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Abstract—In the past, the number of malware was small, and 

signature-based anti-virus program could be used to effectively 

protect the system. Cyber attackers create a large number of 

variants of malwares with automated tools to avoid 

signature-based anti-virus programs. Creating signature for all 

the variants is quite expensive task. To solve this problem, 

defensive side has been tried to automatically detect the 

malware variants. Classifying malware families can be one way 

to solve them. In this paper, we extract novel features from 

frequency analysis of malware to classify malware family. We 

separate the malware into section level and apply DCT/DFT to 

each section. Experimental results show that the proposed 

method can achieves high accuracy and low operation cost. 

 
Index Terms—Bootstrap aggregating, discrete cosine 

transform, frequency analysis, malware family, malware image, 

machine learning, Microsoft malware classification challenge.  

 

I. INTRODUCTION 

Since the first virus, “Creeper” was created in 1971, 

cyber-attacks with malware have been constantly ongoing [1]. 

Cyber security specialists make the signature such as MD5, 

SHA256 and Yara rule to defeat the malwares. However, it is 

easy to manipulate the malware to avoid the signature set 

made from anti-virus program. For example, it can change 

the signature without affecting the program even if only one 

byte is modified. Malware variants can be generated 

automated tools such as UPX packer, themida, VM Protect 

and so on [2]-[4]. However, seed malwares are not that many. 

If we can classify malware family based on big data, we do 

not need all the signature for malware variants. Since the 

attacker side can easily create malware variants automatically, 

the defensive side can also handle them automatically.  

Related researched has been studied. Bayer et al. studied 

about dynamic analysis of malware for collecting execution 

traces [5]. They generalized the execution traces into 

pre-defined profile and feed them to efficient scalable 

clustering algorithm. Their method fundamentally inherits 

strong points and weak points of dynamic analysis. Best 

benefit of dynamic analysis is that we do not care about the 

packing of malware. On memory, packed binary can only be 

resolved for behavior. The critical problem is trace 

dependency, which is based only on the one or more specific 

execution paths. Nataraj et al. proposed the novel method to 

visualize malware and classification method [6]. In previous 

approaches, researcher consider the malware as only program, 
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code, or bundle of instruction. However, they represent the 

malware as binary string of zeros and ones. They reshape that 

into a matrix and viewed as an image. From pre-processed 

malware images, they used Gabor filter to extract image 

texture pattern. In experiments, 25 malware families with 

totally, 9,458 malwares were used. K-nearest neighbors with 

Euclidean distance with 320 GIST features. The total 

accuracy is about 97.2%. However, there is a greater 

contribution to the new approach than the experimental 

results. They also plus additional features related with 

dynamic analysis of malware and construct huger database 

with 63,002 malwares from 531 families [7]. Experimental 

results with not a sharp machine learning algorithm and large 

number of groups proves that their features are valid for 

malware family classification. Ahmadi et al. proposed the 

new features set from static analysis of malware [8]. They 

tested their method with Microsoft Malware Challenge 

dataset in Kaggle [9]. Their method achieved a very high 

accuracy with XGBoost [10]. Kirat et al. proposed the new 

method to extract feature set by signal processing method 

[11]. They handled malware as 2-D images and they resize 

them. Sub-band filtering was applied to image and whole 

image is sliced into sub-block. Finally, they extract GIST 

features from each block. Unfortunately, there is no 

experiment on group classification, but there is a great 

contribution for presenting new effective feature set. Choi et 

al. analyzed the malware with frequency point from signal 

processing area [12]. Unlike past researches, they represent 

malware as 1-D signal not 2-D image. They pointed out the 

code of malware is sequence of instruction and does not have 

correlation in reshaped 2-D malware image. Their research 

shows that the signal processing techniques can classify 

malware families. 

In this paper, we analysis structure of the malware code 

and borrow signal processing techniques. We extract the new 

concept of feature set from transformed malware and classify 

the malware family. Experimental results show that the 

proposed method achieved the good classification 

performance similar to other feature set.  

The rest of this paper is organized as follows. Section II 

describe the our previous about frequency analysis of 

malware briefly. In Section III, the proposed feature set are 

explained. Classification algorithm which we used in our 

experiments was described in Section IV. In Section V, we 

provide the experimental results and their interpretation. 

Finally, we conclude our research in Section VI. 

 

II. FREQUENCY ANALYSIS 

We analyzed the malware from the viewpoint of frequency 

domain of malware signal [12]. Microsoft Malware 
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Challenge dataset [9] which they used in study provide two 

representation type of malware payload: byte, asm. We found 

out asm type file reversed by IDA [13]. It is presumed that 

byte type is derived from asm type file by IDA script. To 

separate malware by section, address in asm type was 

matched with byte type. Note that malware dataset does not 

have header to prevent possible abuse of active malware. We 

calculated discrete cosine transform in equation (1) with each 

section of malware. To raise degree of purity, direct current 

(DC) and low alternating current (AC) were neglected. We 

analyzed each transformed malware by family as shown in 

Fig. 1. Red circle means the malware group signature. Unlike 

previous precise signature, our signature is flexible so that 

they can accommodate various malware variants. To capture 

that flexible signature, we extracted various statistical feature 

set in this paper as describe in Section III. 
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In addition, we test Fourier transform as above procedure 

in equation (2) to find out more features. Unlike cosine 

transform, there are real part, imaginary part, magnitude and 

angle in Fourier transform.  
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Fig. 1. Idata section of malware transformed by discrete cosine transform. 

 

III. FEATURE BANK 

A. Statistical Features 

We collect statistic features from python “scipy.stats” 

module and Wolfram MathWorld [14], [15]. Our feature set 

is described in Table I. 

TABLE I: FEATURE SET 

Feature name Description 

Geomean Geometric mean (∏   
 
   ) 

Kurtosis Fourth standardized moment.(
  

  
⁄ ) 

Skewness Third standardized moment.(
  

  
⁄ ) 

K-stat(k=1~4) 

Unique symmetric unbiased estimator of n-th 

cumulant   . 

(        
 

   
    ) 

K-stat-var(k=1~4) 
Variance of k-stat 

(   (  )  
  

 
    (  )  

  

 
 

   
 

   
  ) 

Trim mean Mean of trimming distribution from both tails. 

SNR Signal to noise ratio.(     ) 

Bayes_mvs 
Bayesian confidence intervals for the mean, 

variance, and standard deviation 

Sem Standard error of the mean 

Iqr Interquartile range of the data 

Chisqure Test value of Chisqure test 

Power_divergenc

e 

Test value of Cressie-Read power divergence 

statistic and goodness of fit test 

Willconxon Test value of Wilcoxon signed-rank test 

Jarque_bera Test value of the Jarque-Bera goodness of fit test 

Shapiro Test value of the Shapiro-Wilk test  

Anderson Test value of the Anderson-Darling test 

Circmean Circular mean. 

Circvar Circular variance. 

Circstd Circular standard deviation. 

Moment(n=1~5) 
n-th central moment.  

(   
 

 
∑ (    ̅
 
   )  ) 

 

B. N-Gram 

A n-gram is a continuous sequence of N items from a give 

sample of material. In the past, n-gram was used to analyze 

the text [16]. But recently, n-gram is regarded as the general 

feature that can be used in various fields. For example, it can 

be used in author profiling and author classification [17].  

There are two ways to apply n-gram to the proposed 

method. The first is that compute n-gram with each section of 

malware payload. Since same family of malware has similar 

instruction sequence and frequency, it can be a valid method. 

For the most popular Intel instruction set, the length of 

op-code is from 1 to 3 [18]. To perfectly cover the Intel 

instruction set, 3-gram is good choice for machine learning. 

In case of 3-gram, there are 256 * 256 * 256 = 16,777,216 

cases. The number of cases will be the number of columns 

and it cannot be handled by current computer performance. 

Considering computing power, 1 or 2-gram methods are 

generally used. This approach was proved in previous 

research paper [8]. Including this features certainly can 

import our performance, however, we tested frequency 

related features only to analyze the performance of the newly 

proposed feature set only. Second way is that make bins of 

numerical range. Since maximum and minimum values are 

different for each feature, we normalize the feature vector. 

Finally, we calculated 1- gram with 255 bins. 

 

IV. GRADIENT BOOSTING TREE 

Boosting is a family of machine learning algorithm to 

combine weak learners into strong learners for reducing 

variance and bias. There are many boosting algorithms such 

as adaptive boosting (AdaBoost), linear programming 

boosting (LPBoost), boosting, and so on [19]. In order to 
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accommodate large amounts of data, gradient boosting tree 

algorithms are often used in the machine learning field in 

recent years. This method has been widely used because of 

the well-developed XGBoost library [12]. To summarize this 

algorithm, the whole dataset is divided randomly without 

replacement into smaller datasets. For each sub-dataset, 

classification and regression tree (CART) was constructed 

with objective function and it was trained by optimization. 

Finally, sub-trees are merged by majority voting algorithm. 

Fig. 2 described first boosting algorithm proposed in [20] 

simply [21]. In Fig. 2, the CART is used as learner.  

 

 
Fig. 2. Simple graphical description of boosting algorithm. 

 

V. EXPERIMENTAL RESULTS 

A. Experimental Setup 

Our test system is equipped with Intel Xeon E5-2670 (12 

cores, @2.3GHz), NVIDIA GeForce GTX 1060 (1152 cores, 

3GB), 128GB memory and 2TB SSD storage. In feature 

extraction phase, CPU intensive operation by multi core 

system. We use python 3.6 with Anaconda 5.1 which 

contains scipy, numpy pandas and sklearn. In machine 

learning phase, we used XGBoost [9] library for python. In 

our experiments, Microsoft Malware Dataset 2015 was used 

(9 families, 10,868 samples with label). Number of each 

family is biased as depicted in Fig. 3.  

 
Fig. 3. Malware family distribution in Microsoft malware dataset 2015. 

 

B. Parameter Tuning 

To find out best parameter set, we conducted brute-force 

technic to classification algorithm. In this phase, subsampling 

for boosting tree is not applied due to computing power. We 

set the invariant parameter value in tuning process as shown 

in Table II and Table III shows the parameters in turning 

process. 
 

TABLE II: FEATURE SET 

Parameter Name Value 

Geomean Geometric mean (∏   
 
   ) 

booster gbtree 

objective multi:softprob 

scale_pos weight  1 

seed 0 

predictor gpu-predictor 

TABLE III: SPECIFICATION OF PARAMETERS IN TUNING PROCESS 

Parameter 

Name 
Description Start End Step 

max_depth Maximum depth of a tree. 

It is related with 

complexity, accuracy and 
overfitting 

10 100 20 

eta Step size shrinkage used in 

update to prevents 
overfitting 

0.01 1 6 

min_child 

_weight 

Minimum sum of instance 

weight in child 

0 10 6 

colsample 

_bytree 

Subsample ratio of 

columns when constructing 

each tree 

0.2 1 5 

 

Finally, we can get the best parameter set: max_depth=10, 

eta=0.4, min_child_weight=2.0, colsample_bytree=0.6 when 

logloss = 0.043. 

C. Results 

We conducted the 5-fold cross validation with optimized 

parameter set in Section V-B. Total accuracy is 0.987 and f1 

score is 0.987. Multi-class log loss is 0.0434. 

 

VI. EDITORIAL POLICY 

The submitting author is responsible for obtaining 

agreement of all coauthors and any consent required from.  

 

 
Fig. 4. Confusion matrix without bagging. 

 

 
Fig. 5. Confusion matrix with bagging(bag=10). 
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The confusion matrix is depicted in Fig. 4. This result is 

quite reasonable, however, it is less than the result of winner 

of the Kaggle competition [22]. If total accuracy overwhelms 

all previous feature set, it could be tremendous contribution. 

Since the purpose of this paper is not increase the accuracy 

extremely, we focused on invention of novel feature. To 

reduce overfitting, we perform the bootstrap aggregating 

method with same condition of previous test. This result is 

more reliable when unknown test inputs come in. Total 

accuracy is 0.985 and f1 score is 0.985. Multi-class log loss is 

0.0475 as seen in Fig. 5. 

 

VII. CONCLUSION 

In this paper, we investigate the malware code and invent 

the novel feature set by using signal processing techniques. 

To prove the proposed method, we extract the statistical 

features in frequency domain of malware signal. 1-gram 

(histogram with 255 bins) is also considered in this research. 

In experiments, we can get the quite reasonable total 

accuracy 0.985 for classification. Newly invented feature set 

are expected to be used as a subset for malware family 

classification.  

 The grand goal of research of frequency analysis in 

malware signal is to transform the domain of malware code 

into proper domain for deep learning. In other words, we 

want to make homogeneous cells without losing its intrinsic 

properties. To achieve this goal, we will find out more 

appropriate domain for malware. Also we will modify 

previous deep learning network or develop the new one. 
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