

Abstract—Development of a Low Cost Industrial

Automation and Control System Framework based on Service-

Oriented Architecture (SOA) using OSGi Framework for

rapid application deployment has been attempted here.

Objective is to develop a user-friendly, Platform and Hardware

Independent Industrial Automation System using Free and

Open Source Software (FOSS) and Completely-off –the-shelf

(COTS) Hardware. The developed application prototype

successfully integrates a service enabled SCADA system and its

real time data acquisition and control of various industrial

applications using Extensible Messaging and Presence Protocol

(XMPP). The prototype also provides information through a

user friendly Graphical User Interface (GUI) for process

visualization and remote controllability. An Alarm Event

Handling Service with integrated Short Message Service (SMS)

and Remote Service Invocation abilities are the salient features

of the developed system. Implementation using popular

industry standard SCADA software (IGSS) proves that the

work is scalable as required by real-world applications.

Index Terms—Service-Oriented Architecture (SOA), open

systems, software architecture, OSGi framework, distributed

services, software systems, SCADA, industrial automation.

I. INTRODUCTION

The basic motivation for developing an Industrial

Automation System is productivity enhancement through

real time data acquisition, remote monitoring, remote

maintenance, highly flexible service upgrades, and a low

environmental impact. Since users expect to get improved

Services at reasonable cost, there is a need for an integrated

and low-cost system platform that allows intelligent features

to be easily implemented [1].

Service-Oriented Architecture (SOA) provides for the

development of a flexible and modular system. The main

idea of SOA is to create “Services” that can be constructed

together to build a system. Services are functions that are

well-defined, self-contained, and independent of the context

or state of other services. Services communicate with each

other, and this involves data passing and activity

coordination [2], [3]. Besides the key traits in SOA are

Dynamism and Substitutability. Dynamism is the ability for

Service Providers to offer and retract Services at any time

and the ability of service user to bind available services at

will. Substitutability is the fact that a service description

represents a contract [4].

Manuscript received December 15, 2013; revised March 25, 2014.

The authors are with School of Engineering, Monash University, Bandar

Sunway, Malaysia (e-mail: veera.ragavan@.monash.edu,

ibkusnanto@gmail.com).

OSGi is a lightweight SOA based application deployment

framework [4] using Java programming language. The

OSGi [5] specifications benefits from key traits in SOA

where services and their associates can be added or removed

at any time, service providers may offer or retract services

tailored to the networked environment’s connected devices

and also the ability of service providers to offer services

intended to be open and inclusive to promote

interoperability [4]. OSGi applications are Platform and

Hardware Independent as they run on Java. A middleware

layer on top of OSGi called Remoting-OSGi (R-OSGi) [6]

provides the ability of services to be used remotely.

Using OSGi framework, this work aims to develop and

implement a SOA based Industrial Automation System that

is Service based, Scalable, Dynamic, Open Source and a

Low cost a real world application.

II. METHODOLOGY

A SOA based Automation System implementation using

OSGi framework, on Java using XMPP [7] has been

attempted. The OSGi framework employs the service-

oriented approach and the java class-loader architecture for

the runtime service deployment that are well suited for

dynamic environments [8]. Bundles are regular Java JAR

files containing class files, other resources (images, icons,

required APIs etc), and also a manifest, which is used to

declare static information about the bundle, such as the

packages the bundle import and export. Further, bundles

may also provide services to other bundles. In the OSGi

architecture, a service is a standard Java object that is

registered using one or more interface types and properties

(that are used to locate the service) [9]. Two types of

Bundles will be developed: Service Bundles and Application

Bundles.

Service Bundle provides the services for the Application

Bundles to use. Service Bundles to be created must provide

the capability to communicate with IGSS [10] using XMPP

for real-time data acquisition, alarm event facilitation and

handling. These Service Bundles needs to be loosely

coupled to minimize dependency between the services

coupling bundles independently implemented by different

developers (reusability and flexibility) [9]. Service Bundles

interact with the Application Bundles through Service

Interfaces (SI). The design of SI’s is unique and specific to

the intended Service that the Service Bundle offers. The

interfaces are collections of methods (services) which are

offered by the Service Bundles to be used by Service

Consumers (Application Bundle).

The main application in the Prototype is the Application

Bundle which is the bundle that uses the Services provided

Rapid Automation Application Deployment Framework

for Real Time Process and Industrial Automation Systems

S. Veera Ragavan, Velappa Ganapathy, and Ibrahim Kusumah Kusnanto

International Journal of Computer Theory and Engineering, Vol. 6, No. 6, December 2014

515DOI: 10.7763/IJCTE.2014.V6.920

by Service Bundles to assemble fully functional Automation

System with the functionality aimed in the objectives. The

application has the ability to control IGSS Stations

automatically or manually and trigger alarm handling and

SMS notification for alarm event.

Fig. 1. A service oriented interaction pattern [4].

During runtime Service Bundles need to be started before

Application Bundle, as Application Bundle consumes or

depends on the services in Service Bundles [11]. Service

Bundles offer services to Application Bundles, where

service functionality is characterized in a Service

Description. Service Bundles are Discovered using their

Service Descriptions by Application Bundle querying a

Service Registry, where Service Bundles Publish Service

descriptions [4]. This service registry will be available in the

Main Computer that has the Service Bundles and

Application Bundle itself. A Remote Application Bundle

that has the same functionality with the Application Bundle

will be implemented on a Remote Computer to use the

Service Bundles on the Main Computer.

As OSGi applications run on Java it makes the

application to be Platform and Hardware Independent, as

Java can run on any Operating System and machines [12].

All bundles development is done using Eclipse Rich

Client Platform (RCP) [13] which is a multi-language

software development environment for developing general

purpose applications. Eclipse RCP is a pure-plug in platform

and, hence, fully extensible by architectural design since it is

based on Equinox, the Eclipse implementation of the OSGi

specification. An adoption of Eclipse Communication

Framework (ECF) in Eclipse RCP supports the development

of distributed Eclipse-based tools and applications, which

provides XMPP and R-OSGi [11].

XMPP connection from the IGSS Stations was done using

the integrated Visual Basic interface on the IGSS software.

III. LITERATURE REVIEW AND RELATED WORK

Similar deployments of application frameworks for

Industrial Automation such as SIMOO-RT, CORFU, and

Real-time Framework have been done. However they are

not SOA based.

SIMOO-RT is an Object Oriented framework designed to

support the whole development cycle of real-time industrial

automation systems. It is based on the concept of distributed

active objects, which are autonomous execution entities that

have their own thread of control, and interact with each

other by means of remote methods invocation [14].

CORFU is an Object Oriented framework to improve the

engineering process of Industrial Process Measurement and

Control Systems (IPMCSs) in terms of reliability,

development time and degree of automation and embodies

an abstract design that is capable of providing solutions for a

family of distributed IPMCSs [15].

Real-time Framework is a package of software modules

for building distributed real-time control systems in

Robotics and Automation. The Real-time Framework covers

the areas of client-server communication, control of

program flow and modality through messaging and state

machines, and low-level input/output. In addition, it

contains a real-time utilities package and

wrappers for operating system calls, which shield any

operating system dependence from the application built on

top of the Framework [16].

IV. ARCHITECTURAL OVERVIEW

Fig. 2. Hardware architecture.

The Prototype system developed consists of a Main

Computer, a Remote Computer and five IGSS Stations.

These IGSS Stations are simulations of different types of

typical Industrial Environments which provide data to the

Application Bundle to the Main or Remote Computer using

XMPP.

A Main Computer installed with OSGi Framework

provides the Service Bundles. It is also has Application

Bundles. The Open fire installed at the Main Computer

functions as the XMPP Server that provides data transaction

between the IGSS Stations and Main computer.SMS

notification sent utilizing GSM modem at the Main

Computer. Main computer runs a Windows OS.

Remote Computer installed with OSGi Framework can

access the Service Bundles at The Main Computer through

R-OSGi. Remote Computer Runs using Ubuntu OS.

Equinox OSGi, which is an implementation of the OSGi

framework [17] has been used. All the Service Bundles

developed will be available in the Main Computer. Service

Bundles register their Services during runtime at the Service

Registry on the Main Computer itself. Application Bundle

on the Main Computer uses the Service Bundles from the

Service Registry to build a SCADA system.

A Remote Application Bundle on the Remote Computer

access the Service Registry on the Main Computer using R-

OSGi, as the results the Remote Application Bundle is able

International Journal of Computer Theory and Engineering, Vol. 6, No. 6, December 2014

516

to use the Service Bundles on the main computer as if they

were local services [11]. The Remote Application Bundles

have the same functionality as the Application Bundle in the

Main Computer.

Fig. 3. Software architecture.

V. SERVICE AND APPLICATION BUNDLES

A. Service Bundles Deployed

1) Jabber service

Jabber Service provides the communication for real-time

data acquisition and control of the IGSS Stations. This real-

time communication between the Application and IGSS is

done using XMPP [7]. XMPP is an open technology for

real-time communication between an XMPP Client and an

XMPP Server. The XMPP Clients in this context are the

Application and the IGSS Stations. These XMPP Clients

exchange data by sending Extensible Mark-up Language

(XML) to the XMPP Server and will be received by the

XMPP Client destined [7]. Jabber Service also provides the

information of availability of XMPP Clients. XMPP can be

used to exchange any data that can be represented in XML,

enabling development of a wide variety of applications.

XMPP is much more than Instant Messaging. The semantics

of the “push” mechanism,” publish-subscribe” mechanism

and request-response mechanism stanzas provide a

generalized communication layer, making it possible to

develop and deploy a wide range of presence-enabled

applications [18].

2) Alarm service

Alarm Service provides alarm event handling. When an

alarm occurs Alarm Service provides information about the

cause of the alarm and the current alarm state, which helps

the operator to handle and solve an alarm event, also to log

the alarm event occurred. The application uses the SMS

Service for SMS notification and acknowledgement of alarm

events

3) Communication service -SMS service

SMS Service provides sending and receiving SMS to the

application. The SMS Service in the work utilizes Falcom

SAMBA75[19] Global System for Mobile Communications

(GSM) modem. Communication Services such as Blue

tooth, Field Busses, LAN etc can also be easily

implemented.

4) Remote log service

Remote Log Service provides a simple logging when the

Service Bundles are used remotely by recording the name of

Remote Computer using the Remote Services on the Eclipse

console. It can be extended easily for more detailed logging.

5) Date service

Date Service provides the current date and time vital for

synchronization and messaging

B. Application Bundle Deployed

The Application Bundle aggregate the Services to

construct SCADA system. Using Jabber Service it will

receive data in XML format a popular standard for data

representation and exchange [20]. This XML data is then

parsed to display the reading from the IGSS Stations and to

send the processed data back to the IGSS Station. This data

exchange allows the Application Bundle to acquire remote

data and to Remotely Control the IGSS stations

automatically or manually in real time. Using Jabber Service

it can detect the availability of the IGSS Stations. Alarm

Service uses alarm handling when the processed data

triggers an alarm event. Alarm event triggers a SMS

notification to be sent using SMS Service. Date, time and

Remote Service User are also present using the Remote Log

Service and Date Service. The Prototype has a GUI that

provides graphical representations of the data from each

IGSS Station, manual control interface, and alarm event log.

C. Remote Application Bundle

Remote Application Bundle on the Remote Computer

uses the Service Bundles on the Main Computer to construct

Remote SCADA system that has the same functionality as

the SCADA system at the Main Computer.

VI. SERVICE AND PROCESS FLOW

A typical Industrial Process and Services Interaction

pattern is as shown in Fig. 4 below.

A. Initialization

During the initialization stage, when the system starts it

will register all the Service Bundles on to the Service

Registry, then the Application Bundle will start and check

whether all the Service Bundles required for the Application

Bundle available. If all the Service Bundles are available,

then the Application Bundle will run until a stopped

condition met. If some or all the Service Bundles required

by the Application Bundle are not available, the system will

return an error and is stopped.

B. Application Run

When the Prototype runs it will trigger the GUI which

consists of several tabs representing each IGSS Stations,

IGSS Stations availability, and alarm event log. After

triggering the GUI, the Prototype will then connect to the

XMPP Server and once connected it will check the

availability of the IGSS Stations. If one or more IGSS

Stations are available it will start checking for new data feed

from the IGSS Stations which will be processed and

displayed as tags on the Application as well as to give

International Journal of Computer Theory and Engineering, Vol. 6, No. 6, December 2014

517

feedback data to the IGSS Stations.

GUI

Trigger

Connect to

XMPP

Server

Check IGSS

Stations

Availability

Station

available?

New data ?

Process Data

(Manual/

Automatic)

Alarm

Condition?

Trigger Alarm

Event Service

Process Data to

Send Response

Yes

NO

NO

Yes

Alarm

Event

Trigger

Message to

SMS Server

Notify

Operator(s)

Operator

acknowledged

SMS?

NO
Yes

Response

Deployed?

Process Alarm

Event
Alarm Reset?

Log Data + Trigger

Normal Process

Trigger

Emergency

Service Event

Yes

NO

Yes

NO

(c) Alarm Event Service Flow Chart

(a) Initialising Services Flow Chart

Register

Service

Bundles

Start

Application

Bundles

(b) Application and Bundle Services Flow Chart

Fig. 4. Services and process flow.

With this data feedback, the control of some instruments

on the IGSS Stations, are transferred for remote control

which can be executed automatically or manually. The data

process checks the data for, and based on preset criteria

trigger alarm event, send notifications and transfers control

before sending the processed / feedback data to the IGSS

Stations.

C. Alarm Event

When an alarm event occurs, an SMS notification will be

sent to the operator of the IGSS Station. The operator

acknowledges by sending an SMS. If the operator fails to

acknowledge, another SMS notification will be sent to the

operator and Supervisor until the operator acknowledges or

triggers an Emergency. After acknowledging the SMS

notification, the operator proceeds to acknowledge the alarm

in the Plant itself showing that the operator already On Call

to solve the problem. Again if the operator fails to

acknowledge the alarm in the Plant, within a given time

period, an SMS Notification will be sent again and the

operator and the supervisor to acknowledges it. After the

operator acknowledges the alarm on the Prototype, it will

wait until the operator solves the problem and reset the

alarm so that the process runs normally.

VII. RESULTS

A. Real-Time Data Acquisition

Fig. 5 – Fig. 9 show the data read by the Application and

its corresponding IGSS Stations. The Application can

monitor and control multiple IGSS Stations on a single PC

or Laptop, thus The Application provides the ease to

monitor and control large scale Industrial Applications.

Fig. 5. Station 1 data control.

Fig. 6. IGSS station 1.

Fig. 7. Station 5 data control.

Fig. 8. IGSS station 5.

All the data read from the IGSS Stations are done in real-

time by the Application, which benefits in alarm events or

any other abnormal situations.

The Application provides a GUI for visualizing the

process, data and status and availability of IGSS Stations

using simple graphical representations as shown in Fig. 8.

Other than monitoring the IGSS Stations, the Application

is capable of controlling IGSS Stations as well. An example

of controlling of the IGSS Station shown in IGSS Station 5,

where the Fan Speed of the Station is controlled

automatically by the processed data from the Application.

International Journal of Computer Theory and Engineering, Vol. 6, No. 6, December 2014

518

Fig. 9. IGSS stations availability.

B. Alarm Event

The Application provides alarm events handling by

notifying operator of the corresponding IGSS Station in

abnormal situation using SMS. All the alarm events states

are logged in the Alarm tab.

Fig. 10. Alarm event log.

Figure above shows a scenario of an alarm event. The

alarm event was triggered because the Water-Out

Temperature from the cooling tower (IGSS Station 5) was

above the high limit Set. An SMS notification was then sent

to the operator of the IGSS Station. The operator

acknowledges the SMS Notification as well as the alarm in

the Application console (Plant) by pressing the

“Acknowledge” Button on the Alarm Tab. The informative

GUI helps the operator find out that the problem caused by

the Fan turned OFF. Using manual control the operator

turned the Fan on then resets the alarm.

C. Manual Control

Application provides a manual control for IGSS Station 5.

Parameters that can be controlled are Fan Speed and turning

Fan ON or OFF. As shown from the figures, the remote

application controls the Fan Speed through safety interlocks

provided.

Manual controls of the IGSS Stations are limited only

controlling the parameters of the IGSS Stations, as full

remote controlling of IGSS Stations such as turning ON or

OFF the IGSS Stations remotely can be dangerous.

D. Remote Application

Using same GUI’s the Remote Application replicates and

has the same extended functionally as that of the

Application on the Main Computer. In this work the Remote

Application was implemented on a Local Area Network. It

can also be quickly extended to achieve Remote Application

control over the internet.

VIII. EVALUATION

A. Extensibility

Service Registry in the OSGi Framework provides the

ability to add new Services without stopping and starting the

Application.

B. Modular

Bundles made are independent of each other. Thus it is

possible to build different applications using some of the

Service Bundles or all of it.

C. Dynamism

Service Registry in the OSGi Framework provides

Services Bundles on offer and can retract Services at any

time. Application Bundle is able to bind to any available

service at will.

D. Substitutability

Service Bundles that are offered are loosely-coupled,

which gives the suitability for any Service Bundle to be

imported from another bundle.

E. Platform/OS Independent

As OSGi Framework runs on top of JVM, the Application

can be said to be OS and Platform independent.

IX. CONCLUSION AND FUTURE WORK

We accomplished Industrial Automation System

implementation using OSGi framework. The Prototype was

built using Service Bundles that were made to be flexible

and modular.

Prototype system provides data acquisition and control

which are done in real-time and it provides near real time

alarm event handling. GUI’s that facilitate the ease of use

was implemented.

As OSGi Applications run on Java, the Application

Prototype is Platform and Hardware Independent. This will

save the cost of obtaining Legacy Industrial Controllers for

an Industrial Automation System.

Prototype is scalable as it can be integrated with IGSS,

which is an industry standard SCADA software used world-

wide.

Future work that has been planned are:

 Further Testing of the framework for reliability and

reusability are needed. Testing of SOA itself is a non-

trivial and complex task [21].

 Implementation of a Security Layer for Bundles access

[22] to prevent hacking.

 Implementation of the prototype framework in a soft

real-time Industrial Automation scenario with other

International Journal of Computer Theory and Engineering, Vol. 6, No. 6, December 2014

519

Industrial systems, services and devices (such as IP

cameras), etc.

REFERENCES

[1] T. Tommila, O. Ventä, and K. Koskinen, "Next generation industrial

automation–needs and opportunities," Automation Technology

Review, pp. 34-41, 2001.

[2] D. K. Barry. (2010). Service-Oriented Architecture (SOA) definition.

[Online]. Available: http://www.service-architecture.com/web-

services/articles/service-oriented_architecture_soa_definition.html

[3] D. K. Barry, Web Services, Service-oriented Architectures, and Cloud

Computing: The Savvy Manager's Guid, Newnes, 2012.

[4] N. Series, "Challenges in building service-oriented applications for

OSGi," IEEE Communications Magazine, p. 145, 2004.

[5] O. Alliance, OSGi-the Dynamic Module System for Java, vol. 25, May

2009.

[6] J. S. Rellermeyer, G. Alonso, and T. Roscoe, "R-OSGi: distributed

applications through software modularization," in Proc. the

ACM/IFIP/USENIX 2007 International Conference on Middleware,

2007, pp. 1-20.

[7] P. Saint-Andre, "Extensible messaging and presence protocol (xmpp):

Instant messaging and presence," 2011.

[8] H. Ahn, H. Oh, and C. O. Sung, "Towards reliable osgi framework

and applications," in Proc. the 2006 ACM symposium on Applied

computing, 2006, pp. 1456-1461.

[9] A. L. Tavares and M. T. Valente, "A gentle introduction to OSGi,"

ACM SIGSOFT Software Engineering Notes, vol. 33, p. 8, 2008.

[10] What is IGSS? (2010). [Online]. Available: http://igss.schneider-

electric.com/products/igss/product-information/what-is-igss.aspx

[11] J. S. Rellermeyer, G. Alonso, and T. Roscoe, "Building, deploying,

and monitoring distributed applications with Eclipse and R-OSGI," in

Proc. the 2007 OOPSLA Workshop on Eclipse Technology Exchange,

2007, pp. 50-54.

[12] R. Helaihel and K. Olukotun, "Java as a specification language for

hardware-software systems," in Proc. the 1997 IEEE/ACM

International Conference on Computer-Aided Design, 1997, pp. 690-

697.

[13] D. Gruber, B. Hargrave, J. McAffer, P. Rapicault, and T. Watson,

"The Eclipse 3.0 platform: adopting OSGi technology," IBM Systems

Journal, vol. 44, pp. 289-299, 2005.

[14] L. B. Becker and C. E. Pereira, "SIMOO-RT-an object-oriented

framework for the development of real-time industrial automation

systems," IEEE Transactions on, Robotics and Automation, vol. 18,

pp. 421-430, 2002.

[15] K. Thramboulidis, "Development of distributed industrial control

applications: the CORFU framework," in Proc. 4th IEEE

International Workshop on Factory Communication Systems, 2002,

pp. 39-46.

[16] A. Traub and R. D. Schraft, "An object-oriented realtime framework

for distributed control systems," in Proc. 1999 IEEE International

Conference on Robotics and Automation, 1999, pp. 3115-3121.

[17] J. McAffer, P. V. Lei, and S. Archer, OSGi and Equinox: Creating

Highly Modular Java Systems, Addison-Wesley Professional, 2010.

[18] P. Saint-Andre, "Streaming xml with jabber/xmpp," Internet

Computing, IEEE, vol. 9, pp. 82-89, 2005.

[19] Falcom, "SAMBA75 - Integrated Quad Band GSM/GPRS/EDGE

Engine.," 2010.

[20] E. Bertino and E. Ferrari, "XML and data integration," Internet

Computing, IEEE, vol. 5, pp. 75-76, 2001.

[21] G. A. Lewis, E. Morris, S. Simanta, and L. Wrage, "Common

misconceptions about service-oriented architecture," in Proc. Sixth

International IEEE Conference on Commercial-off-the-Shelf (COTS)-

Based Software Systems, 2007, pp. 123-130.

[22] P. Parrend and S. Frénot, "Supporting the secure deployment of osgi

bundles," in Proc. IEEE International Symposium on World of

Wireless, Mobile and Multimedia Networks, WoWMoM, 2007, pp. 1-

6.

Sampath Kumar Veera Ragavan is currently a senior

lecturer of mechatronics engineering at Monash

University Malaysia Campus. Before joining Monash, he

worked for several multinational companies in various

capacities. He has more than 17 years of industrial

experience in design and development of factory

automation systems, fluid power automation, software

for consumer electronics and industrial automation He has executed

several projects from concept to commissioning. He is also a chartered

engineer from Engineering council (UK) and a consultant in the field of

mechatronics, telematics and industrial automation. His current research

interests are physical modeling and simulation, design of mechatronic

systems, robotics, industrial automation and distributed embedded

systems.

Ibrahim Kusumah Kusnanto was born in Bali,

Indonesia in 1988. He received his bachelor degree

(Hons.) in the field of mechatronics engineering at

Monash University Sunway Campus, Malaysia. He is

currently a senior developer at Dropmysite Pte Ltd.

Singapore.

International Journal of Computer Theory and Engineering, Vol. 6, No. 6, December 2014

520

