
  

 

Abstract—Nowadays, Linked Open Data is spreading year by 

year, and its further utilization is expected. Because of the large 

size of data, Linked Open Data is attempted to learn by using 

neural networks. Since the data is still scaling in various region, 

unlike the existing neural network specialized to learn only one 

region, a neural network which can continuously learn wide 

region of knowledge is needed. However, neural network is 

known in its problem, catastrophic forgetting, which is to lose 

previously acquired skills when learning a new skill. Though 

existing researches said enhancing modularity can overcome 

this problem since it can reduce interference between tasks, 

those researches consider the number of learning tasks is given 

in advance, and it is not applicable for continuous learning. In 

this paper, we propose a design approach of neural network 

reducing modularity expecting that unspecialization can 

mitigate catastrophic forgetting for continuous learning. Our 

results show that, although, as we can expect, a neural network 

with high modularity can mitigate forgetting for tasks learned 

just before because of the low interference, a neural network 

with low modularity is better for the worst case when evaluating 

for all the tasks it learned in the past. 

 
Index Terms—Neural network topology design, catastrophic 

forgetting, linked open data, modularity. 

 

I. INTRODUCTION 

Nowadays, Linked Open Data is spreading year by year, 

and its further utilization is expect. Because of the large size 

of data, Linked Open Data is attempted to learn by using 

neural networks[1]. Since the data is continuously scaling in 

various region, unlike the existing neural network specialized 

to learn one region, a neural network which can continuously 

learn wide region of knowledge is needed. 

However, neural network is known in its problem, catas- 

trophic forgetting, which is to lose previously acquired skills 

when learning a new skill. In [2], Ellefsen et al. said 

enhancing modularity can reduce interference between tasks 

by separating functionality into physically distinct modules, 

so that it can overcome catastrophic forgetting. However, 

since this consider the number of learning tasks is given in 

advance, it is not applicable for continuous learning. 

Therefore, a new approach can mitigate catastrophic 

forgetting for continuously learning wide region of 

knowledge is needed [3]. 

In studies of human brain, it is said, although functional 

brain network has high modularity in some high level, 

mod-ularity is low in a lower level [4]. Also, there is a 

research in complex network field says compare to a 

specialized system which is highly constrained, an 
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unspecialized system has more potential to evolve in various 

ways [5]. Inspired from these studies, we propose a design 

approach of neural network reducing modularity expecting 

that unspecialization can mitigate catastrophic forgetting for 

continuous learning. From comparing with a neural network 

with high modularity which is said can have low interference 

between learning tasks, we show that although, as we can 

expect, a neural network with high modularity can mitigate 

forgetting for tasks learned just before, a neural network with 

low modularity is better for the worst case when evaluating 

for all the tasks it learned in the past. 

Note that tasks we used are categorization. In order to 

apply to continuously learning wide region of knowledge, we 

change the learning method. In general, categorization is 

learned by assign output nodes of a neural network to 

categories. However, this restrict the number and kind of 

categories. Therefore, to learn categorization for 

continuously learning wide region of knowledge, we express 

category by tree structure, and learn it by using a neural 

network. 

The rest of this paper is organized as follow. In Sec. II, we 

explain the designing approach for continuously learning 

wide region of knowledge. In Sec. III, we explain the 

category tree. In Sec. IV, we explain the evaluation results. 

Finally, we conclude our paper in Sec. V. 

 

II. DESIGN APPROACH 

In this section, we explain the designing approach. To 

design a neural network for continuously learning, different 

from [2], we design a neural network with multiple learning 

subset without considering the number of tasks but 

considering modularity. In Sec. II-A, we explain the 

modularity of subsets, and in Sec. II-B, we explain the 

designing approach.  

A. Modularity of Subsets 

Calculation of modularity of subsets is explained in this 

section. We calculate modularity after reconstruct the neural 

network and partitioning the neural network based on the 

subsets. 

 

 
Fig. 1. Neural network with high modularity. 
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Fig. 2. Neural network with high modularity (subset 1). 

 

 
Fig. 3. Neural network with high modularity (subset 2). 

 

 
Fig. 4. Neural network with low modularity. 

 

 

 
Fig. 5. Neural network with low modularity (subset 1). 

 

 
Fig. 6. Neural network with low modularity (subset 2). 

 

We assume topology of a neural network and nodes and 

links of each learning subsets is given. Let the set of nodes 

in input layer be VI , the set of nodes in output layer be VO , 

the links in the neural network be E. Let the ath subset be 

Sa , and the set of nodes in Sa be Va , and the set of links be 

Ea , and the total number of subsets be max S. To calculate 

modularity, we reconstruct the topology of the neural 

network. Let the new topology be Tnew . We redesign input 

nodes and connections from them, and then redesign output 

nodes and connections to them. Let the total number of 

nodes in input layer be the sum of input nodes in each 

subsets. We indicate the nodes in input layer in Tnew 

as    
   . The number of nodes in   

    is 

 

   
                     (1) 

 

Let each node in   
    represent a input node in the 

subsets. Let a input node yin represent a input node zin in 

subset a connect to nodes in WI (zin , a): 

 

  (     )  *  (     )    +      (2) 

 

We also do this for nodes in output layer. When indicate 

the nodes in output layer in Tnew as   
    , the number of 

nodes in   
    is 

 

   
                                       (3) 

 

Let each node in   
    represent a output node in the 

subset. Let an output node yout represent an output node zout 

in subset a connect from nodes in WO (zout , a):  

 

  (      )  *  (      )    +     (4) 

 

Nodes in hidden layer and links between nodes in hidden 

layer is not changed. 

Next, we partition Tnew in to max S modules by the 

following algorithm. We describe the x th module as modx . 

Let a input node yin in Tnew represent a input node zin in 

subset a belong to module moda , and let a output node yout 

in Tnew represent a output node zout in subset a belong to 

module moda . Let the probability of a node in hidden layer 

belong to moda depends on the nodes it connected from. Let 

a node in hidden layer be y and the nodes it connected from 

be WF . The probability of y belong to modx is, p(y, modx ):  

 

 (      )  
 *                        + 

    
     (5) 

 

The modularity is calculated using Tnew . For calculating 

modularity, we used measurement of modularity for directed 

graph [6]:  

 

          (   )  
 

 
∑ [    

  
    

   

 
]     ( )   ( )   (6) 

 

where Aij is adjacency matrix of Tnew , k
in is in degree of 

node k, kout is out degree of node k, m is total number of 

links in Tnew . δmd(i),md(j) is 1 if node i and node j belong 

to the same module, otherwise it is 0. md(x) describe the 

module which node x belong to. 

B. Designing Approach using Modularity of Subsets  

We explain the designing approach in this section. The 

basic idea is to design a neural network with multiple learning 

subset without considering the number of tasks but only 

considering modularity. To generate a neural network with 

low modularity, firstly, we generate a neural network with 

high modularity, than we generate that with low modularity 

by using simulated annealing. 

We generate a neural network with high modularity by 

assigning nodes to subsets without duplication. We assume 

the size of a neural network, such as number of input nodes 

max I , number of output nodes max O, number of hid- den 

layer max H , number of nodes in each hidden layer max 

L(x), number of subsets max S is given. Since we do not 

know the tasks to learn in advance, we use the same input 

nodes and output nodes for every task. Therefore, we do not 

39

International Journal of Computer Theory and Engineering, Vol. 10, No. 2, April 2018



  

contain input nodes and output nodes to any subset. To 

maximize the learning speed for each subset, we let the 

number of nodes in each layer be the same. Then, we connect 

nodes in the same subset, and let the links belong to the 

subset. 

We generate a neural network with low modularity by 

using simulated annealing to minimize modularity of subset. 

Neighbor state is generated by exchanging nodes in the 

subsets and rewire the links. First, we randomly select a 

subset, then we randomly select a neuron in the subset. Let 

the selected neuron be nold . Then we randomly select a 

neuron which is in the same layer with nold , but is not 

included in the selected subset. Let the newly selected neuron 

be nnew . Then, we add nnew and links WN (nold ) to the 

subset, where WN (nold ) is 

 

  (    )  *  (      )   +      (7) 

 

Finally, we remove nold and links connected to it from the 

subset. Since number of nodes and links used for learning one 

task affect the learning speed, we align them in every subset. 

The fitness function used in simulated annealing is 

modularity of subsets. Initial temperature is 100, and the 

cooling rate is 0.995. We confirmed that a neural network 

with small modularity is generated. 

We show the example of generated subsets. For example, 

when set max I to 2, max O to 1, max H to 2, max L(1) to 8, 

max L(2) to 8, and max S to 2, Fig. 1 is the neural network 

with high modularity, and Fig. 2 and Fig. 3 are the subsets. A 

neural network with low modularity generated using this 

settings is Fig. 4. Fig. 5 and Fig. 6 are the subsets. This is 

obtained after adapting simulated annealing for 1000 steps. 

The modularity of the neural network with high modularity 

is 0.5, and that with low modularity is -0.05398. Note, these 

neural networks are used in the evaluation in Sec. IV. 

 

III. LEARNING CATEGORY TREE BY NEURAL NETWORK  

In neural networks designed for specialized usage, 

categories are often assign to output nodes. However, since 

the number and the kind of the categories are fixed, it is not 

suitable for wide region continuous learning, where the 

categories would expand. Therefore, instead of using the 

traditional method, we express the categories using tree 

structure, and learning the connections of the structure using 

a neural network. To create such neural network, we extend 

the work of Stanley et al. [7], which presented a neural 

network learning connections of a graph. We use the example 

data in Table I for explanation. It is to categorize animals by 

using its attributes. 

The tree structure consists of three types of nodes and 

directed connections between them. One type of node is 

describing animals. Another type of node is describing 

attribute. In order to avoid confusion, we call the first type 

“animal node”, the second type “attribute node”. For 

convenience, we call these two types of nodes, “object node”. 

The last type of node is describing categories. We call them 

“category node”. Connections exist only between animal 

node and category node, and between category node and 

attribute node, and between category node themselves. 

Directions are only allowed from animal node to category 

node, and from category node to attribute node. Category 

nodes consist a single directed line, so that nodes close to 

root can describe higher/abstract level of category. For 

convenience, let the number of category nodes be max C . We 

consider the category tree express “an animal” has “an 

attribute” if there is a path from the corresponding animal 

node to the corresponding attribute node. For example, for 

the data in Table I, Fig. 7 is the category tree express the data 

necessary and sufficient. From Fig. 7, we can say canary and 

eagle belongs to one category and shark belongs to another. 

 
TABLE I: EXAMPLE OF ANIMALS AND ATTRIBUTES 

Animal Attribute 

Canary Wings, Feathers, Fly, Skin, Eats, Breathes 

Eagle Wings, Feathers, Fly, Skin, Eats, Breathes 

Shark Skin, Eats, Breathes 

 

 
Fig. 7. Example of a category tree. 

 

In the tree structure, we fix the category node, and using 

neural network to learn which category node the object node 

should connect to. In detail, our neural network has two input 

nodes and one output node. The input information describe 

an object node, and the output information describe which 

category node it connected to. For one input node, we input 1 

if the object node describes animal, and 0 if the object node 

describes attribute. For the other input node, we input the 

node ID of the object node. The ID is given by a unique 

value. We consider, for example, when max C is 2, then when 

the output is larger than 0, it express that the object node 

connect to the first category node, and otherwise it connect to 

the second category node. Therefore, a category tree can be 

obtained when finishing input all the object node describing 

animals and attribute in a task to a neural network. 

To measure the correctness of the expression of category 

tree, we use F-measure. Though the above example can have 

the most successful categorization as Fig. 7, the dataset in a 

task cannot always have the perfectly correct answer. 

Therefore, here we use the F-measure to let the category tree 

express the correct animal-attribute pair necessary and 

sufficient. The F-measure is computed between all the 

animal-attribute pair can be obtained from category tree and 

the animal-attribute pair inputted. Instead of the normal 

F-measure, we use the weighted F-measure [8], since this can 

make more appropriate category tree. The weight we used is 

0.01. 

The generative algorithm we used is based on NEAT [7], 

[9] and HyperNEAT [7]. In the generative algorithm, an 

individual is a topology of a neural network. Mate is to 

generate offspring by letting the link weight and node 
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activation function of an offspring be that of what in either 

parent. Mutation is to change weight of selected link or 

change the activation function of a selected node. For the 

parameters in genetic algorithm, since the task is not fixed, 

we try to use random value as much as possible. However, 

in considering of the calculation time, stagnation age and 

min elitism size is set to a random integer between 10 to 20. 

And following that, young age and old age is set to a random 

integer between 1 to 10 and 10 to 20. Since target species 

and population size affects the fitness improvement 

importantly, we set a random integer from 1 to 2 for target 

species, and we set 100 for population size. Also, in 

considering of the calculation time, to reduce the search 

space of weights, we made an integer list in advance, and the 

link weight is selected from the list. The range of the integers 

in the list is between -1 multiply the maximum ID number 

and the maximum ID number. The size of the list is 10 since 

we find it can improve the fitness. 

 

IV. EVALUATION  

We use real data for evaluation. We evaluated not only for 

tasks learned just before, but also for tasks learned a while 

before. In Sec. IV-A, data used for evaluation is explained. 

Evaluation measurement is explained in Sec. IV-B. The 

results of comparing a neural network with high modularity 

and one with low modularity is shown in Sec. IV-C. We show 

some examples of obtained category trees in Sec. IV-D. The 

validity of parameters used in simulation is discussed in Sec. 

IV-E.  

A. Data for Evaluation 

As sample data for evaluation, we chose the real data 

obtained from BBC Nature [10]. The dataset consists with 

animals and their attributes. Since a wide region of animals 

are obtainable, it is suitable for our aim, which is to design a 

neural network for wide region continuous learning. In detail, 

we obtained dataset by starting from “Amphibians”, which is 

relatively in the middle level, and then, we trace the abstract 

level or subdivision level of that species recursively. The 

length of the obtained data is more than 50, and we show a 

part of it in Table II. As we mentioned before, since it is 

unable to know where to punctuate the data as a single task, 

we punctuate the data in a certain length. Here, we punctuate 

every 3 data for a single task. Though it is true that the 

number is quite small and should be improved, since the 

focus in this paper is modularity, we do not take it as a 

problem here.  

 

TABLE II: A PART OF OBTAINED LOD 

Animal Attribute 

Texas blind salamander Adapted to swimming, Chemical communication, Metamorphosis, Neoteny, Egg layer, 

 Tactile sense, Carnivorous, Cave dweller 

Lamp shells Intertidal zone, Sea bed, Estuaries, Shallow seas 

Bony fish Shallow seas, Tactile sense, Lakes and ponds, Deep ocean, Brackish water, Open ocean, 

 Estuaries, Adapted to swimming, Wetlands 

Cartilaginous fish Tactile sense, Sea bed, Carnivorous, Shallow seas, Open ocean, Reefs, Adapted to swimming 

Pangolins Adapted to climbing, Tropical dry forest, Chemical communication, Rainforest, 

 Tropical grassland, Tropical coniferous forest 

Leptictidium Adapted to running, Adapted to jumping, Viviparous 

Armadillos Burrower, Adapted to running, Viviparous 

Shrews Moles and relatives 

Elephant shrews Adapted to running, Active at birth, Territorial, Viviparous 

Malayan colugo Adapted to gliding, Maternal care, Herbivorous, Chemical communication, Nocturnal, 

 Rainforest, Tree dweller, Territorial, Mangroves, Viviparous, Acoustic communication 

 

B. Evaluation Measurement 

We evaluated not only for tasks learned just before, but 

also for tasks learned a while before. In detail, we evaluate 

not only the task learned just before, but also the tasks 

learned from 5 before to just before, and all the tasks learned 

before. We indicate each task set as PT1, PT5, PTALL. Let 

the i th learned task be Ti , Let the last generation of neural 

network generated for Ti be N N i . Then, let the F-measure 

of the category tree when input Ti to neural network N N i 

be F- measure (Ti, N N i ). When assume current learning task 

is c, result for PT1 is 

 

 -       (       
 )       (8) 

 

result for PT5 is 

 

   { -       (       
 )|           }   (9) 

 

result for PTALL is 

 

   { -       (       
 )|          }  (8) 

 

C. Evaluation Results 

The topology we used for the evaluation is obtained by 

setting max I to 2, max O to 1, max H to 2, max L(1) to 8, 

max L(2) to 8, max S to 2. For a neural network with high 

modularity, we only used one kind of topology. For a neural 

network with low modularity, we generated 20 kinds of 
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topology by using different random seeds. The topology of 

the neural networks are shown in Sec. II-B. The modularity 

of the neural network with high modularity is 0.5, and that 

with low modularity are around 0. We indicate the neural 

network with high modularity as H high , and the neural 

networks with low modularity as H low . In the evaluation 

below, the results are all done in 20 trial. For the neural 

network with high modularity, we do the simulation by 

different 20 random seeds. And, for the neural networks with 

low modularity, we do the simulation for each topology by a 

random seed. 

 

 
Fig. 8. Fitness of H low for PT1. 

 

 
Fig. 9. Fitness of H low for PT5. 

 

 
Fig. 10. Fitness of H low for PTALL. 

 

 
Fig. 11. Fitness of H high for PT1. 

 
Fig. 12. Fitness of H high

 for PT5. 
 

 
Fig. 13. Fitness of H high

 for PTALL. 

 

 
Fig. 14. Accumulated difference of value of H high minus value of H low. 

 

 
Fig. 15. Accumulated difference of value of H high minus value of H low 

(with topology 2/8/8/8/1). 

 

Results are from Fig. 8 to Fig. 13. Fig. 8 and Fig. 11 are 

results evaluated by PT1. Fig. 9 and Fig. 12 are results 

evaluated by PT5. Fig. 10 and Fig. 13 are results evaluated by 

PTALL. All of the results are boxplot of the 20 trials. The dot 

in the middle is median. X-axis indicates generation, and 

y-axis indicates F-measure. For the first task, since there is 
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no previous task, we set 1 for all the results. From the results, 

we can see, for PT1, the median and the minimum of 

F-measure of H high is higher than that of H low in most of the 

generations. However, in larger generations for PT5 and 

PTALL, the minimum of F-measure becomes more 

frequently in H high than in H low . To show more clearly, we 

show the accumulated difference in Fig. 14. Y-axis is 

accumulation of difference obtained by minus the minimum 

value of H low from that of H high . This means, when the 

gradient is plus, the minimum value of H high is better than 

that of H low , and when the gradient is minus, vice versa. 

From Fig. 14, we can see that, as we can expect, for 

evaluation by PT1, the minimum value of H high is better 

than that of H low in all the generations. Then, for PTALL, 

though the minimum value of H high is better at first, from 

around the 400th generation, the minimum value of H low 

become better. And, for PT5, after the 100th generation, the 

result is almost the same. This might could be explain by the 

specification of neural networks. Since a neural network with 

high modularity is specified to the newly learned two tasks, it 

performs significantly bad for tasks learned a while before. 

On the other hand, a neural network with low modularity 

perform bad to the task just learned before, it performs 

comparatively better for tasks learned a while before. 

To confirm the tendency of the obtained results do not 

relay on the topology of neural networks, we do the same 

evaluation for neural networks with different topology. The 

neural network we used is generated by setting max H to 3 

and max L(3) to 8. Other settings are as same as the one 

before, which means the neural network is 2/8/8/8/1. We 

evaluate this neural network by using the same parameters. 

The accumulated difference is shown in Fig. 15. From the 

result, we can see the tendency is as same as before, which 

is, for PT1, the neural network with high modularity is better 

than that with low modularity, and for PTALL, the neural 

network with low modularity become better.  

 

D. Obtained Category Tree 

We show the examples of category trees we obtained 

during the simulation. Fig. 16 to Fig. 19 are examples of 

category trees obtained in the simulation. Fig. 16 is obtained 

in 139th generation. Fig. 17 is obtained in 102th generation. 

Fig.18 is obtained in 160th generation. Fig. 19 is obtained in 

224th generation. 

 

 
Fig. 16. Example of obtained category tree (Type 011). 

 
Fig. 17. Example of obtained category tree (Type 001). 

 

 

 
Fig. 18. Example of obtained category tree (Type 000). 

 

 
Fig. 19. Example of obtained category tree (Type 111). 

 

 
Fig. 20. Types of obtained category tree. 

 

From analyzing the category trees, we find that some of 

them is not successfully categorized. For example, Fig. 18 

and Fig. 19 are not successfully categorized since all the 
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object nodes are connected to one category node, and no 

object node is connected to the other category node. On the 

other hand, Fig. 16 and Fig. 17 are successfully categorized 

since two object node is connected to one category node, and 

the other object node is connected to the other category node. 

We show the number of each type we obtained in during 

simulation in Fig. 20. X-axis is the type of obtained category 

tree. Type 011 means that an object node connect to a 

category node with ID 0 and two object nodes connect to a 

category node with ID 1 such as Fig. 16. Type 001 means that 

two object nodes connect to a category node with ID 0 and 

one object node connect to a category node with ID 1 such as 

Fig. 17. Type 000 means that all of the three object nodes 

connect to a category node with ID 0 such as Fig. 18. Type 

111 means that all of the three object nodes connect to a 

category node with ID 1 such as Fig. 19. And, Type 011 and 

Type 001 are successfully categorized, while Type 000 and 

Type 111 are not. The average number of all the trials of each 

type we obtained is showed in Fig. 20. From Fig. 20, we can 

see that the number of Type 000 and Type 111 is much lower 

than the number of Type 011 and Type 001. Also, we can see 

that this tendency do not depend on the modularity of the 

neural network.  

E. Validity of Parameters 

In this section, we demonstrate the parameters we used for 

generative algorithm as explained in Sec. III are reasonable. 

Population size is the size of a population, and target species 

is the number of individuals in one species. The algorithm 

cannot find better individual when population size or target 

species is too small, while computational time increase as 

they become larger. Therefore, from comparing with results 

obtained with smaller population size and larger target 

species, we show that the values we used in simulations are 

enough to find better individuals during the learning process. 

 

 
Fig. 21. Fitness for the neural network with low modularity. 

 

 
Fig. 22. Fitness for the neural network with high modularity. 

 
Fig. 23. Fitness when set population_size to 10 for the neural network with 

low modularity. 

 
Fig. 24. Fitness when set population_size to 10 for the neural network with 

high modularity. 

 
Fig. 25. Fitness when set target_species to a random value from 5 to 6 for the 

neural network with low modularity. 

 

 
Fig. 26. Fitness when set target_species to a random value from 5 to 6 for the 

neural network with high modularity. 

 

Fig. 21 and Fig. 22 are the results of one trial obtained 

from the simulations above, which means those are results 

when target species is set to a random integer from 1 to 2, and 

population size is set to 100. Fig. 21 is the result of a neural 

network with low modularity, and Fig. 22 is the result of a 

neural network with high modularity. Fig. 23 and Fig. 24 are 

the results of the same trial when change population size to 
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10. We can see from comparing Fig. 21 and Fig. 22 with Fig.

23 and Fig. 24 that fitness improves much more obviously in

the former. This means the value should be set to 100. Fig.

25 and Fig. 26 are the results of the same trial when change 

target species to a random value from 5 to 6. We can see 

from comparing Fig. 21 and Fig. 22 with Fig. 25 and Fig. 26

that, although the target species is larger, the improvement of

the growth of fitness during the learning process is

unnoteworthy. This means the value we set for the

simulations above is large enough.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a design approach of neural 

network reducing modularity in order to mitigate catastrophic 

forgetting for continuously learning wide region of

knowledge of Linked Open Data. Our results show that,

although, as we can expect, a neural network with high

modularity can mitigate forgetting for tasks learned just

before because of the low interference, a neural network with

low modularity is better for the worst case when evaluating

for all the tasks it learned in the past.

For future works, the evaluation should be tested for more 

wide range of data. The learning accuracy should be

improved. Generalization to tasks other than Linked Open

Data is needed. Also, theoretical analysis is needed.
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