

Abstract—Nowadays, Linked Open Data is spreading year by

year, and its further utilization is expected. Because of the large

size of data, Linked Open Data is attempted to learn by using

neural networks. Since the data is still scaling in various region,

unlike the existing neural network specialized to learn only one

region, a neural network which can continuously learn wide

region of knowledge is needed. However, neural network is

known in its problem, catastrophic forgetting, which is to lose

previously acquired skills when learning a new skill. Though

existing researches said enhancing modularity can overcome

this problem since it can reduce interference between tasks,

those researches consider the number of learning tasks is given

in advance, and it is not applicable for continuous learning. In

this paper, we propose a design approach of neural network

reducing modularity expecting that unspecialization can

mitigate catastrophic forgetting for continuous learning. Our

results show that, although, as we can expect, a neural network

with high modularity can mitigate forgetting for tasks learned

just before because of the low interference, a neural network

with low modularity is better for the worst case when evaluating

for all the tasks it learned in the past.

Index Terms—Neural network topology design, catastrophic

forgetting, linked open data, modularity.

I. INTRODUCTION

Nowadays, Linked Open Data is spreading year by year,

and its further utilization is expect. Because of the large size

of data, Linked Open Data is attempted to learn by using

neural networks[1]. Since the data is continuously scaling in

various region, unlike the existing neural network specialized

to learn one region, a neural network which can continuously

learn wide region of knowledge is needed.

However, neural network is known in its problem, catas-

trophic forgetting, which is to lose previously acquired skills

when learning a new skill. In [2], Ellefsen et al. said

enhancing modularity can reduce interference between tasks

by separating functionality into physically distinct modules,

so that it can overcome catastrophic forgetting. However,

since this consider the number of learning tasks is given in

advance, it is not applicable for continuous learning.

Therefore, a new approach can mitigate catastrophic

forgetting for continuously learning wide region of

knowledge is needed [3].

In studies of human brain, it is said, although functional

brain network has high modularity in some high level,

mod-ularity is low in a lower level [4]. Also, there is a

research in complex network field says compare to a

specialized system which is highly constrained, an

Manuscript received January 9, 2018; revised April 9, 2018.

Lu Chen and Masayuki Murata are with Osaka University, Suita, Osaka,
Japan (e-mail: l-chen@ist.osaka-u.ac.jp, murata@ist.osaka-u.ac.jp).

unspecialized system has more potential to evolve in various

ways [5]. Inspired from these studies, we propose a design

approach of neural network reducing modularity expecting

that unspecialization can mitigate catastrophic forgetting for

continuous learning. From comparing with a neural network

with high modularity which is said can have low interference

between learning tasks, we show that although, as we can

expect, a neural network with high modularity can mitigate

forgetting for tasks learned just before, a neural network with

low modularity is better for the worst case when evaluating

for all the tasks it learned in the past.

Note that tasks we used are categorization. In order to

apply to continuously learning wide region of knowledge, we

change the learning method. In general, categorization is

learned by assign output nodes of a neural network to

categories. However, this restrict the number and kind of

categories. Therefore, to learn categorization for

continuously learning wide region of knowledge, we express

category by tree structure, and learn it by using a neural

network.

The rest of this paper is organized as follow. In Sec. II, we

explain the designing approach for continuously learning

wide region of knowledge. In Sec. III, we explain the

category tree. In Sec. IV, we explain the evaluation results.

Finally, we conclude our paper in Sec. V.

II. DESIGN APPROACH

In this section, we explain the designing approach. To

design a neural network for continuously learning, different

from [2], we design a neural network with multiple learning

subset without considering the number of tasks but

considering modularity. In Sec. II-A, we explain the

modularity of subsets, and in Sec. II-B, we explain the

designing approach.

A. Modularity of Subsets

Calculation of modularity of subsets is explained in this

section. We calculate modularity after reconstruct the neural

network and partitioning the neural network based on the

subsets.

Fig. 1. Neural network with high modularity.

Alleviating Catastrophic Forgetting with Modularity for

Continuously Learning Linked Open Data

Lu Chen and Masayuki Murata

38

International Journal of Computer Theory and Engineering, Vol. 10, No. 2, April 2018

DOI: 10.7763/IJCTE.2018.V10.1196

Fig. 2. Neural network with high modularity (subset 1).

Fig. 3. Neural network with high modularity (subset 2).

Fig. 4. Neural network with low modularity.

Fig. 5. Neural network with low modularity (subset 1).

Fig. 6. Neural network with low modularity (subset 2).

We assume topology of a neural network and nodes and

links of each learning subsets is given. Let the set of nodes

in input layer be VI , the set of nodes in output layer be VO ,

the links in the neural network be E. Let the ath subset be

Sa , and the set of nodes in Sa be Va , and the set of links be

Ea , and the total number of subsets be max S. To calculate

modularity, we reconstruct the topology of the neural

network. Let the new topology be Tnew . We redesign input

nodes and connections from them, and then redesign output

nodes and connections to them. Let the total number of

nodes in input layer be the sum of input nodes in each

subsets. We indicate the nodes in input layer in Tnew

as
 . The number of nodes in

 is

 (1)

Let each node in
 represent a input node in the

subsets. Let a input node yin represent a input node zin in

subset a connect to nodes in WI (zin , a):

 () * () + (2)

We also do this for nodes in output layer. When indicate

the nodes in output layer in Tnew as
 , the number of

nodes in
 is

 (3)

Let each node in
 represent a output node in the

subset. Let an output node yout represent an output node zout

in subset a connect from nodes in WO (zout , a):

 () * () + (4)

Nodes in hidden layer and links between nodes in hidden

layer is not changed.

Next, we partition Tnew in to max S modules by the

following algorithm. We describe the x th module as modx .

Let a input node yin in Tnew represent a input node zin in

subset a belong to module moda , and let a output node yout

in Tnew represent a output node zout in subset a belong to

module moda . Let the probability of a node in hidden layer

belong to moda depends on the nodes it connected from. Let

a node in hidden layer be y and the nodes it connected from

be WF . The probability of y belong to modx is, p(y, modx):

 ()
 * +

 (5)

The modularity is calculated using Tnew . For calculating

modularity, we used measurement of modularity for directed

graph [6]:

 ()

∑ [

] () () (6)

where Aij is adjacency matrix of Tnew , k
in is in degree of

node k, kout is out degree of node k, m is total number of

links in Tnew . δmd(i),md(j) is 1 if node i and node j belong

to the same module, otherwise it is 0. md(x) describe the

module which node x belong to.

B. Designing Approach using Modularity of Subsets

We explain the designing approach in this section. The

basic idea is to design a neural network with multiple learning

subset without considering the number of tasks but only

considering modularity. To generate a neural network with

low modularity, firstly, we generate a neural network with

high modularity, than we generate that with low modularity

by using simulated annealing.

We generate a neural network with high modularity by

assigning nodes to subsets without duplication. We assume

the size of a neural network, such as number of input nodes

max I , number of output nodes max O, number of hid- den

layer max H , number of nodes in each hidden layer max

L(x), number of subsets max S is given. Since we do not

know the tasks to learn in advance, we use the same input

nodes and output nodes for every task. Therefore, we do not

39

International Journal of Computer Theory and Engineering, Vol. 10, No. 2, April 2018

contain input nodes and output nodes to any subset. To

maximize the learning speed for each subset, we let the

number of nodes in each layer be the same. Then, we connect

nodes in the same subset, and let the links belong to the

subset.

We generate a neural network with low modularity by

using simulated annealing to minimize modularity of subset.

Neighbor state is generated by exchanging nodes in the

subsets and rewire the links. First, we randomly select a

subset, then we randomly select a neuron in the subset. Let

the selected neuron be nold . Then we randomly select a

neuron which is in the same layer with nold , but is not

included in the selected subset. Let the newly selected neuron

be nnew . Then, we add nnew and links WN (nold) to the

subset, where WN (nold) is

 () * () + (7)

Finally, we remove nold and links connected to it from the

subset. Since number of nodes and links used for learning one

task affect the learning speed, we align them in every subset.

The fitness function used in simulated annealing is

modularity of subsets. Initial temperature is 100, and the

cooling rate is 0.995. We confirmed that a neural network

with small modularity is generated.

We show the example of generated subsets. For example,

when set max I to 2, max O to 1, max H to 2, max L(1) to 8,

max L(2) to 8, and max S to 2, Fig. 1 is the neural network

with high modularity, and Fig. 2 and Fig. 3 are the subsets. A

neural network with low modularity generated using this

settings is Fig. 4. Fig. 5 and Fig. 6 are the subsets. This is

obtained after adapting simulated annealing for 1000 steps.

The modularity of the neural network with high modularity

is 0.5, and that with low modularity is -0.05398. Note, these

neural networks are used in the evaluation in Sec. IV.

III. LEARNING CATEGORY TREE BY NEURAL NETWORK

In neural networks designed for specialized usage,

categories are often assign to output nodes. However, since

the number and the kind of the categories are fixed, it is not

suitable for wide region continuous learning, where the

categories would expand. Therefore, instead of using the

traditional method, we express the categories using tree

structure, and learning the connections of the structure using

a neural network. To create such neural network, we extend

the work of Stanley et al. [7], which presented a neural

network learning connections of a graph. We use the example

data in Table I for explanation. It is to categorize animals by

using its attributes.

The tree structure consists of three types of nodes and

directed connections between them. One type of node is

describing animals. Another type of node is describing

attribute. In order to avoid confusion, we call the first type

“animal node”, the second type “attribute node”. For

convenience, we call these two types of nodes, “object node”.

The last type of node is describing categories. We call them

“category node”. Connections exist only between animal

node and category node, and between category node and

attribute node, and between category node themselves.

Directions are only allowed from animal node to category

node, and from category node to attribute node. Category

nodes consist a single directed line, so that nodes close to

root can describe higher/abstract level of category. For

convenience, let the number of category nodes be max C . We

consider the category tree express “an animal” has “an

attribute” if there is a path from the corresponding animal

node to the corresponding attribute node. For example, for

the data in Table I, Fig. 7 is the category tree express the data

necessary and sufficient. From Fig. 7, we can say canary and

eagle belongs to one category and shark belongs to another.

TABLE I: EXAMPLE OF ANIMALS AND ATTRIBUTES

Animal Attribute

Canary Wings, Feathers, Fly, Skin, Eats, Breathes

Eagle Wings, Feathers, Fly, Skin, Eats, Breathes

Shark Skin, Eats, Breathes

Fig. 7. Example of a category tree.

In the tree structure, we fix the category node, and using

neural network to learn which category node the object node

should connect to. In detail, our neural network has two input

nodes and one output node. The input information describe

an object node, and the output information describe which

category node it connected to. For one input node, we input 1

if the object node describes animal, and 0 if the object node

describes attribute. For the other input node, we input the

node ID of the object node. The ID is given by a unique

value. We consider, for example, when max C is 2, then when

the output is larger than 0, it express that the object node

connect to the first category node, and otherwise it connect to

the second category node. Therefore, a category tree can be

obtained when finishing input all the object node describing

animals and attribute in a task to a neural network.

To measure the correctness of the expression of category

tree, we use F-measure. Though the above example can have

the most successful categorization as Fig. 7, the dataset in a

task cannot always have the perfectly correct answer.

Therefore, here we use the F-measure to let the category tree

express the correct animal-attribute pair necessary and

sufficient. The F-measure is computed between all the

animal-attribute pair can be obtained from category tree and

the animal-attribute pair inputted. Instead of the normal

F-measure, we use the weighted F-measure [8], since this can

make more appropriate category tree. The weight we used is

0.01.

The generative algorithm we used is based on NEAT [7],

[9] and HyperNEAT [7]. In the generative algorithm, an

individual is a topology of a neural network. Mate is to

generate offspring by letting the link weight and node

40

International Journal of Computer Theory and Engineering, Vol. 10, No. 2, April 2018

activation function of an offspring be that of what in either

parent. Mutation is to change weight of selected link or

change the activation function of a selected node. For the

parameters in genetic algorithm, since the task is not fixed,

we try to use random value as much as possible. However,

in considering of the calculation time, stagnation age and

min elitism size is set to a random integer between 10 to 20.

And following that, young age and old age is set to a random

integer between 1 to 10 and 10 to 20. Since target species

and population size affects the fitness improvement

importantly, we set a random integer from 1 to 2 for target

species, and we set 100 for population size. Also, in

considering of the calculation time, to reduce the search

space of weights, we made an integer list in advance, and the

link weight is selected from the list. The range of the integers

in the list is between -1 multiply the maximum ID number

and the maximum ID number. The size of the list is 10 since

we find it can improve the fitness.

IV. EVALUATION

We use real data for evaluation. We evaluated not only for

tasks learned just before, but also for tasks learned a while

before. In Sec. IV-A, data used for evaluation is explained.

Evaluation measurement is explained in Sec. IV-B. The

results of comparing a neural network with high modularity

and one with low modularity is shown in Sec. IV-C. We show

some examples of obtained category trees in Sec. IV-D. The

validity of parameters used in simulation is discussed in Sec.

IV-E.

A. Data for Evaluation

As sample data for evaluation, we chose the real data

obtained from BBC Nature [10]. The dataset consists with

animals and their attributes. Since a wide region of animals

are obtainable, it is suitable for our aim, which is to design a

neural network for wide region continuous learning. In detail,

we obtained dataset by starting from “Amphibians”, which is

relatively in the middle level, and then, we trace the abstract

level or subdivision level of that species recursively. The

length of the obtained data is more than 50, and we show a

part of it in Table II. As we mentioned before, since it is

unable to know where to punctuate the data as a single task,

we punctuate the data in a certain length. Here, we punctuate

every 3 data for a single task. Though it is true that the

number is quite small and should be improved, since the

focus in this paper is modularity, we do not take it as a

problem here.

TABLE II: A PART OF OBTAINED LOD

Animal Attribute

Texas blind salamander Adapted to swimming, Chemical communication, Metamorphosis, Neoteny, Egg layer,

 Tactile sense, Carnivorous, Cave dweller

Lamp shells Intertidal zone, Sea bed, Estuaries, Shallow seas

Bony fish Shallow seas, Tactile sense, Lakes and ponds, Deep ocean, Brackish water, Open ocean,

 Estuaries, Adapted to swimming, Wetlands

Cartilaginous fish Tactile sense, Sea bed, Carnivorous, Shallow seas, Open ocean, Reefs, Adapted to swimming

Pangolins Adapted to climbing, Tropical dry forest, Chemical communication, Rainforest,

 Tropical grassland, Tropical coniferous forest

Leptictidium Adapted to running, Adapted to jumping, Viviparous

Armadillos Burrower, Adapted to running, Viviparous

Shrews Moles and relatives

Elephant shrews Adapted to running, Active at birth, Territorial, Viviparous

Malayan colugo Adapted to gliding, Maternal care, Herbivorous, Chemical communication, Nocturnal,

 Rainforest, Tree dweller, Territorial, Mangroves, Viviparous, Acoustic communication

B. Evaluation Measurement

We evaluated not only for tasks learned just before, but

also for tasks learned a while before. In detail, we evaluate

not only the task learned just before, but also the tasks

learned from 5 before to just before, and all the tasks learned

before. We indicate each task set as PT1, PT5, PTALL. Let

the i th learned task be Ti , Let the last generation of neural

network generated for Ti be N N i . Then, let the F-measure

of the category tree when input Ti to neural network N N i

be F- measure (Ti, N N i). When assume current learning task

is c, result for PT1 is

 - (
) (8)

result for PT5 is

 { - (
)| } (9)

result for PTALL is

 { - (
)| } (8)

C. Evaluation Results

The topology we used for the evaluation is obtained by

setting max I to 2, max O to 1, max H to 2, max L(1) to 8,

max L(2) to 8, max S to 2. For a neural network with high

modularity, we only used one kind of topology. For a neural

network with low modularity, we generated 20 kinds of

41

International Journal of Computer Theory and Engineering, Vol. 10, No. 2, April 2018

topology by using different random seeds. The topology of

the neural networks are shown in Sec. II-B. The modularity

of the neural network with high modularity is 0.5, and that

with low modularity are around 0. We indicate the neural

network with high modularity as H high , and the neural

networks with low modularity as H low . In the evaluation

below, the results are all done in 20 trial. For the neural

network with high modularity, we do the simulation by

different 20 random seeds. And, for the neural networks with

low modularity, we do the simulation for each topology by a

random seed.

Fig. 8. Fitness of H low for PT1.

Fig. 9. Fitness of H low for PT5.

Fig. 10. Fitness of H low for PTALL.

Fig. 11. Fitness of H high for PT1.

Fig. 12. Fitness of H high

 for PT5.

Fig. 13. Fitness of H high

 for PTALL.

Fig. 14. Accumulated difference of value of H high minus value of H low.

Fig. 15. Accumulated difference of value of H high minus value of H low

(with topology 2/8/8/8/1).

Results are from Fig. 8 to Fig. 13. Fig. 8 and Fig. 11 are

results evaluated by PT1. Fig. 9 and Fig. 12 are results

evaluated by PT5. Fig. 10 and Fig. 13 are results evaluated by

PTALL. All of the results are boxplot of the 20 trials. The dot

in the middle is median. X-axis indicates generation, and

y-axis indicates F-measure. For the first task, since there is

42

International Journal of Computer Theory and Engineering, Vol. 10, No. 2, April 2018

no previous task, we set 1 for all the results. From the results,

we can see, for PT1, the median and the minimum of

F-measure of H high is higher than that of H low in most of the

generations. However, in larger generations for PT5 and

PTALL, the minimum of F-measure becomes more

frequently in H high than in H low . To show more clearly, we

show the accumulated difference in Fig. 14. Y-axis is

accumulation of difference obtained by minus the minimum

value of H low from that of H high . This means, when the

gradient is plus, the minimum value of H high is better than

that of H low , and when the gradient is minus, vice versa.

From Fig. 14, we can see that, as we can expect, for

evaluation by PT1, the minimum value of H high is better

than that of H low in all the generations. Then, for PTALL,

though the minimum value of H high is better at first, from

around the 400th generation, the minimum value of H low

become better. And, for PT5, after the 100th generation, the

result is almost the same. This might could be explain by the

specification of neural networks. Since a neural network with

high modularity is specified to the newly learned two tasks, it

performs significantly bad for tasks learned a while before.

On the other hand, a neural network with low modularity

perform bad to the task just learned before, it performs

comparatively better for tasks learned a while before.

To confirm the tendency of the obtained results do not

relay on the topology of neural networks, we do the same

evaluation for neural networks with different topology. The

neural network we used is generated by setting max H to 3

and max L(3) to 8. Other settings are as same as the one

before, which means the neural network is 2/8/8/8/1. We

evaluate this neural network by using the same parameters.

The accumulated difference is shown in Fig. 15. From the

result, we can see the tendency is as same as before, which

is, for PT1, the neural network with high modularity is better

than that with low modularity, and for PTALL, the neural

network with low modularity become better.

D. Obtained Category Tree

We show the examples of category trees we obtained

during the simulation. Fig. 16 to Fig. 19 are examples of

category trees obtained in the simulation. Fig. 16 is obtained

in 139th generation. Fig. 17 is obtained in 102th generation.

Fig.18 is obtained in 160th generation. Fig. 19 is obtained in

224th generation.

Fig. 16. Example of obtained category tree (Type 011).

Fig. 17. Example of obtained category tree (Type 001).

Fig. 18. Example of obtained category tree (Type 000).

Fig. 19. Example of obtained category tree (Type 111).

Fig. 20. Types of obtained category tree.

From analyzing the category trees, we find that some of

them is not successfully categorized. For example, Fig. 18

and Fig. 19 are not successfully categorized since all the

43

International Journal of Computer Theory and Engineering, Vol. 10, No. 2, April 2018

object nodes are connected to one category node, and no

object node is connected to the other category node. On the

other hand, Fig. 16 and Fig. 17 are successfully categorized

since two object node is connected to one category node, and

the other object node is connected to the other category node.

We show the number of each type we obtained in during

simulation in Fig. 20. X-axis is the type of obtained category

tree. Type 011 means that an object node connect to a

category node with ID 0 and two object nodes connect to a

category node with ID 1 such as Fig. 16. Type 001 means that

two object nodes connect to a category node with ID 0 and

one object node connect to a category node with ID 1 such as

Fig. 17. Type 000 means that all of the three object nodes

connect to a category node with ID 0 such as Fig. 18. Type

111 means that all of the three object nodes connect to a

category node with ID 1 such as Fig. 19. And, Type 011 and

Type 001 are successfully categorized, while Type 000 and

Type 111 are not. The average number of all the trials of each

type we obtained is showed in Fig. 20. From Fig. 20, we can

see that the number of Type 000 and Type 111 is much lower

than the number of Type 011 and Type 001. Also, we can see

that this tendency do not depend on the modularity of the

neural network.

E. Validity of Parameters

In this section, we demonstrate the parameters we used for

generative algorithm as explained in Sec. III are reasonable.

Population size is the size of a population, and target species

is the number of individuals in one species. The algorithm

cannot find better individual when population size or target

species is too small, while computational time increase as

they become larger. Therefore, from comparing with results

obtained with smaller population size and larger target

species, we show that the values we used in simulations are

enough to find better individuals during the learning process.

Fig. 21. Fitness for the neural network with low modularity.

Fig. 22. Fitness for the neural network with high modularity.

Fig. 23. Fitness when set population_size to 10 for the neural network with

low modularity.

Fig. 24. Fitness when set population_size to 10 for the neural network with

high modularity.

Fig. 25. Fitness when set target_species to a random value from 5 to 6 for the

neural network with low modularity.

Fig. 26. Fitness when set target_species to a random value from 5 to 6 for the

neural network with high modularity.

Fig. 21 and Fig. 22 are the results of one trial obtained

from the simulations above, which means those are results

when target species is set to a random integer from 1 to 2, and

population size is set to 100. Fig. 21 is the result of a neural

network with low modularity, and Fig. 22 is the result of a

neural network with high modularity. Fig. 23 and Fig. 24 are

the results of the same trial when change population size to

44

International Journal of Computer Theory and Engineering, Vol. 10, No. 2, April 2018

45

International Journal of Computer Theory and Engineering, Vol. 10, No. 2, April 2018

10. We can see from comparing Fig. 21 and Fig. 22 with Fig.

23 and Fig. 24 that fitness improves much more obviously in

the former. This means the value should be set to 100. Fig.

25 and Fig. 26 are the results of the same trial when change

target species to a random value from 5 to 6. We can see

from comparing Fig. 21 and Fig. 22 with Fig. 25 and Fig. 26

that, although the target species is larger, the improvement of

the growth of fitness during the learning process is

unnoteworthy. This means the value we set for the

simulations above is large enough.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a design approach of neural

network reducing modularity in order to mitigate catastrophic

forgetting for continuously learning wide region of

knowledge of Linked Open Data. Our results show that,

although, as we can expect, a neural network with high

modularity can mitigate forgetting for tasks learned just

before because of the low interference, a neural network with

low modularity is better for the worst case when evaluating

for all the tasks it learned in the past.

For future works, the evaluation should be tested for more

wide range of data. The learning accuracy should be

improved. Generalization to tasks other than Linked Open

Data is needed. Also, theoretical analysis is needed.

REFERENCES

[1] I. Tiddi, M. d’Aquin, and E. Motta, “Using neural networks to
aggregate linked data rules,” in Proc. International Conference on

Knowledge Engineering and Knowledge Management, Nov. 2014, vol.

8876, pp. 547–562.
[2] K. O. Ellefsen, J. B. Mouret, and J. Clune, “Neural modularity helps

organisms evolve to learn new skills without forgetting old skills,”
PLoS Computational Biology, vol. 11, p. e1004128, Apr. 2015.

[3] L. Chen and M. Murata, “Mitigate catastrophic forgetting for

continuously learning linked open data using modularity,” in Proc.
International Conference on Innovation in Artificial Intelligence, Mar.

2018.

[4] D. Meunier, R. Lambiotte, A. Fornito, K. Ersche, and E. T. Bullmore,
“Hierarchical modularity in human brain functional networks,”

Frontiers in Neuroinformatics, vol. 3, p. 37, 2009.

[5] M. Prokopenko, F. Boschetti, and A. Ryan, “An information-theoretic

primer on complexity, self-organization, and emergence,” Complexity,

vol. 15, pp. 11–28, Sept. 2009.
[6] E. A. Leicht and M. E. Newman, “Community structure in directed

networks,” Physical Review Letters, vol. 100, p. 118703, Mar. 2008.

[7] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A hypercube-based
encoding for evolving large-scale neural networks,” Artificial Life, vol.

15, pp. 185–212, Apr. 2009.

[8] S. Ali and K. A. Smith, “On learning algorithm selection for
classification,” Applied Soft Computing, vol. 6, pp. 119–138, Jan.

2006.

[9] J. Huizinga, J. B. Mouret, and J. Clune, “Does aligning phenotypic and
genotypic modularity improve the evolution of neural networks?” in

Proc. the Genetic and Evolutionary Computation Conference, pp. 125–

132, July 2016.
[10] BBC. (2017). NATURE WILDLIFE. [Online]. Available:

http://www.bbc.co.uk/nature/wildlife

Lu Chen received her M.E. and D.E. in information

science and technology from Osaka University in
2013 and 2016, respectively. In October 2016, she

joined Central Research Laboratories NEC as a

researcher, and become a visiting researcher in Osaka
University.

Masayuki Murata received his M.E. and D.E. in
information science and technology from Osaka

University in 1984 and 1988, respectively. In April

1984, he joined the Tokyo Research Laboratory IBM
Japan as a researcher. From September 1987 to

January 1989, he was an assistant professor with the

Computation Center, Osaka University. In February
1989, he moved to the Department of Information and

Computer Sciences, Faculty of Engineering Science,

Osaka University. From 1992 to 1999, he was an associate professor with the
Graduate School of Engineering Science, Osaka University, and since April

1999, he has been a professor. He moved to the Graduate School of

Information Science and Technology, Osaka University, in April 2004. He
has published more than 300 papers in international and domestic journals

and conferences. His research interests include computer communication

networks and performance modeling and evaluation. He is a fellow of the
IEICE and a member of the IEEE, the Association for Computing Machinery

(ACM), the Internet Society, and the Information Processing Society of

Japan.

http://www.bbc.co.uk/nature/wildlife

