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Abstract—This paper presents a new shadow detecting 

method for silhouette extraction of a person in gray-level video 

sequences. We use a shadow evaluator to verify each raw 

shadow pixel that was detected by Gaussian distribution 

analysis. The evaluator considers a raw shadow pixel initially to 

be a fake shadow pixel, and marks it as a silhouette pixel if it is 

enclosed or semi-enclosed by moving occlusion boundaries of a 

person. Those were extracted by subtracting edges in the 

current frame from edges of the background. We also propose a 

silhouette compensation technique to recover some missing (i.e. 

removed) silhouette pixels by using a similarity criterion 

between silhouette pixels and their neighbors. Experimental 

results show us that the proposed algorithm keeps a silhouette 

of a person more accurate compared to other methods. Methods 

advocated by other researchers in YUV or RGB color space, 

typically remove silhouette pixels as shadow if the color of these 

pixels is similar to that of the surrounding background. 

 
Index Terms—Shadow removal, silhouette detection, shadow 

evaluator, silhouette compensation.  

 

I. INTRODUCTION 

Shadows cause serious problems for silhouette extraction 

of a person in video sequences. The silhouette is an image 

region defined by the circumscribing occlusion boundary. 

Accurate detection and the elimination of moving cast 

shadows is still a challenge besides numerous efforts in this 

area with substantial achievements. Some of the proposed 

methods try to detect cast shadows in an input video sequence 

by using color information (such as in RGB, YUV, or HSL 

color space) while others focus on methods depending on 

gray-level inputs only.  

A real-time shadow detection and elimination method, 

based on the YUV-color space, has been proposed in [1]. In 

this space, the saturation of a pixel value u = (Y, U, V ) is 

interpreted as being the Euclidean distance of point u to the 

origin o, and the hue is interpreted as being the angle between 

the segment ou and the U-axis. Shadows are then detected 

based on saturation hue. 

A method based on the RGB color space is proposed in [2], 

and is further discussed in [3], [4]. Here, mean  and standard 

deviation  of pixel values are calculated, and then brightness 

distortion and chromaticity distortion of each RGB pixel 

value based on and . Those pixels with large brightness 

distortion and small chromaticity distortion are regarded as 

shadow. A very similar method is proposed in [5] also 

exploiting brightness and color distortion. 
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These color-based methods follow the basic observation 

that shadow pixels have high brightness distortion and a low 

variance in color or chromaticity. In conclusion, real 

silhouette pixels also falsely detected as being shadow if their 

color value is close to that of the background. Unfortunately, 

this situation appears often for moving objects in real-world 

scenarios. 

Paper [6] advocated an algorithm based on value 

differences between foreground and background for 

detecting shadow in gray-level video sequences. In this 

algorithm, candidate shadow pixels are detected by 

normalized cross-correlation (NCC) [7], then local statistics 

of ratios of pixel values are used to refine the detected 

shadow area. The disadvantage of this algorithm is that 

incorrect detection happens when some foreground objects or 

background regions are homogeneously textured. 

In [8], a shadow-removal method is proposed which is 

based on object contour information. First, foreground is 

separated from background by a Gaussian mixture model 

(GMM), and the gradient-based background subtraction 

method of [9] is the employed for the detection of contours in 

the GMM-detected foreground. Finally, shadow is marked as 

a region of pixels in the exterior of object contours using the 

assumption that there are no contours in shadow areas. This 

technique is suitable for many scenes but cannot detect 

shadows that are cast on floors or walls that have 

“complicated textures”. 

Some proposed shadow detection systems use models for 

relationships between light sources and objects to retrieve 

shadows; for example, see [10]-[12]. These methods depend 

on good estimates for shape and position of light source, 

moving objects, and background; the methods also require 

knowledge about the intensity of the light source, the ambient 

illumination, and the camera geometry. The application of 

these algorithms is limited because such information cannot 

be easily acquired in most scenes. 

When testing shadow-removal methods based on 

color-space models for extracting accurate silhouettes of a 

person in video sequences, we found out that it is difficult for 

these methods to distinguish shadow pixels from silhouette 
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Fig. 1. Shadow removal by methods based on color space. Left: Input frame. 

Middle: Detected silhouette using the YUV method [1]. Right: Detected 

silhouette using the RGB method [2]. 
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pixels if silhouette pixels have a similar color as the 

background. This is not surprising, because these methods 

detect shadow by assuming color differences between 

foreground and background pixels. Fig. 1 shows cases where 

methods based on YUV or RGB color space misclassify 

shoulder pixels, but label pixels in the name tag as shadow. 

The nametag is white, and the color of the shoulder drifts to 

white because of lighting. In both cases, the silhouette color 

is similar to the background, and this “confused” those 

shadow removal methods; by not identifying true shadow 

correctly they cause defects in the resulting silhouettes. 

In order to resolve such problems, this paper proposes a 

shadow-detection and removal technique that supports 

accurate extractions of silhouettes of a person in gray-level 

video sequences. The proposed method detects true shadow 

by using image intensity distributions and moving occlusion 

boundaries of a person. Our experimental results show that 

the proposed method can distinguish true shadow near 

silhouettes successfully even if silhouette pixels have a 

similar color (only shown as gray-level in our videos) as the 

background. 

 

 
Fig. 2. Sketch of the proposed algorithm. 

 

Fig. 2 outlines the basic architecture of the proposed 

algorithm. The input is gray-level video sequences. First, 

foreground is detected by subtracting the current frame from 

the background which is modeled by the approximate 

median filter, see [13]-[16]. Then, background edges are 

detected using the Sobel operator on the modeled 

background. The Sobel operator is also used to extract raw 

occlusion boundaries of a person in the detected foreground 

image. Then, the “true occlusion boundaries” of a person are 

extracted by subtracting the “raw occlusion boundaries” of a 

person from the background edges. After that the system 

exploits the Gaussian distribution to extract candidate 

shadows in the foreground. At this stage, some pixels in the 

silhouette of a person might also be falsely marked as being 

shadow. For each candidate shadow pixel, the system uses a 

shadow evaluator for evaluating those pixels again that had 

been falsely labeled as silhouette pixels before. Here we 

detect pixels on occlusion boundaries of a person by adjacent 

features of those pixels. Finally, the system defines and 

processes a compensation window for having a silhouette of a 

person more completely (more accurately) detected. 

The paper is structured as follows. Section II describes the 

YUV and RGB methods, which were advocated by other 

researchers, and which are employed in our research for 

comparison. Section III details the proposed algorithm that 

was already briefly outlined above. Experimental results and 

a comparative analysis are given in Section IV. Section V 

concludes. 

 

II. COLOR-BASED SHADOW DETECTION METHODS 

We recall here two previously defined methods for later 

use in our comparative experimental analysis. 

A. YUV Method 

We employ the YUV shadow detecting method of [1]. In 

this method, at first only foreground pixels are checked for 

identical hue (i.e. supposed to be shadow). The luminance 

difference Y = Yimage - Ybackground is limited by an upper 

threshold Ymax to avoid positive difference values because a 

shadow always reduces the image intensity Yimage. The 

difference Y must be negative for object assignment. 

Afterwards, by comparing U and V an appropriate 

arctan-approximation is chosen. Here, U or V are also limited 

by a second threshold  to control an intensity shift caused by 

a shadow. Finally, is chosen as a threshold for hue. For 

more details, see [1].  

B. RGB Method 

The RGB shadow detecting method of [2] is our second 

algorithm for comparative experiments. For each pixel, a 

brightness distortion  i  is defined as follows: 
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A chromaticity distortion Di is defined as follows: 
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where IR(i), IG(i), and IB(i) represent the values of the red, 

green, and blue channel at the ith pixel in RGB color space of 

the currently observed color vector. Furthermore, R(i), G(i), 

andB(i), and R(i), G(i), and B(i) are means and standard 

deviations of these color components, respectively. 
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Shadow is detected by the following decision rule: 
 

          
1 if 

( , , )
0 others

i iand D
S x y t
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 
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             (3) 

where  and  are thresholds for brightness distortion and 

chromaticity distortion, respectively. Pixel i is a shadow pixel 

if S(x, y, t) = 1, and it is a silhouette pixel if S(x, y, t) = 0. 

 

III. PROPOSED METHOD 

We specify our novel technique previously already briefly 

outlined in Fig. 2. 

A. Foreground Detection 

We use the approximate median filter as proposed in [13]. 

It has been applied to a wide range of background subtraction 

scenarios since its initial description. 

Let I be the mapping of all input pixels, and B of the 

background pixels. For detected background pixels, we use 

Equ. (4) for a background update: 
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Only those pixels are updated which were detected as 

being background. The initial value of B(x, y, 0) is I(x, y, 0). 

For the modeled background, we employ then a simple 

subtraction approach for foreground extraction. A 

foreground mapping F is defined as follows: 
 

1 if | ( , , ) ( , , 1) |
( , , )

0 otherwise

tI x y t B x y t
F x y t
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       (5) 

 

where the initial value of F(x, y, 0) is 0, that means all the 

pixels are regarded as background at the beginning. A point 

at (x, y) in a frame t is detected as a foreground when the 

difference between its current value I(x, y, t) and background 

value B(x, y, t - 1) is bigger than a threshold t, which is the 

standard deviation of intensity of input frame t. For 

completeness, we also provide the definitions 
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In Eqs. (6) and (7), W and H are width and height of the 

input frame, respectively, and n = W × H is the number of 

pixels in the input frame. 

B. Detection of Occlusion Boundary of a Person 

We use the Sobel operator [17], [18] for collecting edge 

information. This information is used to evaluate candidate 

shadows in a shadow detection step. The Sobel operator is 

applied to the first frame of a given input video sequence for 

defining background edges Ebackground with a low threshold  

in order to extract as many background edges as possible, 

while it is also applied to each foreground image to extract 

the current initial occlusion boundaries Eini of a person by 

applying a high threshold ; see Equ. (8). 

Let E be the edge map, EH the horizontal Sobel edge 

convolution result, and EV the vertical Sobel edge 

convolution result. The process equations are as follows: 
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We use the standard deviation t as defined in Equ. (6), 

and  is a control parameter. In our experiments for 

background edge detection,  was set to be 2, and it was set 

to be 4 for initial detection of an occlusion-boundary of a 

person. 

True occlusion-boundaries Etrue of a person are detected by 

subtracting initial occlusion boundaries of a person from 

background edges as follows: 

1 if 

( , , ) ( , , ) ( , , ) 0

0 otherwise

true ini backgroundE x y t E x y t E x y t




  



    (9) 

C. Shadow Detection 

In order to detect shadow as accurate as possible, we use 

two steps for extracting shadow. First, the Gaussian 

distribution is exploited to detect candidate shadow pixels. 

Then, we use a shadow evaluator to verify each candidate 

shadow or extracting the true shadow. 

1) Candidate shadow detection 

In the foreground detection process, the silhouette of a 

person and some shadow pixels are extracted as foreground 

successfully. We suppose that the distribution of intensities 

of all pixels, which belong to the detected foreground, forms 

a Gaussian distribution. Values of silhouette pixels of a 

person are close to the peak of this Gauss distribution. 

Shadow pixel values are expected to be far away from the 

mean of the Gauss distribution. These assumptions are 

confirmed by the example shown in Fig. 3. 

Fig. 3 shows a current input gray-level frame, the detected 

foreground by a foreground detection process, the intensity 

distribution (i.e. the gray-level histogram) of all foreground 

pixels, the detected silhouette of a person and the intensity 

distribution of all pixels within this silhouette, the detected 

shadow and the intensity distribution of all shadow pixels. 

The intensity distributions of silhouette or shadow pixels are 

similar to Gaussian distributions. Most of the shadow pixel 

intensity is larger than the shifted mean . Thus, we use 

parameters  and  for extracting most of the shadow 

pixels. At the same time some of the silhouette pixels are also 

falsely extracted as being shadow. These misclassified pixels 

will be again relabeled as silhouette pixels in the next shadow 

evaluation step.  
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Fig. 3. Foreground, silhouette, and shadow intensity distributions; diagrams 

are differently scaled in vertical direction. Top: Current input frame and 

gray-level histogram (intensity distribution). Second row: Detected 

foreground and intensity distribution within this foreground. Third row: 

Silhouette and intensity distribution within the silhouette. Bottom: Shadows 

and intensity distribution within shadow regions. 

 

Based on the above formulated assumptions and analysis 

results, a candidate shadow (CS) is detected at pixels which 

have a larger difference to the intensity mean  of the 

detected foreground, formally expressed as follows: 
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where  is the mean intensity of all foreground pixels which 

were detected at the first stage, and  is the standard 

deviation. Both are calculated following Eqs. (11) and (12), 

respectively: 
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where m is the number of foreground pixels in frame t; this 

number is simply calculated as follows: 
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Let I(x, y, t) be again the pixel value at point (x, y) in input 

frame t . Foreground F(x, y, t) is calculated by Equ. (5). The 

pixel is a CS pixel if S(x, y, t) equals 1, otherwise the pixel is 

invalid for CS. 

A Gaussian distribution model is used for the extraction of 

CS. While detecting shadow, some silhouette pixels can be 

incorrectly labeled as being shadow. For improving such 

incorrect assignments of shadow pixels and for extracting all 

valid shadow pixels, we use standard deviation  as threshold. 

The following shadow evaluation process corrects 

misclassified pixels. 

2) Shadow evaluation 

The shadow evaluation step makes use of the detected 

occlusion boundary Etrue of a person. We use the rule that a 

true shadow pixel should be a pixel which is not enclosed or 

semi-enclosed by pixels on an occlusion boundary of a 

person. We use this rule to verify each candidate shadow 

pixel. The motivation is that we assume shadow to be outside 

of the occlusion boundary of a person. We designed a 

shadow evaluator to figure out the enclosure situation of each 

candidate shadow pixel. 

For each candidate shadow pixel at (x, y, t), the evaluator 

tries to detect its enclosure index C(x, y, t). Value C(x, y, t) 

represents the number of directions in which there are 

occlusion boundary pixels, and the distance of those from (x, 

y, t). The distance to the first met occlusion-boundary pixel is 

evaluated whether it is smaller than a given threshold Tt. Our 

shadow evaluator tests the usual eight directions of a pixel at 

(x, y, t) to obtain C(x, y, t); see Fig. 4. If C(x, y, t) is larger than 

four, then the candidate shadow pixel is considered to be a 

falsely classified shadow pixel, and it is relabeled as being a 

silhouette pixel. 

In Fig. 4, P1, P2 and P3 are evaluated as being true shadow 

by our shadow evaluator because C(P1) is 4, C(P2) is 3, and 

C(P3) is 2. N1 to N9 are evaluated as being fake shadow 

pixels as C(N1), C(N2), and C(N3) are all 5, C(N4), C(N5), 

and C(N6) are all 6, C(N7) and C(N8) are 7, and C(N9) is 8. 

These values are all larger than 4. 

The threshold Tt for the enclosure index, for analyzing 

frame t, is determined by the maximum value of foreground 

height or width. The calculation can use horizontal and 

vertical projection histograms of the detected foreground; see 

Fig. 5 for an example. Threshold Tt is then defined as 

follows: 
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where F(x, y, t) is defined as in Equ. (5). 
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Fig. 4. Shadow evaluator. P1, P2 and P3 are true shadow pixels, and N1 to N9 are classified as being false shadow pixels. 

 

 
Fig. 5. Extracted foreground and calculation of height and width based on 

projection histograms. 

 

D. Silhouette Compensation 

Some silhouette pixels are not detected as foreground 

correctly in the background subtraction stage because their 

intensity is very similar to that of the background. In order to 

have these misclassified pixels “back”, a silhouette 

compensation algorithm is used in our system. It is based on 

the similarity between background pixels and their 

foreground neighbours. 

Let px be a silhouette pixel, py be an adjacent background 

pixel of px, pz is an adjacent pixel of py in an n  n 

neighborhood window (NW), with py as reference pixel at the 

centre of this window. An adjacent background pixel py 

should also be a silhouette pixel if py has more than (2n2) / 5 

neighbors which are silhouette pixels in its n  n 

neighborhood window, and the intensity difference between 

values at px and py is reasonably small. 

Our procedure for silhouette compensation is specified by 

the following equations: 
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where  is an experimentally optimized threshold, and I(px) 

is the gray value at pixel px. Pixel py is a silhouette pixel if f(py) 

is equal to 1. The condition d(px, py) <  is used to ensure that 

only pixels which are similar to already known adjacent 

foreground pixels are relabeled as being silhouette pixels. 

The restriction g(py) > (2n2) / 5 is employed to control that no 

further background pixels are relabeled as being foreground 

pixels again. 

 

 

Fig. 6. Silhouette compensation. Top left: Current frame. Top right: 

Silhouette before compensation. Bottom left: Compensated silhouette 

without restriction g(py) > (2n2) / 5. Bottom right: Compensated silhouette 

with restriction g(py) > (2n2) / 5. 

 

Fig. 6 illustrates the process of silhouette compensation 

also for the case when we are not using the restriction g(py) > 

(2n2) / 5. In this case, background pixels will be labeled as 

being foreground also when they have similar intensity 

values with silhouette pixels. 
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IV. EXPERIMENTAL RESULTS 

We apply our method to gray-level video sequences. 

Experiments have been performed on several videos, each 3 

to 4 minutes of length. We detail results below that are 

representative for the performed experiments. 

For comparison with the two described color-model based 

methods, we record the sequences in color mode. We 

demonstrate results for recorded indoor sequences that 

contain one moving person at a time, and a static scene 

otherwise. By varying lighting in the room we have more or 

less intense cast shadows. We implemented the YUV and 

RGB methods for comparison and run those on the same 

input sequences. 

 

 
Fig. 7. Experimental results. (a) Background. (b) Background edge. (c) 

Current frame. (d) Occlusion boundary of a person. (e) Detected foreground 

by background subtraction. (f) Initial silhouette after shadow removal using 

Gaussian distribution. (g) Candidate shadow. (h) True shadow after shadow 

evaluation. (i) Silhouette after shadow evaluation. (j) Silhouette after 

compensation. 

Fig. 7 shows various outputs generated at various stages of 

the proposed system: (a) is static background in an input 

sequence, (b) shows detected background edges using the 

simple Sobel operator, (c) shows a frame of the sequence also 

showing a moving person, (d) shows the detected occlusion 

boundary of that person again using the Sobel operator, (e) is 

the result when detecting foreground by background 

subtraction, (f) is the initial silhouette after shadow removal 

based on Gaussian distribution, and (g) shows the extracted 

candidate shadow pixels. 

After shadow removal using the Gaussian distribution, all 

true shadow pixels are detected successfully. At the same 

time, several silhouette pixels in the head or foot regions, and 

in occlusion boundary regions are also misclassified as being 

shadow pixels if their pixel intensities are far away from the 

mean  of the intensities of all foreground pixels. After 

shadow evaluation using the true occlusion boundary of the 

person, which was detected by the Sobel operator, these 

misclassified pixels are relabeled as being silhouette pixels. 

These stages of the process are illustrated in images (h) and 

(i). Image (i) shows the result of shadow verification using 

our shadow evaluator. Finally, image (j) shows the completed 

silhouette after the compensation process. 
 

TABLE I: ANALYSIS OF EXPERIMENTAL RESULTS. PERCENTAGES ARE 

ROUNDED TO NEAREST INTEGERS 

Process PN CN 
CR 

(%) 

HR 

(%) 

Background  subtraction 10,544 7,530 71 93 

Shadow  removal 6,683 6,251 94 77 

Shadow  evaluation 7,976 7,363 92 91 

Compensation 8,146 7,530 92 93 
 

RN = 8,106 
 

 

We use measures for evaluating our experimental results. 

In Tables I, II, and III, PN is the number of detected 

silhouette pixels, CN is the number of detected correct 

silhouette pixels, CR = (CN/PN)  100 is the correct rate, HR 

= (CN/RN)  100 is the hit rate, RN is the number of true 

silhouette pixels, which are obtained by manual marking of 

the input frame. 

Table I shows that during the shadow evaluation, the 

proposed shadow evaluator recognized 1,112 fake shadow 

pixels. Value HR increases from 77% to 91% after the 

shadow evaluation. 

Fig. 8 illustrates a comparison of results obtained with our 

or with other methods. Subfigure (a) is an input frame in 

YUV color space for the YUV method. Subfigure (b) is an 

input frame in RGB color space for the RGB method. 

Subfigure (c) is the detected foreground by using 

approximate median filter, (d) and (e) are silhouettes after 

shadow removal using the YUV method or RGB method, 

respectively, and (f) is the detected silhouette using the 

proposed method. Subfigures (g), (h), and (i) are 

compensated silhouettes for (d), (e), and (f), respectively. 

Subfigures (f) and (i) show that our proposed algorithm 

keeps the silhouette more accurate than the YUV and RGB 

methods, as subfigures (d), (e), (g), and (h) illustrate. 

See Fig. 9. In the current input frame (a), light caused that 

the shoulder area drifts to white. The name card is white 
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originally. In both situations, the YUV and RGB methods fail 

to distinguish these pixels from true shadow; see (b) and (c). 

The proposed method recognizes that these pixels are fake 

shadows; see (d). 
 

 
Fig. 8. Experimental results compared with the YUV and RGB methods. 

(a) Current frame in YUV format. (b) Current frame in RGB format. (c) 

Detected foreground using a median filter. (d) Silhouette after shadow 

removal using the YUV method. (e) Silhouette after shadow removal using 

the RGB method. (f) Silhouette after shadow removal using the proposed 

algorithm. (g) Silhouette after compensation on (d). (h) Silhouette after 

compensation on (e). (i) Silhouette after compensation on (f).  

 

 
Fig. 9. Shadow removal result. Top left: Current input frame. Top right: YUV 

silhouette. Bottom left: RGB silhouette. Bottom right: Silhouette using the 

proposed method. 

 
TABLE II: ANALYSIS OF SILHOUETTE EXTRACTION RESULTS. 

PERCENTAGES ARE ROUNDED TO NEAREST INTEGERS 

Stage Method PN CN 
CR 

(%) 

HR 

(%) 

Before 

compensation 

YUV 9,129 8,619 94 90 

RGB 8,773 8,555 98 89 

Proposed 9,626 9,012 94 94 
 

After 

compensation 

YUV 9,545 8,975 94 94 

RGB 9,050 8,787 97 92 

Proposed 9,966 9,313 93 97 
 

RN = 9,596 

Table II lists results for silhouette extraction using the 

defined measures. Before compensation, the proposed 

algorithm extracted 94% of silhouette pixels, while the YUV 

and RGB methods only detect 90% and 89%, respectively. 

The effectiveness of the advocated compensation algorithm 

is also confirmed by the fact that the hit rate (HR) of proposed, 

YUV, or RGB method increases to 97%, 94%, or 92%, 

respectively. There is a minor decrease in correct rate (CR) if 

the silhouette was compensated. 

Table III states that only 142 silhouette pixels are 

misclassified as shadow by the proposed method. There are 

535 and 599 misclassified pixels for the YUV and RGB 

methods, respectively. The correct shadow removal rate of 

the proposed method equals 95%, and this supersedes those 

of the YUV and RGB by more than ten percent. Let RPN be 

the number of pixels removed by one of the three shadow 

removal methods (i.e., RPN = 12,638 – PN). Let RSN be the 

number of removed true shadow pixels, and FSN stands for 

the number of removed fake shadow pixels. We have that 

RSN = (12,638 – 9,154) – (PN – CN) and FSN = RPN – RSN, 

where RCR = (RSN / RPN)  100 is the correct shadow 

removal rate. 
 

TABLE III: ANALYSIS OF SHADOW REMOVAL RESULTS. PERCENTAGES ARE 

ROUNDED TO NEAREST INTEGERS 

Method 

/Stage 

PN 

 

CN 

 

RPN 

 

RSN 

 

FSN 

 

RCR 

 

Before  

Shadow 
Removing 

12,638 9,154 - - - - 

YUV 9,129 8,619 3,509 2,974 535 85% 

RGB 8,773 8,555 3,865 3,266 599 85% 

Proposed 9,626 9,012 3,012 2,870 142 95% 
 

RN = 9,596 

 

V. CONCLUSIONS 

This paper presented a new shadow removal algorithm in 

the context of silhouette detection for moving people in gray 

level video sequences. The algorithm employs an 

approximate median filter for modeling the background, uses 

the Gaussian distribution and the simple Sobel operator for 

detecting edge information to extract true shadow in the 

foreground. We generate the foreground by applying a 

straightforward background-subtraction scheme between 

current frame and modeled background. 

The crucial idea of the proposed algorithm is that true 

shadow should not be enclosed or semi-enclosed by 

occlusion boundaries of the moving person. Experimental 

results show that the presented method can distinguish true 

shadow from falsely detected shadow, even if the intensity 

values are very similar to that of the background. In such 

cases, the YUV and RGB methods are not able to detect 

silhouette pixels properly. 
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