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Abstract—The non-invasive diagnosis for cardiac 

abnormalities has been turned into a reality in recent years. This 

is based on the fact that advanced imaging equipment can 

acquire sub-millimeter details of the internal organs. An 

important example is the use of state-of-the-art computed 

tomography (CT) as a substitute of conventional catheterization. 

It is interesting that calcium-based vascular deposits can be 

quickly identified in CT; however, non-calcified plaque 

detection remains a challenging task due to lower intensity 

values. In this context, a number of methods have been reported 

for efficient detection and segmentation of non-calcified plaques 

in recent years. In order to advance the existing knowledge and 

extend the operational efficiency in this domain, it is extremely 

important to review the state-of-the-art literature. Accordingly, 

we present a comprehensive review of non-calcified plaque 

detection method in this paper presents. We believe that this can 

serve as a starting point towards productive clinical research in 

this domain. 

 
Index Terms—Coronary segmentation, non-calcified plaques, 

plaque detection.  

 

I. INTRODUCTION 

The main arterial network responsible for providing 

oxygenated blood to the heart muscles is termed as coronary 

tree. In this context, Coronary Heart Disease (CHD) refers to 

a state in which calcium, cholesterol and fatty materials are 

accumulated inside the coronary vasculature. The growth of 

these depositions (plaques) leads to obstruction of blood flow 

towards heart muscles. As a consequent, oxygen starved heart 

tissues began to die and result in fatal cardiac events including 

arrhythmias, heart failure and angina. Coronary heart disease 

has remained the leading death cause around the globe in 

2013 with overall death toll of 8.14million as stated by fact 

sheet of the World Health Organization [1]. Likewise, the fact 

sheet issued by National Health Services (NHS), United 

Kingdom reveals that the annual death toll of coronary heart 

disease in United Kingdom is around 73,000, i.e. one casualty 

per seven minutes. The critical mortality level of CHD has 

drawn the interest of research community towards automated 

detection of coronary heart disease. 

In a clinical context, early detection of coronary 

abnormalities can eventually help to minimize the casualties 

[2] by regulating minimizing the risk factors. In recent years, 
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the advancements made in imaging industry have 

revolutionized the clinical diagnosis domain. The capability  

of imaging sub-millimeter based internal details made CTA a 

feasible alternative to cardiac cauterization for detecting 

coronary obstruction [3]; however, the composition of the 

coronary plaques pose a difficult challenge in the effective 

diagnosis. 

The high intensity calcified plaques can be detected easily 

in CTA imagery [4]-[7]; however, the detection of the 

non-calcified plaques has been a challenging problem in 

clinical practice due to close proximity with blood voxel 

intensity. From the clinical point of view, the non-calcified 

plaques have been established as the most important indicator 

of acute coronary syndromes due to their fragile nature [8]. 

Moreover, unexpected rupture has made soft plaques much 

threatening, i.e. for many individuals, sudden death becomes 

the first sign of soft plaque in contrast to the calcified plaques 

which often lead to disease symptoms at early stages. In 

addition, the positive re-modeling associated with the soft 

plaques further amplifies the detection challenge as the radial 

stenosis detection based methods often miss the non-calcified 

plaques [4], [5], [9]-[11]. 

In context of automated detection of non-calcified plaques 

in CT, [6], [7], [12]-[14] had proposed different techniques; 

however, majority of the reported works employ manual 

interaction and validate results upon small data set to illustrate 

the proof of concept. Likewise, a number of plaque 

quantification algorithms [15]-[17] have been proposed in 

recent years with a motive of correlating CTA with 

intra-vascular ultrasound (IVUS) measurements; however, 

these methods again employ manual inputs in terms of the 

plaque position and length in respective coronary vasculature.  

Hence, the intense focus of the current research is 

developing algorithms for early detection of non-calcified 

plaques to predict and avoid worst cardiac events [18]. It is 

evident that, to advance the existing knowledge, it is 

extremely important to investigate and review the 

shortcomings of current methods. Accordingly, we present in 

this paper a brief review for state-of-the-art methods in 

context of non-calcified coronary plaque detection.  

 

II. LITERATURE REVIEW 

For detection of the plaque affected segments, coronary 

arteries are examined for existence of fatty/lipid structures 

which decreases the flow of blood to cardiac muscles. It is 

important to mention that the pre-requisite for plaque 

detection is an efficient segmentation of coronary vasculature. 
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The segmented vasculature is consequently investigated in 

context of the plaque detection. In this context, a 

comprehensive review of the vessel segmentation techniques 

and their associated features is presented by Lesage [19]. It 

can be observed in this section that all plaque detection 

methods start with vessel segmentation and subsequently 

compute the non-calcified plaque (if any). 

A. Coronary Artery Extraction and Analysis for Detection 

of Soft Plaques in MDCT Images 

1) Key Idea: The focus of this work [15] is detection of the 

non-calcified plaques in coronary arteries. Two CTA data sets 

have been evaluated for the plaques existence. The 

application of the proposed technique identifies the plaque 

location correctly in the coronary arteries and visual results 

are validated with statistical measures/graph data. 

2) Methodology: This work presented a two-step 

methodology for plaque detection. After applying some 

pre-processing operations on the input image authors 

extracted the vessel centreline. In the first step authors 

obtained the centreline of the vessel in 3D volume by using 

technique proposed in [20] where vessel tracking phenomena 

is controlled by local eigenvalues of the Hessian matrix. To 

ensure the minimal impact of image local features on 

centreline extraction process, pre-processing is done to 

isolates those features like myocardial cavities and calcified 

plaques etc. In case of presence of calcified plaques (easily 

identifiable with high intensity) these calcified voxels are 

assigned low intensity value so that they should not disturb the 

vessel centreline. 

Once centreline is generated, statistical modeling is used 

for lumen and arterial-wall segmentation. Gaussian mixture 

model is used to represent vessel and its surrounding tissues 

and then Expectation Maximization algorithm is employed to 

construct an optimized probability map. Due to the variations 

in the intensity values along the vessel, a cylindrical model 

based on the local neighborhood of centreline point is used 

with radius value equal to 10mm. This model extracts 

segment between two consecutive points of the vessel along 

with surrounding myocardium tissue. Extracted cylinder is 

modeled by three class Gaussian mixture model to obtain 

distribution parameters (i.e. Mean and Variance) for three 

classes namely vessel lumen, vessel wall and the Myocardium. 

After building probability map for three classes, lumen and 

vessel voxels are identified for each segment by investigating 

probability for every class. 

3) Plaque Detection Phenomena: The existence of plaque 

is perceived by investigating geometric features of the vessel. 

The narrowing of the vessel is calculated by measuring the 

cross section area of the lumen AL and wall Aw. Area for two 

consecutive points P(i) and P(i+1) is calculated as a ratio of 

(Volume/Length) between points. By contrasting the two area 

measures AL and Aw, metric was obtained to indicate plaque 

presence as shown below in the Fig. 1. From a critical point of 

view, this is a computationally efficient procedure developed 

for uncovering soft plaques in CTA but no clinical validation 

of the results is discussed in the paper. Although author claims 

to detect the soft plaques but no detailed quantitative analysis 

of the detected plaques has been done. Another limitation of 

this method is that it requires bulk pre-and post-processing. 

 
Fig. 1. Plaque detection process reproduced from [14]. (a) show 3D vessel 

structure, (c) shows three consecutive cross sections, (b) represent magnified 

view of the plaqued region and (d)  represents lumen-vessel wall area 

statistics. 

 

B. Soft Plaque Detection and Automatic Vessel 

Segmentation  

1) Key Idea: This work [12] concentrates on the detection 

of the vulnerable lesions in coronary arteries. A total of 8 

CTA data sets have been evaluated and 88% of non-calcified 

plaques in coronary arteries are detected with the help of 

proposed technique. Detected plaque locations are validated 

by expert clinicians as reported by the authors.  

2) Methodology: This is a two-step procedure starting from 

segmentation of the arterial tree followed by the detection of 

the plaques. A unique characteristic of this technique is that it 

does not emphasize for any pre or post-processing of CTA 

data. Rather, simultaneous segmentations based upon 

localized information are the fundamental notion of this novel 

work. In the first stage arterial tree is segmented from 

volumetric data using universal modeling energy as the 

driving force of evolving contour as shown in Fig. 2. In the 

successive step two surfaces are constructed explicitly using 

morphological operations (erosion and dilation) such that 

they lie just inside and just outside the segmented vessel wall. 

Finally, two surfaces are evolved (outwards and inwards 

respectively) in simultaneous manner. Ideally these two 

segmentations must match each other at all points. Areas 

where these two curves do not match are identified as regions 

with non-calcified plaques. The process is illustrated with the 

help of figure below. 

 

 
Fig. 2. 2D model for Plaque Detection Results on CTA imagery, reproduced 

from [12]. Red and green represents inner and outer surface. Blue represents 

ground-truth reference plaque and brown represents the detected plaque. 

 

3) Driving Force for Segmentation: Segmentation of the 

arterial tree is the first step in detection of plaques. In this 

work segmentation of vessel is achieved using active contour 

model by posing it as an energy minimization problem. For 

vessel segmentation in the CTA volume, universal modeling 
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energy based on proposal of Chan and Vese [21] is used. 

Mathematical representation for universal modeling energy is 

given in equation 1. Here “I” represents input image and µin, 

µout represents mean intensity inside and outside the moving 

curve respectively. It is important to mention that localization 

is used during segmentation as it accommodates 

in-homogeneity caused by the varying intensity values along 

the length of vessel (Fig. 3).  
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Fig. 3. Vessel Segmentation achieved using Universal Modeling 

energy/Chan-Vese model, reproduced from [5]. 

 

4) Plaque Detection Phenomena: Arterial Segmentation is 

followed by plaque detection where two explicit surfaces are 

initialized using morphological operation. These surfaces are 

initialized inside and outside the original segmentation so that 

non-calcified plaques that reside within the wall can be 

located between two surfaces. These explicitly generated 

contours are evolved by using Mean-Separation energy 

proposed by Yezzi et al. [22] that pulls two contours towards 

each other. By substituting the driving force into energy 

functional, contours evolves according to equation 2. 
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Initially the local interior region of inside surface contains 

only the bright voxels, as the contour deforms it expands to 

capture more voxels containing blood but does not expand 

into a bit darker soft plaque voxels. Similarly external contour 

contains initially the Myocardium voxels, and it does not 

contract to accommodate the soft plaque voxels from the 

boundary. This way soft plaques can be isolated between two 

contours as neither will move into plaque voxels when driven 

by localized Means separation energy. Simply, in case of 

absence of soft plaque (no inhomogeneity in intensity values) 

these two evolving contours meet on the vessel wall, whereas 

deposition of the plaque inside wall will stop contours at the 

boundary of vessel and they will remain separate from each 

other. Fig. 2 and Fig. 4, shows 2D slices where the proposed 

method successfully isolates the soft plaques. 

 
Fig. 4. 2D model for Plaque Detection Results on CTA imagery, reproduced 

from [12]. Red and green represents inner and outer surface. Blue represents 

ground-truth reference plaque and brown represents the detected plaque. 

Before this work only [14] has attempted this research 

question; however their approach had several limitations. It 

requires substantial pre and post-processing of the volume 

data. Another concern is that no clue was provided for 

treatment of branching and bifurcation points. In contrast, this 

technique casts the problem in a variational active contour 

framework that operates directly on the raw imagery. So it 

naturally handles branching vessels and benefits from the 

geometric properties of active contours. However, this 

method requires smart initialization of two surfaces for 

successful detection of plaque. Failure to do intelligent 

initialization leads to under/over segmentation of 

non-calcified plaque. 

C. Computerized Detection of non-Calcified Plaques in 

Oronary CT Angiography: Evolution of Topological Soft 

Gradient Pre-Screening Method and Luminal Analysis 

1) Key Idea: Main focus of this work [7] is the detection of 

the soft plaques from CTA coronary vessels. Data of 83 

patients was collected for analysis that contains a total of 120 

soft plaques. A dedicated pre-screening algorithm is 

developed to minimize the false positives. Accordingly 

authors report a sensitivity of 92.5%. 

2) Methodology: This is a multi-stage process where the 

detection of coronary arteries is followed by a series of 

geometric analysis. Focus of the research is designing 

pre-screening filter that optimizes the plaque detection 

process and reduces the false positives. Initial segmentation 

of arterial tress (shown in Fig. 5) is achieved by using 

algorithm MSCAR-RBG proposed by [23]. The used 

algorithms extracts about 86% correct arteries when 

compared with standard 17 segment coronary artery model, 

and the incorrect arterial branches are eliminated/inserted 

interactively, to ensure that accurate coronary arteries are to 

be passed to plaque detection phase. 

By applying curve planer reformation, different branches 

of the arterial tree are transformed into straightened volume as 

it offers detailed analysis including diameter variations, wall 

behavior and surrounding tissues. In the following step, 81 * 

81 rectangular 2D cross sectional planes are extracted across 

the length of the vessel branch. Interpolation process is used 

to obtain the voxel values falling on the orthogonal planes. 

Anisotropic diffusion is applied to minimize the impact of 

noise inducted because of motion and numerical resampling 

in CPR volume. 

 

 
Fig. 5. Extracted Left and Right Arterial tree for extraction of NCP candidate 

Voxels, reproduced from [7]. 

 

After filtration, localized cylindrical analysis is performed 

for analyzing wall and lumen in detail by treating the vessel 

centreline as cylindrical axis. At every centerline point 

horizontal intensity gradient from the centreline to the vessel 

periphery is calculated in slice and location of the maximum 

radial gradient is treated vessel wall or the radius of the lumen 
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(It is assumed that all the voxels inside the vessel will have 

similar values giving a small gradient so vessel wall can be 

identified with large gradient shift). Radius for every point of 

the centreline is obtained and a Radius Profile is constructed 

that defines the vessel wall. Pre-Screening of candidates with 

Topological Soft Gradient A novel approach named 

topological soft gradient (TSG) is proposed for prescreening 

of NCP candidates along the vessel centreline. Fig. 6 

represents the schematic layout for TSG method. 

For TSG, gradient along the radial direction from vessel 

centreline to the outward wall is defined as: (average ct value 

at half radius from vessel centre to the vessel wall) - (average 

ct value at half radius from vessel wall to outwards). After 

obtaining the radial gradient at all locations of wall, 2-D 

surface characterizing the radial gradient field on the vessel 

wall is constructed. This radial gradient field is treated as 2D 

image and it is inspected to identify the regions having soft 

gradients as follows. A running window of 1.5 mm centered at 

each voxel of the centreline is defined and used to map 

corresponding values from gradient field. Histogram is 

generated for mapped values and upper boundary of lowest 

quartile is selected as soft gradient value for that particular 

centreline point. Successively obtained soft gradient values 

along the vessel centreline forms the soft gradient profile for 

the vessel. The soft gradient profile is traversed for local 

minima and every local minimum is labeled as NCP candidate 

and a 2mm vessel segment centered at the candidate voxel is 

defined as ROI for luminal analysis. 

3) Plaque Detection Phenomena: Plaque related voxels are 

detected from NCP candidate voxels via quantitative analysis. 

Both geometric features and gray level characteristics are 

weighed in this step as geometric features corroborate the 

shape information and gray level values confirm the voxel 

intensity information. Intensity value statistics are obtained 

from CPR whereas for geometric features, two additional 

transformations are applied on the CPR volume namely 

Volumetric shape Indexing (VSI) and Gradient direction 

mapping (GDM). Volumetric shape Indexing to capture 

intuitive notion of local shape of surface, and Gradient 

direction mapping to characterize the local direction of 

gradient vector.  

Four measures including mean, standard deviation and 

skewness are calculated for each voxel in all three 

transformed volumes. In addition, one geometric measure 

termed as radius differential is obtained by calculating the 

first derivative of the radius along the vessel. In total, 13 

statistical measures are used for detecting existence of the soft 

plaques in the coronary arteries. According to the authors, 

reposted sensitivity of this TSG based method is 92.5%. Fig. 6 

shows the detected plaque by applying the proposed method. 

D. Automatic Transfer Function Specification for Visual 

Emphasis Coronary Artery Plaque 

1) Key Idea: The main focus of this work [24] is to develop 

automatic transfer function capable of highlighting the 

pathological changes in the arteries that leads to clear 

visualization of soft plaques inside vessels. The direct volume 

rendering (DVR) represents vascular structures more 

realistically [25], hence automated transfer function can aid 

accurate interpretation in DVR. A total of 63 CTA datasets 

were evaluated in this work and detected soft plaques are in 

correspondence with expert’s manual identification. 

 
Fig. 6. Plaque identified by applying TSG pre-screening method, reproduced 

from [7]. 

 

2) Methodology: As soft plaques reside inside vessel walls 

and the HU (intensity-value) difference is insufficient to 

discriminate them from blood or cardiac muscles, it becomes 

difficult to identify the existing lesions. Transfer function (TF) 

are developed in this work, which helps clinicians to identify 

and track the vulnerable plaque present in the arteries. The 

main emphasis of this work is to improve the unique 

appearance of the clogged area for better visual analysis. 

Novelty in this work is TF based mapping of CT values to 

color and opacity that ensures different color coding for every 

dataset. This can incorporate the inconsistent diffusion of 

contrast agent in different patients. In contrast to traditional 

methods of highlighting the vessel lumen, vessel wall is 

focused in this work. 

Coronary arteries constitute approximately 2.5 % of the 

total CTA volumetric data, so global histogram cannot 

represent the vascular behavior and pathological changes. 

Therefore segmentation is achieved in first step to focus on 

the region of interest. In this study, coronary arteries are 

delineated using method proposed in [26] and the under/over 

segmented coronaries are adjusted manually under the 

guidance of expert. Local histogram analysis is applied to 

approximate the blood intensity distribution (Mean and 

Variance) in the segmented arterial tree. Blood intensity 

values are estimated with Gaussian distribution and an 

optimal fit to the intensity distribution to the local histogram 

is calculated (using least squares). Blood Intensity parameters 

(µ, σ) were obtained as (µblood = 356+-136) & (σblood = 

46+-16). This indicates that the average intensity varies 

strongly for different data sets, so setting a static threshold for 

hard plaques applicable to all data sets [27], [28] is not 

feasible. Threshold value (350Hu) defined by [29] shows an 

over estimation in the hard plaque separation. Accordingly 

authors define a new threshold for separating hard plaques as 

given in Equation (3). 

T = µ(blood) + 3σ(blood)        (3) 

Vessel branches are analyzed individually with the help of 

arterial centreline. Intensity profile volume (IPV) is generated 

for every branch by processing centreline voxels. For each 

centreline point, (n) rays perpendicular to the centreline are 

casted in outwards direction. These rays are sampled in 

dataset up to radius (3mm to ensure that whole arterial cross 

section is covered, since 2.5 mm is maximum radius of 

coronary arteries). The sampled intensity values are stored in 

a slice of IPV as shown in Fig. 7, and this process is repeated 

for all centreline voxels of the branch. 
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Fig. 7. Intensity profile volume generation for a vessel branch, reproduced 

from [24]. 

 

After building IPV, vessel wall intensities are detected. 

Vessel wall intensity is expected to be a vertical structure 

since all the values at a particular distance makes vertical line. 

A slice wise search mechanism is employed for locating 

vertical structures in IPV; however, these vertical structures 

are sometimes distorted because of artery remodeling which 

can be improved by applying Laplacian of Gaussian filter. So 

intensity distribution parameters (µ, σ) are obtained for every 

branch as shown in Fig. 8. Finally, the longest centreline 

branch satisfying the condition (µwall) < (µblood - 2σblood) 
is extracted as best candidate for global vessel wall 

approximation. 

 
Fig. 8. Estimation of Vessel Wall intensity distribution for a vessel segment. 

 

3) Plaque Detection Phenomena: Transfer function 

emphasizing the visualization of pathological changes is 

based upon supporting points which requires approximation 

of vessel wall intensity and blood intensity i.e. (μwall, σwall, 

μblood , σblood). Supporting points are related with different 

opacities and colors and intermediate values are linearly 

interpolated. Color association to the supporting points 

targets high contrasts for the vessel wall visualization. For the 

vessel wall, a color scale from blue over red to green is 

applied, yielding high contrasts for the visualization of 

different vessel wall intensities and thus different plaque 

deposits as illustrated in Fig. 9. 

 

 
(a)       (b)       (c) 

Fig. 9. Visualization enhancing the pathological changes in vessel. (a) 

without plaques (b) greenish color denser structures (c) Pinkish colour soft 

plaque. 

 

TABLE I: DATA DESCRIPTION 
 

Name Description of dataset 

A Unvarified plaque candidates from angio set 

N130 Unvarified plaque candidates from native set 

N200 Unvarified plaques candidates from native set but highly 
calcified 

V Varified plaques 

E. Automatic Detection of Calcified Coronary Plaques in 

Computer Tomography Datasets 

1) Key Idea: The main focus in this work [9] is to design an 

automated framework for detection of calcified coronary 

plaques in CT images. In contrast to the avant-garde, both 

native and angio data sets are processed in this technique and 

this dual information is used for detection and assessment of 

calcified plaques. Authors report the success rate of the 

proposed method as 85%. The study only focuses on the 

calcified plaques; NCPs are not addressed explicitly in this 

work. (Table I). 

2) Methodology: The proposed method is divided into 6 

steps. First stage is the localization of aorta that leads to the 

segmentation of the coronary arterial tree. After extracting 

coronary artery, the potential plaque candidates based on Hu 

(defined threshold) values are identified. In order to eliminate 

false positives (included because of CT artifacts) from the 

plaque candidates, correspondence between two scans is 

accomplished via registration process between angio and 

native datasets as shown in the Fig. 10. Finally rule based 

approach is used to maximize the sensitivity by reducing false 

positives. Throughout the pipeline, state of the plaque 

detection process at any stage is represented by four sets. 

 

 
Fig. 10. Correspondence between Angio (solid) and native (mesh) plaque 

candidates. 

 

3) Plaque Detection Phenomena: The ground truth for 

comparison of the obtained results is obtained with the help of 

a radiologist who marked the degree of the stenosis and the 

proximal and distal end positions of each plaque. 

Combination of native and angio data sets in the detection 

process achieves 85.5% detection rate according to the 

authors.  

F. Automatic Segmentation of Coronary Arteries and 

Detection of Stenosis  

1) Key Idea: The focus of this work [30] is to design a fully 

automated framework for identification of coronary artery 

plaques by highlighting the discontinuities in the vessel. The 

performance of the proposed approach achieves 97% success 

rate as reported by the authors. Authors did not specifically 

included or excluded the scope of NCPs. 

2) Methodology: In the pre-processing step Input image is 

convolved with Gaussian filter to minimize possible CTA 

artifacts. After filtering, aorta is localized by applying 

connected component analysis. Vessel enhancement 

mechanism (Sobel operator) is applied to improve the 

connectedness between the branches of the coronary arteries 

and finally arteries are delineated by subtracting the localized 

aorta from the vessel enhance volume. Stenosis / calcification 

is detected by generating the centreline of segmented 

coronaries through skeletonization process. 

3) Plaque Detection Phenomena: After generating the 
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skeleton discontinuities in the centreline are related with the 

stenosis as it symbolizes the presence of calcium/fats at 

corresponding location. The Intensity and diameter of the 

vessel at suspected points are evaluated and decision is made 

regarding degree of stenosis. Although the authors report 97% 

success rate of this approach but it is very limited and based 

upon several manually selected thresholds. Fig. 11 shows the 

detected stenosis points but no quantitative assessment has 

been done in this study. Along with this, the proposed method 

has not been tuned specifically for detecting soft plaques. 

 

 
Fig. 11. Arterial tree with marked Plaque affected regions. 

 

G. Measuring Non-Calcified Coronary Atherosclerotic 

Plaque Using Voxel Analysis with MDCT Angiography: A 

Pilot Clinical Study 

1) Key Idea: The main focus of this work [6] is to design a 

voxel analysis approach for quantification of non-calcified 

plaque in coronary arteries. Quantification is performed in 

terms of diameter and volume of the plaque. Total 49 arterial 

cross sections (41 Normal and 8 abnormal with non-calcified 

plaque) are chosen from a set of 40 patient CTA data. 

According to the results voxel analysis technique appears to 

be robust method for measuring the vessel wall thickness, 

vulnerable plaques and resultant stenosis burden. 

 
TABLE II: DATA DESCRIPTION 

Total segments Normal segments Plaqued segments 

Proximal right coronary 10 0 

Left Main 4 1 

Proximal left anterior descending 8 4 

Mid left anterior descending 4 2 

Proximal left circumflex 8 0 

 

2) Methodology: Forty-one normal and eight abnormal 

arterial cross sections from six major arterial segments are 

chosen for analysis. Abnormal arterial cross section refers to 

non-calcified plaque holding planes where lesion did not 

occlude or narrow the arterial lumen greater than 70%. The 

cine projection is chosen to maximize the visual appearance 

and avoid the shortening or overlapping of branches. 

Specification for data used in the research is given in Table II. 

 
Fig. 12. Passing radial lines across wall to record intensity values. 

Voxel Analysis is performed by plotting 8 radial lines at 

45
o
 in the arterial cross sections. Each line starts from 

epicardial fat and terminates inside lumen to ensure that the 

wall surface has been tracked as shown in Fig. 12. For every 

line CT attenuation value is measured for seven (7) voxels 

starting from the epicardial fat representation (A, B) followed 

by interface of epicardial fat and vessel wall (voxel C), 

followed by voxels (D, E) representing the wall itself 

shadowed by (F, G) that represents the inner lumen. Plaque 

detection / identification mechanism can be visualized in Fig. 

16 where the attenuation values for plane passing at line3 

(having plaque inside wall) are plotted. The density of wall 

voxel (E=66) is less than normal segment.  

In this study a total of 2296 voxel intensity values 

(41planes * 8lines * 7voxels) for normal arterial sections are 

logged. 448 voxel intensity values (8planes * 8lines * 7voxels) 

for plaqued arterial sections are recorded and the statistical 

analysis is perform for validating the presence of plaque. 

 

 
Fig. 13. Intensity value tracking for radial line voxels, and plaque detection 

reproduced from [31]. 

 

3) Plaque Detection Phenomena: As shown in the Fig. 

13-14, the mean attenuation values of voxels (E-G) are 

significantly lower than their counterparts in the normal 

sections, indicating the presence of lower density structure 

(non-calcified plaque) compared with higher-density material 

(contrast medium and blood) in the normal cross sections. 

 

 
Fig. 14. Mean Intensity values for voxels in normal and clogged arteries. 

 

H. A Voxel-Map Quantitative Analysis Approach for 

Atherosclerotic non-Calcified Plaques of the Coronary 

Artery Tree 

1) Key Idea: Main focus of this work [32] is to develop a 

quantitative analysis framework for detection and 
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quantification of soft plaques present in the coronary arteries. 

Test CTA data for this research is obtained in a controlled 

environment of medical centre. 

2) Methodology: According to the literature [33], [34], a 

pixel having CT attenuation number greater than 160Hu is 

considered as first voxel of the lumen. Consequently all the 

lumen voxel are supposed to have value greater than 160 

whereas the external voxels are assumed to have intensity 

value less than 160. This cut-off value is used to delineate all 

the lumen voxels with the help of region growing algorithm. 

This segmented coronary artery mask is applied on the 

original CTA volume to extract the coronary tree model that 

retains all the original HU CT values for arteries whereas the 

surrounding structures are suppressed. Using a proprietary 

software Amira (v.5.4) skeleton/centreline is generated that is 

used in the detection stage. Voxel map is generated by 

applying morphological operations dilation and erosion. 

Dilation reflects the voxel changes outwards (boundary layers 

are termed as B1, B2, B3) whereas erosion mirrors voxel 

changes inside lumen (boundary layers are termed as B-1, B-2, 

B-3). Fig. 15(a) represents a cross sectional plane and 

intersecting the arteries orthogonally, and (b) shows a more 

localized view. 

 

 
Fig. 15. Voxel map after dilation and erosion. 

 

After generation of voxel map (dilation and erosion is 

done), the vessel wall (from outer border of lumen to the outer 

border of wall) is divided into four layers namely -1, 1, 2, 3. 

The attenuation values on the wall are divided into 6 groups to 

define the severity of the plaque composition and assigned 

different colors. These distinct colors are associated for better 

visual experience.  

3) Plaque Detection Phenomena: The Inner lumen 

intensity value increases sharply as approaches close to the 

aorta; that is generally due to more concentration of the 

contrast agent whereas the CT value remains stable for 

boundary of vessel wall adjacent to lumen as shown in figure 

below. Afterwards, change in Hu values (gradient) is recorded 

at four defined layers that shows that mean CT value 

decreases from inside to outside. The abnormal behavior of 

gradient is related with the existence of the plaque as 

illustrated in Fig. 16. 

 

 

 
Fig. 16. The left figure shows Mean CT value of lumen voxels versus 

boundary voxels, whereas the Right graph shows Gradient of CT value at 

four layers of vessel wall from Inner lumen to outer vessel boundary. 

 

I. Automatic Segmentation of Soft Plaque by Modelling 

the Partial Volume Problem in the Coronary Artery 

1) Key Idea: The main theme of this work [35] is to tackle 

the partial volume problem in segmentation so that 

mis-classification of voxels is minimized during segmentation 

process. Authors reported some statistical analysis showing 

the effectiveness of this approach. 

2) Methodology: Measuring small objects like coronary 

arteries in CTA volume is problematic task as it comprises of 

very small fraction of the whole data. Generally statistical or 

intensity thresholding based method are used for arterial 

segmentation that classifies voxels as vessel lumen or 

background. In contrast to the conventional delineation 

algorithms that make deterministic decision of assigning 

labels to voxels as vessel or background (although a voxel 

may belong to more than one structure at a time due to partial 

volume effect), this technique emphasizes the use of fuzzy 

algorithm based on Markov random field. Statistical methods 

reinforced with fuzzy algorithms can ensure high accuracy 

during assignment of a voxel to a particular class by 

incorporating the partial volume effect. By combining 

Markov random field model with Fuzzy K-means clustering, 

more accurate segmentation can be achieved. Although 

quantitative suggests that number of misclassified voxels are 

reduced but this approach requires the manual annotation of 

the region of interest on 2D slices for optimization. 

J. Framework for Detection and Localization of Coronary 

non-Calcified Plaques in Cardiac CTA Using Mean Radial 

Profiles  

1) Key Idea: Recently an efficient method has been 

proposed in [36] in which authors proposed the use of radial 

profiles for effective detection of non-calcified plaques. The 

main idea of the work is detection and localization of 

non-calcified coronary plaques. 

2) Methodology: Starting with hybrid energy-based 

coronary tree segmentation [37], vertical radial profiles are 

computed around centre line for exploiting intensity 

variations. In the subsequent step, authors validated the use of 

computed radial profiles by associating non-calcified plaque 

intensities as illustrated in Fig. 17. 

3) Plaque Detection Phenomena: Subsequently, the radial 

profiles are used to derive hand-crafted feature including 

moving deviation, mean, lumen intensity and radial variations 

as shown in Fig. 18. Finally, a SVM model is used for training 
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and testing over plaque affected coronary segments. In 

addition to plaque detection, authors proposed method for 

precise localization as well; however, the localization 

performance explicitly depends upon the detection algorithm. 

This limitation can lead to a number of false negatives i.e. 

small intensity dips may be missed in plaque localization 

method. 

 

 
Fig. 17. Use of mean radial profile to exploit non-calcified plaque based 

intensity dips. Left shows intensity distribution for normal and abnormal 

cross sections, whereas right shows circular cross section. 

 

 
Fig. 18. Radial variations across the plaque affected sections in coronary 

vessel. 

 

K. Machine Learning Based Anomaly Detection  

In addition to above explained methods, a number of 

technique have been proposed in literature with a theme of 

computing CT based-plaque coronary plaque. An important 

method focusing on cross-section based vascular abnormality 

detection was proposed by Zuluaga et al. [27]. Based on the 

“density level detection” technique of Steinwart [38], authors 

employed an unsupervised learning approach in this work for 

detecting abnormal cross-section. In this method, the vascular 

cross-sectional images were discretely sampled around 

centreline to derive the feature set for suppressing outliers. 

Subsequently, they used an SVM model trained on normal 

cross sections to label the outliers (i.e. the cross sections 

which violate the intensity pattern of normal class) as 

abnormal. According to the reported results, a good detection 

rate of 79.62%, was reported for 9 clinical CTA datasets; 

however, the selection of anomaly concentration parameter _ 

plays an important role in overall results. In addition, a large 

number of normal cross-sections having similar intensity 

pattern are required for good training of SVM due to 

one-class nature of supervisor. 

Another use of learning method was reported by Tessman 

[13], in which coronary stenosis effected cross-sections were 

detected. In the first step, the pre-extracted coronary 

centerline was used to map the vessel segment with a series of 

multi-scale overlapping cylinders to identify the sampling 

points inside the segment. Subsequently, image based features 

like intensity, gradient and the first-second order derivatives 

were extracted at the sampled points to identify high intensity 

calcifications. Moreover, global features including image 

mean, entropy and variance were used in combination with 

Haar-like features to detect the low intensity soft plaques. 

According to the reported results, the plaque detection 

accuracies were 94% and 79% respectively for two classes of 

plaques i.e. calcified and non-calcified. It should be noted that 

the low accuracy for non-calcified plaques illustrate that soft 

plaque detection demands a more sophisticated system i.e. 

beyond stenosis based computations to efficiently address 

vessel remodeling. 

 

III. CONCLUSION 

This paper presents a brief overview of the literature 

addressing detection, segmentation and quantification of the 

non-calcified plaques in cardiac CT angiography. We believe 

that this can serve as a starting point for researchers intended 

to work on new/automated plaque detection algorithms. 
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