
International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

581

Abstract - The paper describes a method for estimation and
optimization of memory size in low power embedded systems.
This approach can be treated as a pathfinder to efficiently
optimize the memory module, in turn optimizing the design
time. It can be even employed for high level memory
exploration applications while successfully meeting the
performance – cost design metrics of the system. The paper
concludes with an implementation example of a Speech
Recognition module, showing an effective reduction in the
memory requirement of the system after memory optimization.
Depending upon the results, even algorithm based optimization
can be done with an aim of further reducing the memory size.

Keywords - Memory, Embedded systems.

I. INTRODUCTION
In today's embedded systems, memory represents a major
bottleneck [1] in terms of cost, performance, and power.
Optimal designing of memory space is very crucial in
obtaining a cost effective embedded system. Also, a huge
amount of array processing is being involved in current day
embedded applications. Hence it is very critical to come out
with methodologies for memory size estimation. A huge
amount of array processing is being involved in current day
embedded applications, which require both on-chip and off-
chip memories. Thus it is important to efficiently predict the
memory requirements for the data structures and code
segments for that particular application. Memory
requirement is defined as the number of locations needed to
satisfy the storage requirements of a system. It is very
important to effectively predict the system’s memory
requirements without synthesizing, in order to obtain a high
profile end product, as it results in a reduced design time.
Here we aim at reusing of memory space, thus giving a fast
estimate of memory size. Though addressing becomes
complex, it is preferable to allow sharing among arrays
which aids in optimizing the memory size. Depending upon
the results, even algorithm based optimization can be done
with an aim of further reducing the memory size.

The paper is organized as follows:
Section 2 briefly reviews some previous work done in the

area of memory estimation and optimization. The proposed
methodology is described in Section 3. Section 4 gives a
brief description about the embedded speech recognition
front end module, while its experiment set up is explained in
section 5. Section 6 and 7 concludes the estimation results
and optimization strategies of the task implemented.

II. RELATED WORK
Memory estimation methodology can employed for high

level memory exploration applications while successfully
meeting the performance-cost design metrics of the system.
It is very important to provide good memory size estimates
with reasonable computation effort without performing
complete memory assignment for each design. In data
dominated applications, such as digital image, video or
speech signal processing applications, summing up the sizes
of all the arrays is the most straightforward way to get an
upper bound of the memory requirement

For general purpose systems whose area of application is
vast, the dynamic memory allocation is supported by custom
managers [2]. Also, [3] [4] showed memory optimizations
and techniques to reduce memory footprint along with
power consumption and performance factors on static data
for embedded systems. Array based data flow preprocessing
considers program size as well as data size [5] is applicable
only for partially fixed execution ordering. In [6], the design
metric constraints were area and number of cycles, while the
proposed methodology also considers power consumption.
Live variable analysis along with integer point counting
method [7] is not applicable for large multi-dimensional
loop nest as it needs complex computations. [8] Is based on
analysis of memory size behavior taking into account that
signals with non-overlapping lifetimes share same memory
locations. Also it showed upper and lower boundaries for
memory map, while this paper presents an approach that
tries to gives a very close estimate.

Memory system design for video processors [9] had
constraints on area, cycle time. [10] proposed data memory
size and number of cycles as design metrics. Memory
allocation problem [11] was solved by meeting optimum
cost but efficient memory access modes were not exploited.
To reduce the power consumption during memory
optimization, loop transformation reordering [12] was
introduced, while loop transformation ordering is much
beneficial. Our approach works for multimedia applications
involving large array processing. It can be even employed
for high level memory exploration applications while
successfully meeting the power, performance – cost design
metrics of the system.

III. APPROACH
The output of the approach is an optimized range of

memory size. The estimated memory size for the given
input application lies in this range. Memory is basically

A Novel Approach for Estimation and
Optimization of Memory In Low Power

Embedded Systems
Srilatha C and Dr. Guru Rao C V

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

 582

divided into two segments, namely- the program memory
and the data memory, which includes heap and stack. When
a function calls another function which in turns calls another
function etc., the execution of all those functions remains
suspended until the very last function returns its value. This
chain of suspended function calls is the stack, because
elements in the stack (function calls) depend on each other.
Heap is defined as a portion of memory used to store
variables. These variables do not depend on any other
variables. They can be accessed in random. Heap starts
growing from the bottom of the program segment. For
dynamic allocation of memory, memory locations are
reserved. And those locations are returned back when there
is a memory free. Stack and heap scale up and down in
reverse directions as shown in figure 1.

Figure 1: Memory Organization

In the due process, any collision is treated as an error. At

any instant of time, the total memory size of a system is
calculated as the cumulative sum of the program memory,
stack and heap. Thus taking into account the actual code
size, a memory trace can be developed. This results in
giving the final memory requirement profile of the system.

Also, C language offers considerably good control of
memory usage, over other memory-managed languages like
Java, allowing us to precisely optimize memory allocations.
Any memory location has to be tracked which the program
dynamically allocates and then releases that memory when
the program no longer needs it. Otherwise, the program will
either introduce memory leaks or consume memory
inefficiently. C language also allows manipulation and
access of memory via pointers. To dynamically request
memory buffers the malloc(), realloc(), or calloc() function
calls are used. To release these resources once they’re no
longer required, free() is employed. The system’s memory
allocator satisfies these requests by managing the heap. A
program can erroneously or maliciously damage the
memory allocator’s view of the heap. For example, this
corruption can occur if your program tries to free the same
memory twice or if it uses a stale or invalid pointer.

Any given input application can be divided into 3 layers.
1. Process Control Flow: sequencing
2. Loop Hierarchy and Indexed Signals:
Single- assignment code
3. Arithmetic, Logical and Data-dependent
Operations

Figure 2: Layer 1- process control flow

For (i= 0; I<N; i++)
 For (j=0; j<M; j++)
 If (I = = 0)
 B[i] [j] = 1;
 Else
 B[i] [j] = func1(A[i][j], A[i-1][j]);

Layer 2 – Loop Hierarchy

Int
 Funct1(int a, int b)
 {
 Return a*b;
 }

 Layer 3 – involves only Arithmetic, Logical and Data-

dependent Operations

The following is the algorithm developed for effective

memory estimation and optimization, being divided into
three parts. Taking the input application description which
may be constituting of parallel constructs, the first part
analyses the memory size variations, by approximating the
memory trace. The second part estimates the memory size
while the third part optimizes the predicted size.

The following is the proposed memory estimation and
optimization algorithm developed.

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

583

Figure 3: Memory estimation and optimization flowchart

Step 1 involves taking of the input specification

containing multidimensional arrays for further processing.
Computation of data dependence of array elements is carried
out in step 2.

Step 3: Hierarchical rewriting
It involves hiding of code parts without data transfer and

storage exploration freedom in “layer 3” functions.

Consider: for (i=0; I<N, i++)
 If (i<10) funcA ();
 functB ();

Hierarchical rewriting
 for (i=0; I<4, i++)
 functA ();
 functB ();
 for (i=10; i<N, i++)
 functB ();

Step 4: Hiding undesired constructs

It hides data-dependent conditions, scalar and logic
operations “layer 3”.

Consider: for (j=0; j<=N, j++)
 If (j= = 0)
 a[j] = b[j];
 Else
 If (a[j-1] = = b[j])
 a[j] = in[j];

 else
 a[j] = b[j] + 5;

Hiding of undesired code
for layer 2: for (j=0; j<=N, j++)
If (j= = 0)
a[j] = b[j];
Else
a[j] = f(a[j-1], b[j], in[j]);

for layer 3:
 int f(intx, int y, int in)
{
If (x= = y)
Return in;
Else return y+5;
}

Step 5: Code expansion
It performs the Code expansion of functions with

Multidimensional data-flow.

Consider: int *p = malloc(200 * 200 *sizeof(int));
for (i=0; i<200; i++)
for (j=0; j<200; j++)
*p = f(i,j)
P++;

Int p [200] [200]’
for (i=0; i<200; i++)
for (j=0; j<200; j++)
p [i] [j] = f(I,j)

Step 6: Data flow analysis
It involves Array/pointer data-flow analysis along with

single assignment to increase optimization freedom.
Depending upon the input specification, data-flow chains
(recursions and conditions) and less crucial data types
(weight based) can be removed.

Single assignment clearly describes the data flow.

Consider: s[0] = 0;
for (i= 1; i<=4; i++)
s[i] = s[i-1] + x[i];
sum = s[4];

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

 584

Figure 4: Single assignment

Figure 5: Multiple assignment

Consider the loop structure for a video task application

for motion estimation.
For (y= 0……y)
For (x = 0……x)
z_min = infinity;
For (z_y = 0…..M)
For (z_x = 0…..M)
z = 0;
For (p_y = 0….N)
For (p_x = 0….N)
z += abs(prev[] – curr[]);
If (z<z_min)
z_min = z;

Where: X – x axis
 Y = y axis
 M = previous frame
 N = current frame
Interchange is not possible between lines 5 and 7.

Making a small change in the above program at line 6,

For (y= 0……y)
For (x = 0……x)
z_min = infinity;
For (z_y = 0…..M)
For (z_x = 0…..M)
z [z_x] [z_y]= 0;
For (p_y = 0….N)

For (p_x = 0….N)
z [z_x] [z_y]+= abs(prev[] – curr[]);
If (z<z_min)
z_min = sad;

Interchange is possible between lines 5 and 7. Thus single

assignment aids in order to obtaining full degree of freedom.
Figure 5 shows the need of Single assignment for array
data-flow analysis.

Consider the following array;

For (i= 0; i<N; i++)
For (j = 0; j<N; j++)
a[i] [i+j] = …….. ;

a[1*i + 0*j + 0][1*i + 1*j +0] = ……
a[x(i,j)] [y(i,j)] = ……….

Where x(i,j)] = 1*i + 0*j + 0
y(i,j) = 1*i + 1*j + 0

0< i<N
0<j<N

Figure 6: Array data flow analysis

Step 7: Partitioning
Partitioning of graphs to exploit divide-and-conquer

concept is implemented in order to shorten the exploration
time.

Step 8 and 9: Data flow and Loop transformation
It aims at goals regularity and locality of reference. Loop

reordering allows arrays to share memory space, thereby
reducing the size of the on chip memory. Loop interchange
helps to reduce the number of memory reads. The number of
memory accesses and the size of storage significantly reduce.
However, each transformation has its own special legality
test based on the direction vectors and on the nature of loop
bound expressions.

During implementation the following are the two key
positions identified where memory usage alters. Also
memory traces are captured. Consider that the bottom
address of heap is H.

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

585

1. For dynamic allocation of memory, memory locations
are reserved. And those locations are returned back when
there is a memory free. When a memory function is called:

• if there exists any free memory location at the
center of the heap, then H does not change.

• if the called function capacity is less than the heap
size, then H does not change.

• Else, H changes. Ie. Increases.
• Else, any location that is very close to H is emptied,

then H decreases.

2. with changing of the stack pointer.

IV. EMBEDDED SPEECH RECOGNITION FRONT-END MODULE
Speech recognition is rapidly becoming one of the most

popular embedded real-time multimedia applications. For
such sensitive applications, entire processing has to be done
using embedded modules. Hence, memory analysis of such
a system is very valuable. Markov method is employed for
time variants having discrete state spaces. Each of the
discrete space state gives out speech perceptions as per its
probable distribution. Thus obtained speech perceptions can
be either discrete or continuous. They basically represent
frames ie. Durations of fixed time. As the states cannot be
observed directly, it is termed as hidden Markov model. The
following speech recognition algorithm contains of two
parts. They are the search algorithm and the processing part
[13]. First the entire input speech is converted into vectors
representable in probability space. Then the high probable
events of the space are identified with the help of the
algorithm. This search algorithm basically runs under tightly
constrained environment. The following is the speech
processing algorithm developed.

Step 1. Input Timing Waveform

Step 2. Premphasis

Step 3. Hamming window

Step 4. Coefficients for autocorrelation

Step 5. Estimation of level

Step 6. Recursion

Step 7. Speech parameters

Step 8. Speech functions

Step 9. Hidden Markov model

Figure 7 Block diagram - Speech Processing

Figure 7 shows the block diagram of the speech

processing embedded system. The analog to digital
converter converts the input speech signal into a digital

equivalent by using the sampling technique. Depending
upon the processor and the converter the sampling rate can
be up to a maximum of 8KHz per second. In order to
include some frequency parameters into the signal, Spectral
shaping is carried out with the help of an FIR filter. Hence
this stage is known as a preemhasis stage, which basically
employs a single coefficient filter. Next stage is the
windowing. In order to eliminate spectral leakage this stage
is introducing. To find any data errors within the windows,
hamming window is implemented. Data frames can be
obtained with the help of data window and the sampled
signal. The outputs generated by the system are obtained by
orthogonalisation of filter outputs. The outputs obtaining
from the filter are 14 Mel spaced values. These output
values along with other corresponding values, speech level,
energy difference, speech characteristics and the relative
speech level form a 32 vector element. This is known as
generalised speech parameter. Generalized speech feature is
defined as the 10 vector element obtained by multiplying
generalised speech parameter by a linear transform value
[14].

V. EXPERIMENTATION
The proposed algorithm for memory estimation and

optimization was implemented on TMS320C6701 Floating
Point Digital Signal Processor. Firstly, the algorithm was
developed in C-language programming environment. In the
second phase, the C-language algorithm was ported to the
processor platform. Thus speech recognition embedded
application is implemented using the proposed methodology.

VI. RESULTS
Memory trace result

Using the proposed memory estimation methodology, the

memory analysis results are shown. Memory trace for the
implementation is shown in fig. 7. It considers program and
data segments on the X axis and required memory size on
the corresponding Y axis. A plot of it results in a memory
trace which is the estimated size that caters the storage
requirements of both program and data segments in
accomplishing the task of speech recognition.

The program segment size of this implementation is
68Kbytes and the data segment memory required is
14Kbytes. In total, 82Kbytes memory is needed.

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

 586

Memory analysis

74

77

80

83

0 20 40 60 80 100 120 140 160

K
by

te
s

Figure 8: Memory estimation for Program and data

segments

Memory optimization

For sensitive applications involving large array

processing, the entire processing has to be done using
embedded modules. While using such modules, care should
be taken to meet optimized profile for the design metrics.
Fig. 9 shows an optimized memory plot. It considers
program and data segments on the X axis and required
memory size on the corresponding Y axis. Employing
memory optimization methodology results in a reduction of
28Kbytes. With help of loop transformation technique,
relatively a good amount of memory size requirement is
reduced for the arrays.

optimized memory

52

53

54

55

0 20 40 60 80 100 120 140 160

K
by

te
s

Figure 9: Memory optimization for Program and data segments

VII. CONCLUSIONS
This paper describes a method for estimation and

optimization of memory size in low power embedded
systems. The approach presented efficiently optimizes the
memory module, in turn optimizing the design time. High
level transformations such as loop transformations are
applied to reduce the number of off chip memory accesses
and also the on chip memory requirement. We validate this
estimation and exploration procedure by performing

experiments on a Speech Recognition module, showing an
effective reduction in the memory requirement of the system.
Fig. 10 shows the final comparative analysis between the
estimated memory size and the optimized memory
requirements.

Memory estimation and
optimization

0

10

20

30

40

50

60

70

80

estimation optimization

K
by

te
s

program segment data segment

Figure: 10 Memory estimation and optimization

ACKNOWLEDGMENT
Author Srilatha would like to acknowledge and thank

Azimuth foundation (CCR 4942/1997) for all the Grant-in-
Aid provided for the research work. This work was
supported in part by Aurora’s Scientific Technological &
Research Academy, India. Also her sincere feelings of
gratitude to Mr. Ramesh Nimmatoori for all his support and
encouragement which helped her to write this paper and
wishes to thank Dr. C V Guru Rao for his valuable
suggestions.

REFERENCES
 [1] Peter Grun, Nikil Dutt, and Alex Nicolau, “Access Pattern Based

Memory and Connectivity Architecture Exploration”, ACM
Transactions on Embedded Computing Systems, Vol. 2, No. 1,
February 2003, Pages 33–73.

[2] RTEMS Research, O.-L. A. RTEMS, “Open-source real-time
operating system for multiprocessor systems” http://www.rtems.org.
2002.

[3] Panda PR, Catthoor F, Dutt ND, Danckaert K, Brockmeyer E,
Kulkarni C, “Data and memory optimizations for embedded systems”.
ACM Trans. Des. Automat. Elect. Syst. 2001, 6. 2, 142–206.

[4] Benini L, De Micheli G, “System level power optimization
techniques and tools”. In ACM Trans. Des. Aut omat. Embed. Syst.
2000.

[5] PG Kjeldsberg, F Catthoor, EJ Aas, “Storage requirement estimation
for data intensive applications with partially fixed execution
ordering”, Proceedings of 8th International Workshop on
Hardware/Software Codesign, San Diego, May 3-5, 2000, pp56-60.

[6] M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and W. Ye, “Influence
of Compiler Optimizations on System Power,” 37th IEEE/ACM
Design Automation Conference, 2000, pp. 304-307.

[7] Y Zhao, S Malik, “Exact memory size estimation for array
computations without loop unrolling”, Proceedings of 36th
ACM/IEEE Design Automation Conference, New Orleans LA, June
1999, pp811-816.

[8] P. Grun, F. Balasa, N. Dutt, “Memory size estimation for multimedia
applications”, Proceedings of the 6th International Workshop on
Hardware/Software Codesign, Seattle WA, March 1998,pp.145-149.

[9] S. Dutta, W. Wolf, and A. Wolfe, “A Methodology on Evaluate
Memory Architecture Design Tradeoffs for Video Signal Processors,”

http://www.rtems.org

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

587

IEEE Transactions on Circuits and Systems for Video Technology,
vol.8, no.1, Feb. 1998.

[10] P. R. Panda, N. D. Dutt, and A. Nicolau. “Data Cache Sizing for
Embedded Processor Applications.” Technical Report ICS-TR-97-31,
University of California, Irvine, June 1997.

[11] H. Schmit and D. E. Thomas, “Array Mapping Behavioral Synthesis”,
ISSS, 1995.

[12] F. Catthoor, F. Franssen, S. Wuytack,, L. Nachtergaele, and H. De
Man, “Global Communication and Memory Optimizing
Transformations for Low Power Signal Processing Systems”,
Workshop on VLSI Signal Processing, La Jolla, CA, Oct. 1994.

[13] Netsch, Lorin, “Acoustic Feature Processing Reference Guide,” Texas
Instruments.

[14] Yu-Hung Kao, “Robustness Study of Free-Text Speaker
Identification and Verification,” PhD Thesis, University of Maryland,
1992.

BIOGRAPHY

 Ms. Srilatha C received her Bachelor’s Degree in
Instrumentation Engineering from Osmania University, Hyderabad, India.
She is a Master degree holder in Embedded Systems from Jawaharlal
Nehru Technological University, Hyderabad, India. Currently, she is an
Assistant Professor at Aurora’s Scientific Technological & Research
Academy. She has six years of teaching experience at college level. Her
area of interest includes embedded systems, Real time systems. She is
carrying out her research work in the field of embedded systems under the
guidance of Dr. C V Guru Rao, Principal, KITS College, Warangal, India.
She is a life member of Computer Society of India and Instrumentation
Society of India.

 Dr. Guru Rao C V received his Bachelor’s Degree in
Electronics & Communications Engineering from VR Siddhartha
Engineering College, Vijayawada, India. He is a double post graduate, with
specializations in Electronic Instrumentation and Information Science &
Engineering. He received his M.Tech in Electronic Instrumentation from
Regional Engineering College, Warangal, India and M.E in Information
Science & Engineering from Motilal Nehru Regional Engineering College,
Allahabad, India. He is a Doctorate holder in Computer Science &
Engineering from Indian Institute of Technology, Kharagpur, India. With
24 years of teaching experience, currently he is the Principal, KITS
Warangal, Andhra Pradesh, India. He has more than 25 publications to his
credit. He is the Chairman, Board of Studies for Computer Science &
Engineering and Information Technology, Kakatiya University, Warangal.
Also, he is the Editorial Board member for International Journal of
Computational Intelligence Research and Application journal. He is a life
member of Indian Society for Technical Education, Instrumentation
Society of India, and member of Institution of Engineers, Institution of
Electronics & Telecommunications Engineers and Institution of Electrical
& Electronics Engineers (USA).

