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Abstract—This paper considers error probability of much 

larger absolute value symbols about reliability rate based 

weighted bit-flipping (RRWBF) algorithm of low density 

parity check code (LDPC). RRWBF owns better performance 

and effective practicability, compared with weighted bit 

flipping algorithm (WBF). This paper proposes a modified 

version of this algorithm, multi-bit-threshold rate based 

weighted bit flipping about LDPC decoding algorithm 

(MTRWBF). The scheme solved for RRWBF and its modified 

algorithms only consider flipping greater weight and slurs the 

importance of the absolute value of symbols. This algorithm 

turns a plurality of bits every time, which overcomes 

shortcomings that IRRWBF decoding convergence speed is too 

slow. Simulation results showed that the improved version 

greatly fastens simulation speed, observable reduces the 

decoding iterations and improves decoding performance. 

Compared with RRWBF, the error ratio of the MTRWBF 

with 5dB is improved from 103 to 104 as proved by 

simulation results.  

 

Index Terms—Low density parity check code (LDPC), 

iterative decoding, weighted bit-flipping (WBF), reliability 

rate. 

 

I. INTRODUCTION 

LOW, density parity check (LDPC) code was first 

proposed in 1962 by Gallager [1], and has drawn significant 

attention, mainly because of their extraordinary 

performance and near to the Shannon limit by using 

iterative decoders. LDPC code as the very long code length 

has the characteristics of resistance to burst error. LDPC 

code has a more systematically constructive method using 

deterministic such as Euclidean geometric low density 

parity check (EGLDPC) codes, which is constructed 

deterministically using the points and lines of a Euclidean 

geometry [2]. Furthermore, their encoding can be easily 

implemented, which can be serial iterative decoding or 

parallel algorithm. The parallel algorithm can be efficiently 

implemented with linear shift registers. In addition, with the 

further study of LDPC, it is very good candidates for use in 

applications like the 4G mobile communications which 

need fast decoders and low bit-error rates (BERs). 

LDPC codes can be decoded with many encoding 

methods, which are classified as some classes according to 

the construction method. Among them, the construction of 
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Gallager shows good error performance with different 

decoding codes. The LDPC that construction of Gallager has 

uniform weight in every row and column that results in 

regular encoder and easy decoding implementations. The 

proper construction of LDPC coders can get large minimum 

distance that prevents the occurrence of error floor, which 

pondered a serious disadvantage of well-performing random 

LDPC codes compared to the arithmetic code. 

LDPC codes can be decoded using soft-decision decoding 

algorithm such as belief propagation (BP), hard-decision 

decoding algorithm such as bit-flipping (BF), and hybrid 

decoding methods, which develops the soft BF to take 

advantage of both BP and BF algorithms [3], [4]. Soft 

decoding algorithms owns well performance while require 

much higher decoding complexity like BP decoding 

algorithm and its improved algorithm such as Sum-Product 

(SP) [5], the minimum decoding algorithm (Min-Sum, MS) 

[6], and improved minimum decoding algorithm (Modified 

min-sum, MMS) [7]. SP algorithm is not easy to implement 

in hardware and requires large memory and high 

interconnection complexity resulting from high variable and 

column degrees. Instead, hard-decision decoding algorithm 

and hybrid decoding methods balance between hardware 

implementation and complexity, although the bit error rate 

performance of the BF is inferior to that of BP algorithm. A 

hybrid decoding method follows the basic form of BP and 

BF algorithms to reduce the complexity. A hard-decision 

decoding algorithm hybrid decoding method [8] is the 

foundation of all kinds of hybrid decoding method and many 

variants have been developed. Therefore it also has 

widespread application. In recent few years, a variety of BF 

hard decision algorithms based on improved algorithm 

weighted bit-flipping decoding (weighted bit-flipping, WBF) 

algorithm [9], the reliability ratio weighted bit-flipping 

algorithm (reliability rate based weighted-bit-flipping, 

RRWBF) [10], and improved reliability ratio weighted bit-

flipping algorithm (improved reliability rate based weighted-

bit-flipping, IRRWBF) algorithm [11] maintains the low 

complexity and well decoding performance to make it the 

further improvement and more practical. In the present 

paper, a novel modification of IRRWBF is proposed which 

is called multi-bit threshold LDPC weighted ratio flipping 

decoding algorithm (multi-bit-threshold rate based weighted 

bit-flipping, MTRWBF). With a slight increasing in 

computing complexity, the proposed scheme ignores that 

existing bit-flipping-based RRWBF only consider flipping 

greater weight and the influence of the absolute value. It 

fastens decoding convergence speed and has a better 

decoding performance. 

The article is organized as follows. Section II briefly 

shows the reviews traditional WBF, RRWBF and IRRWBF 

decoders. MTRWBF algorithm and relative parameters are 
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presented in Section III. In Section IV, decoding complexity 

comparison is discussed. We provide simulation results and 

analysis in Section V. Finally, the conclusion is in Section 

VI. 

 

 

Initialization: j  1, 2, … , M,
min : ( )

min nm n n m
y y

 


N
; 

Check node: m  1, 2, … , M, 
1

N

m n nm

n

s b


 H ; 

Variable node: n  1, 2, … , N,  

min
( )

(2 1)n m m
m n

E s y




 
M

; 

Decision: Flip the bit bk for max( )k nE E . 

 

Repeat between check nodes to decision step until all of 

the check equations satisfies or reaches the set maximum 

number of iterations. Otherwise decoding fails. 

B. Reliability Rate Weighted Bit-Flipping Algorithm 

The destruction is due to the smallest absolute value 

symbols in WBF, but if a parity equation is wrong, all the 

relevant symbols have the possibility of error in this 

equation. The only difference is that the absolute value of 

the error is smaller, the greater the likelihood of error 

symbols. In fact, large absolute value means error 

possibilities and should not be ignored. For the obvious 

shortcomings of WBF, RRWBF algorithm introduces a new 

criterion called reliability ratio (RR), where max

my  is the 

maximum absolute value symbols in the equations values in 

the m-th parity.  is a normalization factor to ensure 

( )
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 . The specific steps are organized as follows [2] 

Initialization: 
max

n

mn

m

y
R

y
 , max

( )
max | |m n

n m
y y




N
; 

Check node: 
1

N

m n nm

n

s b


 H ; 

Variable node: 
( )

(2 1) /n m mn

m n

E s R


 
M

; 

Decision: Flip the bit bk for max( )k nE E . 

 

Repeat between check nodes to decision step until all of 

the check equations satisfies or reaches the set maximum 

number of iterations. Otherwise decoding fails. It can be 

concluded that except for the calculation of the variable node 

and initialization information, the process is the same in 

Section 2A. 

C. Improved RRWBF 

According to the normalization factor 
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, which is more concise and less 

computation than RRWBF. In addition, the decoding 

principle can be more clearly seen. |yn|/Tm represents the 

proportion of absolute value symbol. The specific decoding 

steps are organized as follows [9] 
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Decision: Flip the bit bk for max( )k nE E . 

 

Repeat between check nodes to decision step until all of 

the check equations satisfies or reaches the set maximum 

number of iterations. Otherwise decoding fails. Similarly, 

except for the calculation of the variable node and 

initialization information, the process is the same in Sections 

2A and 2B. 
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II. ANALYSIS OF LDPC DECODING ALGORITHM 

A. WBF Algorithm 

Simulation environment: The communication channel is 

AWGN, through BPSK modulation, Hmn represents m×n 

binary parity-check matrix of the LDPC codes, c  [c1, c2, ... 

, cn] represents transmitted sequence, the received sequence 

is y  [y1, y2, ... , yn], b  [b1, b2, ... , bn] is the hard decision. 

Denote M(n)  {m: Hmn  1} is the set that participate in 

check m and M(n)  {m: Hmn  1} indicates the bit n 

involves the set of checks. Set N(m)  {n: Hmn  1} 

represents the m-th parity equations involved in the bit set 

[12], |y|minm represents parity component of metrics sm. 

BF algorithm can be seen as the simplest algorithm for 

weighted bit flipping, which the weight of the bit only 

contains information on its corresponding check equations. 

In recent years, emerges many improved the weighted bit-

flipping algorithm and varies from the calculation of 

weights, but the ultimate goal still want fast and accurately 

locate the bit error. WBF use some reliability information, 

which can obtain better performance than BF, especially the 

larger weight, such as finite geometric codes [13]. Original 

WBF algorithm, we separate the decoding algorithm into 

four steps: initialization, check node, variable node, and 

decision steps. The operations performed at the specific 

decoding step can be calculated as follows [7] 



III. MULTI-BIT THRESHOLD LDPC RATIO DECODING 

ALGORITHM 

For the AWGN channel, the relationship of the likelihood 

ratio of the absolute value about the each output yn of the 

received sequence y for associated with the hard-decision b 

is the following 

ln( ( | 1) ( | 0)n n n n np y c p y c y                    (4) 

where  is proportional factor. 

From (4) shows that |yn| is the greater and the reliability 

of the hard decision is the higher. Therefore, the probability 

of error is smaller. For y  [y1, y2, ... , yn], using absolute 

value |yn| as the reliability measurement of a hard decision. 

However, in Section 2B and Section 2C only considered the 

ratio of absolute value while the symbol information is not 

reflected [14]. As long as these two algorithms have the 

same proportions, the corresponding algorithms are 

equivalent to treatment and ignore the absolute value of 

information. 

Furthermore, in the decoding process of the above-

mentioned WBF, RRWBF, IRRWBF, every time only one 

bits is flipped according to its bit flipping rule that the bits 

corresponding to the maximum. The decoding speed is too 

slow, which results in the decoding speed inefficient. This 

article combines multi-bit flipping algorithm LCMBF [15] 

and multi GDBF algorithm[11], which permits multiple bit 

flipping during each iteration of a decoding process, and 

two shortcomings listed above of RRWBF [16], and 

proposes a multi-bit threshold ratio LDPC weighted bit 

flipping decoding algorithm LMRWBF. MTRWBF exhibits 

faster convergence than the those in above-mentioned WBF 

and other variants. Therefore, MTRWBF is a low-

complexity high-weigh LDPC decoding method. 

A. MTRWBF Algorithm 

Denote set Q as the absolute value of the discriminate, 

and  is the threshold used to determine the magnitude of 

the smaller symbols. 

Initialization: { }nb  Q , 
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Variable node: 
( )

1
(2 1) /n m m

m M nn

E s T
y 

  ; 

Decision: max max( )k nE E , flipping the bit satisfies 

max max{ | }n n nb x E x E    and { | }n kb x x y  . 

Repeat between check nodes to decision step until all of 

the check equations satisfies or reaches the set maximum 

number of iterations. Otherwise decoding fails. 

B. Select Parameters  and  

For LMRWBF algorithm, the size of  affects the 

frequency of bit-flipping directly, leading to bits several 

times flipping and suffers from the heavy oscillation 

behavior of a decoder, which is not easy to control. 

Selecting the different parameter  influences proper 

decoding. It is necessary to choose the optimal value. Fig. 1 

shows the optimal value is 0.25 when the maximum number 

of iterations is set to 20. 

On the other hand,  is a real value, which can be 

determined by simulation. By choosing proper  can not 

only make the improved algorithm achieve better decoding 

performance, but also make the decoding performance 

stability. Moreover,  is influenced by . Fig. 2 describes 

BER performance with different . It can be shown that the 

decoder can obtain relatively stable and moderate decoding 

performance when  is set to 0.4. 
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Fig. 1. Improved algorithm performance when selecting different . 
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Fig. 2. BER performance with different . 

 

IV. ANALYSIS OF COMPUTATIONAL COMPLEXITY 

Consider decoding complexity comparison in all list 

decoding algorithms. Compared with the logical operation, 

real number operation is much more complex. Hence, the 

complexity of the decoding algorithm is mainly determined 

by the amount of the operation of real number. In the 

presented paper, we mainly concentrated on the comparison 

of regular LDPC codes in all decoding algorithms. 

Assuming the rate of LDPC code is 1/2, we calculate the 

complexity of WBF, RRWBF, IRRWBF and LMRWBF. Wr 

is the number of nonzero entries in each row of parity check 

matrix, Wc is the number of nonzero entries in each column 

of parity check matrix. The complexity of different 

algorithms is shown in Table I. 

Consider the proposed algorithm as well as several other 

algorithms, each iteration requires selecting multiple bits to 

be flipped, and the computational increase linearly. In the 

decision step, other algorithms computational complexity is 

more N  1 than other algorithms. In the initialization step, 
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LMRWBF and IRRWBF apparently have less absolute 

computational complexity. All above mentioned algorithms 

in Table I, have near to complexity in the check node and 

variable node steps. In general, WBF, RRWBF and 

IRRWBF are the complexity of O(N), respectively. 

However, the proposed LMRWBF remains the complexity 

of O(N) while it has much more performance. 

 
TABLE I: COMPARISON OF COMPUTATIONAL COMPLEXITY 

Algorithm Initialization Check node Variable node Decision 

WBF M(Wr  1) Wc(Wr  1) Wr(Wc  1) N  1 

RRWBF 
M(Wr  1) 

WcWr 
Wc(Wr  1) Wr(Wc  1) N  1 

IRRWBF Wc(Wr  1) Wc(Wr  1) 
Wr(Wc  1) 

Wc 
N  1 

LMRWBF 
N 

Wc(Wr  1) 
Wc(Wr  1) 

Wr(Wc  1) 

Wc 

[(N  1), 

2(N  1)] 

Adder Operator: Initialization Wc(Wr  1), Wr(Wc  1) 

Multiplication Operator: Check node Wc(Wr  1) 

Divider Operator: Wc, WcWr 

Absolute Operator: M(Wr  1) 

Comparison Operator: N  1, N, [N  1, 2(N  1)] 

 

V. SIMULATION RESULTS 

LDPC codes simulation platform based on Simulink 

7.10.0 environment makes use of Sfunction model which 

provides a function code and simulink interface function to 

complete decoding algorithm implementation. For LDPC 

codes decoding and established a Matlab/Simulink 7.0 

simulation environment for system simulation platform, the 

specific simulation conditions are as follows. 

1) Gallager structure which generates a random parity 

check matrix H, K  204, N  408, M  204, code rate 

R  0.5, the weight of column is 3. 

2) BPSK modulation, assuming the transmission channel 

is the additive white Gaussian noise (AWGN). 

3) Each SNR point samples 50 error code. 
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Fig. 3. Comparison of performance for maximum number of 10 iterations. 

 

The comparison of performance in the proposed 

MTRWBF algorithm and WBF, RRWBF, IRRWBF with 

the same iterations shows in Fig. 3 and Fig. 4. BP algorithm 

has the best performance and faster convergence speed 

while requires much more simulation time because of its 

high complexity. BF algorithm is seen as the simplest 

algorithm, and shows the worse performance although it is 

few complexity and easy hardware implementation. 

MTRWBF has a good performance between BF and BP. 

Moreover, it is better decoding performance and faster 

convergence speed than WBF, RRWBF and IRRWBF. 

When the number of iterations increases, MTRWBF 

decoding performance is much closer to BP decoding 

algorithm. It can be shown in Fig. 5 that compared with 

several other decoding algorithms, the proposed MTRWBF 

algorithm requires fewer iterations, which consequently lead 

to lower complexity. As shown in Fig. 4, compared with 

RRWBF, the error ratio of the MTRWBF with 5dB is 

improved from 103 to 104. 
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Fig. 4. Comparison of performance for maximum number of 20 iterations. 
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Fig. 5. RRWBF compared with different iterations required in MTRWBF. 

 

In the low SNR range, make a comparison between 

MTRWBF algorithm and IRRWBF algorithm performance 

in different number of iterations. Simulation results indicate 

that the proposed algorithm can use fewer iterations to 

obtain better decoding performance, which can reduce the 

iterative decoding frequency as well as time complexity. 

 

VI. CONCLUSIONS 

The proposed MTRWBF algorithm receives bit sequence 

based on reliability rate and threshold flipped multiple errors 

in each iteration. With a slight increasing in computing 

complexity, this algorithm overcomes WBF and numerous 

variants of WBF algorithm which only considers flipping 

greater weight and ignores the decoding drawback 

influenced by the absolute value of symbol. In addition, 

MTRWBF flips multiple bits each time, which leads 
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convergence speed more rapidly than that in IRRWBF 

decoding algorithm. Simulation results indicates that the 

proposed algorithm requires less iterations than IRRWBF 

algorithm and achieves better BER performance. 
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