang Yun received his M.S in computer science

from Korea University, Seoul, Korea, in 1990. He

received the Ph.D. in computer science from KAIST,
Daejeon, South Korea in 2002. He is a principal

researcher in Agency for Defense Development

(ADD) since 2000. His current research interest
focuses on cyber security and anomaly detection

based intrusion detection technique.

International Journal of Computer Theory and Engineering, Vol. 10, No. 4, August 2018

138

