A Modified Playfair Cipher for a Large Block of Plaintext

V. Umakanta Sastry, N. Ravi Shankar, and S. Durga Bhavani

Abstract—In this paper, we have extended the analysis of the modified Playfair cipher, which includes interweaving and iteration, by considering a plaintext of any size. Here, we have carried out cryptanalysis and examined the avalanche effect. From this analysis, we have found that the cipher is a strong one and it cannot be broken by any cryptanalytic attack.

Index Terms—interweaving, inverse interweaving, substitution matrix.

I. INTRODUCTION

In a recent investigation [1], we have modified the Playfair cipher [2] by including interweaving and iteration. In this, the substitution table is represented in the form of a matrix of size 8x16. Further, the key consists of 64 distinct numbers, which lie between 0 and 127. The plaintext is taken in the form of a matrix of size 8x2. Thus the size of the key is 448 bits and the size of the plaintext is 112 bits.

For a detailed account of the formation of the substitution matrix, and for the rules in the development of the cipher, one may refer to section II of [1].

In the present paper, we extend the analysis of the above cipher, by taking a plaintext of any size in general. However, we focus our attention on two cases: (1) The plaintext is a matrix of size 8x8, and (2) It is of size 8xm, where m depends upon the length of the plaintext.

Here, we notice that the substitution and the interweaving together with the iteration play a predominant role in strengthening the cipher.

In section II of this paper, we present the development of the cipher. In section III, we put forth the encryption and decryption algorithms. Then in section IV, we illustrate the cipher with a pair of examples. We discuss the cryptanalysis and Avalanche effect in sections V and VI respectively. Finally we deal with the conclusions in section VII.

II. DEVELOPMENT OF THE CIPHER

Consider a plaintext P. On using the ASCII code, let it be represented in the form of a matrix of size nxm, by placing the numbers, corresponding to the plaintext characters, in a column wise manner (pad if needed). Let the plaintext matrix P be represented as

$$\mathbf{P} = \begin{bmatrix} P_{11} & P_{12} & \dots & P_{1m} \\ P_{21} & P_{22} & \dots & P_{2m} \\ \vdots & \vdots & \ddots & \ddots \\ \vdots & \vdots & \ddots & \ddots \\ P_{n1} & P_{n2} & \dots & P_{nm} \end{bmatrix} (1)$$

Let us now describe the process of substitution. To this end, we focus our attention on the first two columns of this matrix. On using the set of substitution rules (mentioned in [1]), the matrix P assumes the form

Q_{11}	Q_{12}	P_{13}	 P_{1m}	
$Q_{_{21}}$	$Q_{\scriptscriptstyle 22}$	P_{23}	 P_{2m}	
•	•	•	 •	(2)
•		•	 •	(-)
•	•	•		
Q_{n1}	Q_{n2}	P_{n3}	 P_{nm}	

where Qs are the elements obtained on substitution.

We now take the third and fourth columns of the P, and carryout the substitution process by using the substitution matrix. In a similar manner, we perform the substitution to the pairs of columns (5, 6), (7, 8) and so on till we exhaust all the columns. However, if the plaintext matrix contains odd number of columns, we pad it by including eight more additional characters, so that the number of columns becomes even. Then the matrix assumes its final form at the end of the substitution, denoted by Q.

We now apply the process of interweaving on the matrix obtained above. Firstly, we convert the elements of Q into their binary form. Since each element of Q lies between 0 and 127, it can be represented in terms of seven binary bits. Thus we have

$$\mathbf{b} = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{17} & m \\ b_{21} & b_{22} & \dots & b_{27} & m \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{n7} & m \end{bmatrix}$$

V. Umakanta Sastry is with the Department of Computer Science and Engineering, Sreenidhi Institute of Science and Technology, India. Phone:919985012707, fax:914027640394, e-mail: yuksastry@rediffmail.com.

N. Ravi Shankar is with the Department of Computer Science and Engineering, Sreenidhi Institute of Science and Technology, Hyderabad, India.

S. Durga Bhavani is with the School of Information Technology, J.N.T. University, Hyderabad, India.

We now take the first column of b, and give a circular rotation, so that it assumes the form $[b_{21}, b_{31}, b_{41}, \dots b_{n1}, b_{11}]^T$,

where T denotes the transpose of the vector.

Here, each element of the column is moved up by one row with the element in the first row circularly following the last. We apply similar procedure on all the odd numbered columns. We then apply a circular left shift by one position on all the even numbered rows.

Converting the matrix b into its decimal form, we get the modified Q.

On applying the aforementioned processes, i.e., substitution and interweaving for N rounds, we get the ciphertext C. This completes the process of encryption. The process of decryption is opposite to that of encryption. The reverse process of interweaving is called as inverse interweaving and that of substitution as reverse substitution. These are employed in the process of decryption. The schematic diagram describing the cipher is given in Fig. 1

a) Encryption b) Decryption Fig. 1. Schematic diagram of the cipher In this analysis, N denotes the number of iterations and it is taken as 16 Algorithms

A. Algorithm for encryption

1. read n,N,K,P;

- 2. Construct Substitution matrix
- 3. $P^0 = P;$
- 4. for i=1 to N {

Pⁱ = Substitute(Pⁱ⁻¹); interweave();

5. $C = Substitute(P^N);$

6. write C;

B. Algorithm for decryption

1. read n,N,K,C;

2. Construct Substitution matrix

3. P^N =reverse substitute(C);

4. for i=N to 1 {

```
invinterweave();
P^{i-1} = reverse substitute(P^i);
```

```
5. P = P^0:
```

6. write P;

- C. Algorithm for interweave 1. construct [b_{ij}],i=1ton,j=1to7m from P; 2. for i=1 to 7m in stor 2 (
- 4. Construct P from b_{ij};

}

D Algorithm for invinterweave

- 1. construct [b_{ij}],i=1to8,j=1to7m from P;

$$b_{1j}=k;$$

4. Construct P from b_{ij};

III. ILLUSTRATION OF THE CIPHER

Consider the plaintext given below.

No one shall forget the past. The destruction of Hiroshima and Nagasaki, as the destiny speaks, shall be remembered for ever. Whenever we think of the development of the nuclear energy, we must fully feel that it should be utilized for the welfare of the mankind. Transmit this message as safely as you can. (3)

Let us focus our attention on the first sixty four characters of the plaintext given by

No one shall forget the past. The destruction of Hiroshima and \not (4)

This plaintext, in its ASCII representation, when arranged in the form of an 8x8 matrix, assumes the form

	\mathcal{O}							
	78	104	103	112	104	117	102	105
	111	97	101	97	101	99	32	109
	32	108	116	115	32	116	72	97
D _	111	108	32	116	100	105	105	32
- 1	110	32	116	46	101	111	114	97
	101	102	104	32	115	110	111	110
	32	111	101	32	116	32	115	100
	115	114	32	84	114	111	104	32
0	5)							

On adopting the procedure described in section II of [1],

-			-	• • •												
53	62	124	33	49	118	117	43	45	12	63	29	60	35	58	11]	
8	41	46	30	108	102	115	51	47	119	38	42	112	99	27	61	
57	120	б	31	116	26	122	125	56	37	113	52	3	54	15	121	
36	40	44	10	19	109	105	4	114	111	83	50	74	0	107	28	(6)
1	2	5	7	9	13	14	16	17	18	20	21	22	23	24	25	(0)
32	34	39	48	55	59	64	65	66	67	68	69	70	71	72	73	
75	76	77	78	79	80	81	82	84	85	86	87	88	89	90	91	
92	93	94	95	96	97	98	100	101	103	104	106	110	123	126	127	

we get the substitution matrix given by (6).

On applying the substitution process, we get the modified plaintext, denoted by P^1 , as

_								
	86	95	110	119	98	63	115	109
	105	103	103	98	123	47	59	36
	55 8 122	122	108	55	57	59	126	
D1_	19	119	55	57	98	4	36	64
P I=	92	70	6	108	103	114	109	101
	97	47	92	68	112	98	74	103
	67	36	92	66	57	55	51	98
	47	105	66	75	111	83	92	68
(7)								

On using the process of interweaving, we get the transformed plaintext as

	121	31	77	69	84	95	118	89]
	99	34	111	102	115	59	59	116
	47	59	100	114	110	88	99	84
D1_	25	102	23	108	98	80	44	69
F 1	104	14	25	89	75	69	31	75
	67	46	92	64	120	55	98	98
	87	67	45	6	119	102	51	77
	7	125	106	95	103	23	118	69

(8)

After carrying out all the 16 iterations, we get the ciphertext C in the form

-								
	42	56	40	14	126	122	36	65
	86	114	87	116	123	44	42	60
	31	114	55	9	105	5	89	16 (9)
с-	28	119	40	47	123	36	52	46
C=	1	110	120	55	2	90	68	81
	71	59	79	44	67	69	99	89
	81	108	88	99	116	20	82	115
	64	31	11	17	18	22	35	94

In the process of decryption, we take the cipher text C, obtained above, and apply the reverse substitution procedure. Thus we get

	47	52	105	2	98	15	4	32
	84	83	79	52	94	0	112	29
	56	10	9	19	44	14	82	23 (10)
DN _	111	61	114	41	92	0	6	42
FIN -	22	92	116	34	24	76	64	86
	70	55	77	19	66	68	35	71
	79	115	89	112	113	9	81	51
	48	122	45	25	17	21	124	123

On employing the inverse interweaving process, we get the modified P^N as

moui	neu i	us						
	53	90	60	17	17	23	104	81
	86	82	101	97	116	5	82	24
	84	81	14	28	94	2	33	31 (11)
DM	77	45	80	105	86	5	44	43
PN=	43	63	50	1	12	34	2	42
	78	38	111	19	72	4	33	3
	71	61	76	57	18	68	98	77
	50	123	45	88	57	68	124	123

After carrying out all the sixteen iterations, we get the plaintext in the form

	78	104	103	112	104	117	102	105	
	111	97	101	97	101	99	32	109	
	32	108	116	115	32	116	72	97	(12)
D_	111	108	32	116	100	105	105	32	Ì
r =	110	32	116	46	101	111	114	97	
	101	102	104	32	115	110	111	110	
	32	111	101	32	116	32	115	100	
	115	114	32	84	114	111	104	32	

The ciphertext corresponding to the entire plaintext (taken as blocks of 64 characters), given in (3), in hexadecimal notation, is

14A0D71B4E82199113E8D2AFB01C541E081B70390B42 20CB1AD6E0A12FDF882AADF1A1498C997D0EB4767F E1CF206DAE946ED6CF49F00CDC5211BF1AD19088986 2349123053D1E98A29DE314D7ACA4FB2C177637CB41 926D02A45512A534C9C4C1159F9F33A00FE187FA6D4 E77A22573C13948B7EF9CB3B4952CD1831587B165F95 0DE536EC81492C712A15E. (13)

We now take another example, wherein the entire plaintext, given in (3), is taken as a single block, consisting of 312 characters. Let us now pad the plaintext by including eight more characters, say, s, t, u, v, w, x, y, z. Then the plaintext, consisting of 320 characters, is arranged in the form of a matrix of size 8x40. For convenience, this is represented as P=[AB], where A and B are given in (14) and (15) respectively.

The ciphertext corresponding to the above mentioned plaintext (taken as a single block of 320 characters), in its hexadecimal notation, is obtained as

E7C24E39557A51FD112BB453F2CCA78E0EE3F6E80 278D85DE7F668613DEBCA24925B91CEF6D9413026CA 1D10D221B0CD0F8B5FE77D456124F7E9C0172333A9D FD49CDBF8056A1B748EA2418FC0AEFFEB900ACD215 B7725801F6A3C5AAEE3277FC89400C16BAAF7313B42

											5042	1751	ODA	100C1	C09-	52771	ALL	15057		250
1]	101	110	114	32	32	101	101	32	32	32	44	78	105	102	117	104	112	103	104	78
2	7 32	107	32	87	101	114	32	115	115	100	32	97	109	32	99	101	97	101	97	111
ο	100	32	119	104	118	101	114	104	112	101	97	103	97	72	116	32	115	116	108	32
1 44	l 101	111	101	101	101	100	101	97	101	115	115	97	32	105	105	100	116	32	108	111
8 14	2 118	102	32	110	114	32	109	108	97	116	32	115	97	114	111	101	46	116	32	110
1	101	32	116	101	46	102	101	108	107	105	116	97	110	111	110	115	32	104	102	101
8	5 108	116	104	118	32	111	109	32	115	110	104	107	100	115	32	116	32	101	111	32
1	4 111	104	105	101	32	114	98	98	44	121	101	105	32	104	111	114	84	32	114	115
1	115	121	102	103	105	110	100	101	114	104	101	101	115	116	108	109	114	108	32	112
	116	111	101	101	115	115	46	32	101	101	100	32	104	104	121	117	103	101	116	109
	117	117	108	32	32	109	32	109	32	32	32	117	111	97	32	115	121	97	104	101
115	118	32	121	97	109	105	32	97	111	119	102	116	117	116	102	116	44	114	101	110
	119	99	32	115	101	116	32	110	102	101	111	105	108	32	101	32	32	32	32	116
	120	97	97	32	115	32	84	107	32	108	114	108	100	105	101	102	119	101	110	32
	121	110	115	115	115	116	114	105	116	102	32	105	32	116	108	117	101	110	117	111
	122	46	32	97	97	104	97	110	104	97	116	122	98	32	32	108	32	101	99	102

that the ciphertext obtained above can be brought back to its original form by applying the decryption process.

IV. CRYPTANALYSIS

It is well known to us that the general types of cryptanalytic attacks are (1) Ciphertext only (Brute force) attack, (2) Known plaintext attack and (3) Chosen plaintext/ciphertext attack. When the ciphertext is known to us, we take various plaintexts one after another and try to see if any one of the plaintexts taken by us yields the ciphertext under consideration. In this problem, when the size of the plaintext matrix is 8x8 i.e. 448 binary bits, the different possible plaintexts which we have to make use of, are 2^{448} ($\approx 10^{134.4}$). As this is a very large number, the cipher cannot be broken by the brute force attack. When the size of the plaintext matrix is immensely large (i.e., in the case of the plaintext matrix of size 8x40), this brute force attack is totally ruled out.

In this problem, the key consists of 64 distinct numbers, where each number lies between 0 and 127. Thus the size of the key space is ${}^{128}P_{64}$. Hence it is impossible to find the plaintext corresponding to the given ciphertext by exhausting the computation with all possible keys.

Now let us consider the known plaintext attack. In this case, we know as many plaintext and ciphertext pairs as we require. As we know the plaintext at the beginning of the first iteration, and the ciphertext at the end of the last iteration, linking them directly in any manner and determining the key in any way is totally impossible, as there are a number of transformations in between.

A choice of the plaintext or a choice of the ciphertext for the determination of the key cannot be done as the plaintext undergoes a number of transformations at various stages of the iterative process.

Thus this approach also is not of any use.

In the light of the above facts, we conclude that this cipher

is a strong one and it cannot be broken by any cryptanalytic attack.

A698A7B0809D5F95FCCDC89FA82BCE9E94DFBCC26

It can be verified

B6CC1CC713DD61353FDF6AE4483.

V. AVALANCHE EFFECT

On using the ASCII code, the plaintext, given in (4), can be represented in its binary form as

(16)

(17)

It can be seen that the plaintexts, given in (16) and (17), differ by one bit.

(18)

and

(19)

It can be readily verified that the ciphertexts, given in (18) and (19), differ by 235 bits. This is quite considerable.

We now change the key element K_{22} (i.e., second row and sixth column of (6)) from 102 to 103. With this change, the key changes by one bit. On applying the modified key on the original plaintext, given in (5), we get the corresponding ciphertext as

(20)

The ciphertexts given in (18) and (20) differ by 241 bits which is conspicuous.

From the above analysis, we notice that this cipher produces strong avalanche effect.

VI. CONCLUSIONS

In this paper, we have extended the analysis of modified Playfair cipher by taking a very large plaintext into consideration. Here, pairs of characters are taken from the adjacent columns (characters are taken from 1^{st} and 2^{nd} columns, 3^{rd} and 4^{th} columns, etc.) of the plaintext matrix for the purpose of substitution. The process of interweaving and the process of substitution modify the plaintext at each stage of the iteration. This causes confusion and diffusion in a systematic manner and enhances the strength of the cipher.

The algorithms developed in this analysis for encryption and decryptions, along with the other requisites, are implemented in C language.

The time required for the encryption of the entire plaintext in (3), (taken as a single block) is $20.5*10^{-3}$ seconds and that of the decryption is $20.5*10^{-3}$ seconds.

From the cryptanalysis, and the avalanche effect carried out in this analysis, we conclude that the cipher is a potential one, and it cannot be broken by any cryptanalytic attack.

REFERENCES

- I. VUK Sastry, N.Ravi Shankar, "A Modified Playfair Cipher Involving Interweaving and Iteration", (accepted for publication) *International Journal of Computer Theory and Engineering, to be published.*
- [2] 2. William Stallings, "Cryptography and Network Security: Principles and Practices", Third edition, Chapter 2, pp.35.
- [3] Biographical notes:
- [4] V. Umakanta Sastry was formerly a professor at Indian Institute of Technology, Kharagpur, India. Presently he is the Director, School of Computer Science and informatics and Dean (R&D) at Sree Nidhi Institute of Science and Technology, Hyderabad, India. He is currently guiding a number of Research Scholars for Ph.d in the areas of Information Security and Image Processing.
- [5] N. Ravi Shankar is a Professor and is currently heading the department of Computer Science and Engineering, Sree Nidhi Institute of Science and Technology, Hyderabad, India. He is actively engaged in research in the area of Information Security.
- [6] S. Durga Bhavani obtained her Ph.D from University of Hyderabad, India in the area of Evidential Reasoning. She is presently a Professor in Computer Science & Engineering, School of Information Technology, JNT University, Hyderabad, India. Her research interests are applications of uncertain reasoning techniques and Information Security.