



Abstract—Problem: This paper investigates the simulation of

a community of spatial intelligent agents, an important issue for

the implementation and evaluation of distributed algorithms.

The research question is how to simulate this organization using

Visual C#.NET.

Objective: This paper intends to use the C# programming

language to develop a simulator. In a simulated environment, a

social agent needs to communicate with other agents and

respond to received messages.

Method: Our approach is to integrate the thread and

delegate methods provided by the .NET framework. We

enhance the architecture of a spatial intelligent agent in order to

embed several in a simulated society. A basic C# program is

presented to demonstrate how to implement a contract net

protocol (CNP) among three simple agents.

Results: Two results were achieved: 1) the responses and

actions of three agents during a simulated CNP and 2) a

simulated environment that contains distributed spatial

intelligent agents that can interact with each other and a human

user.

Conclusion: The proposed methodology and presented code

provide a flexible and efficient framework for C# developers to

develop, simulate, and evaluate a society of advanced software

agents using the .NET platform.

Index Terms—simulator, C#.NET, multi-agent systems,

community/society, software agents, development,

communication, code, message, GIS.

I. INTRODUCTION

GICoordinator, a GIS-based intelligent assistant system

designed for disaster emergency response, helps an IC

(Incident Commander) to coordinate a team of field units,

especially in urban search and rescue operations [1], [2]. This

spatial intelligent system supports the IC with intelligent

algorithms for action planning and task scheduling to

centrally coordinate a team in a dynamic and spatial

environment [3] , [4]. In addition, it uses a spatial database to

manage geographic and location-based information and GIS

functions to support the development of these spatial

intelligent algorithms [5]. The C# programming language

was used to implement the core of the GICoordinator [2]. The

IC is equipped with a computer that runs GICoordinator, and

a simple version of this agent has been developed for field

units [6].

A difficult challenge arises in this domain when there are

several teams, each with their own IC. In order to maximize a

Manuscript received December 2, 2013; revised February 17, 2014.

R. Nourjou is with the Graduate School of Informatics, Kyoto University,

Japan (e-mail: nourjour@imdr.dpri.kyoto-u.ac.jp).

M. Hatayama is with the Disaster Prevention Research Institute (DPRI),

Kyoto University, Japan (e-mail: hatayama@imdr.dpri.kyoto-u.ac.jp).

joint objective, the teams have to cooperate and coordinate

their actions, and this is the main responsibility of ICs. As a

result, distributed ICs form an organization or society and

must coordinate their decisions with each other in a

decentralized way. With regard to this community, the

GICoordinator of an IC should provide two essential

capabilities: 1) to communicate and interact with other agents

to share data and coordinate decisions, 2) to use decentralized

algorithms to coordinate distributed decisions. A human and

GICoordinator is called a human-agent team in this paper,

and Fig. 1 illustrates an organization in which three

human-agent teams are embedded. Each IC is equipped with

a GICoordinator that is run on a tablet computer. Distributed

instances of GICoordinator can communicate with each other

via message (data) passing.

Fig. 1. An organization of three human-agent teams.

We require a proper framework to enable us to implement

and evaluate the two key capabilities of the GICoordinator

before real world applications can be developed. Hence, it is

necessary to simulate a society of advanced agents. Building

this framework is important because it enables us to easily

run several GICoordinators within it, observe their behaviors,

and test and refine the GICoordinator. When developing this

framework, we must also consider that a single

GICoordinator has already been developed.

Agent-based modelling (ABM) and simulation is a

relatively new approach to modelling systems composed of

autonomous, interacting agents [7]. The simulation of an

organization of GICoordinators is important for developing

and evaluating their organizational performance. A simulator

provides us with an efficient framework in which we can run

a number of GICoordinators in a virtual world, study their

interactions and behaviors when solving distributed

optimization problems, and test the efficiency of distributed

coordination algorithms. It enables us to easily refine their

architecture and re-design and re-implement better

algorithms.

In intelligent systems technologies, the .NET framework

can be used to develop agents such as GICoordinator. In this

paper, we investigate how to build a simulator using the C#

programming language on the .NET framework. Our

requirements (and assumptions) are as follows:

Simulation of an Organization of Spatial Intelligent Agents

in the Visual C#.NET Framework

Reza Nourjou and Michinori Hatayama

International Journal of Computer Theory and Engineering, Vol. 6, No. 5, October 2014

426DOI: 10.7763/IJCTE.2014.V6.903

 communication between agents is done by sending and

receiving messages

 the simulator and embedded agents are run on the same

computer

 each agent has access to a central spatial database

 a human user can select any agent and interact with it

 an interaction between an agent and human user is done

via the agent’s interface

 a description of the distributed coordination algorithms

is beyond the scope of this paper

 we can initiate and run any number of agents

 there are at least three agents

 all agents have GIS functions

 C# .NET is used to create this simulator

 an agent needs to be able to send a specific message to a

specific agent

 an agent needs to appropriately respond to received

messages

In order to build the simulator, we need to apply an

efficient tool to achieve the requirements given these

assumptions. Although there is much literature on

agent-based modeling software, toolkits, and programming

languages, unfortunately they do not thoroughly address the

problems stated in this paper.

This paper presents a methodology for the development of

a simulator for an organization of distributed GICoordinators

using C# .NET according to the requirements defined above.

In this simulated society, a GICoordinator can communicate

with other agents, respond to received messages, and interact

with a human user.

II. BACKGROUND

Agent-based modelling and simulation (ABMS) is a

relatively new approach to modelling complex systems

composed of interacting, autonomous “agents.” Agents have

behaviors, often described by simple rules, and interactions

with other agents that in turn influence their behaviors.

ABMS research can be traced back to investigations into

complex systems. A typical agent-based model has three

elements: 1) a set of agents, 2) a set of agent relationships and

methods of interaction, and 3) the agents’ environment. A

developer must identify, model, and program these elements

to create an agent-based model [7].

In general, two types of simulation/modelling systems are

available to develop agent-based models: toolkits and

software [8]. Toolkits are simulation/modelling systems that

provide a conceptual framework for organizing and

designing agent-based models. They provide appropriate

software libraries that include pre-defined routines and

functions specifically designed for agent-based modelling. In

addition, the object-oriented paradigm allows the integration

of additional functionality not provided by the toolkit. Some

toolkits include Swarm, MASON, Repast, OBEUS, and

AnyLogic.

In addition to toolkits, software such as StarLogo,

NetLogo, and OBEUS are available for developing

agent-based models, and can simplify the implementation

process. For example, using simulation/modelling software

often avoids the need to develop an agent-based model via a

low-level programming language (e.g., Java or C++). In

particular, software for ABM is useful for the rapid

development of prototype models. However, modelers using

software are restricted to the design framework implemented

by the software. For instance, some ABM software only has

limited environments (e.g., raster only) in which to model, or

agent neighborhoods may be restricted in size. Furthermore,

a modeler is constrained to the functionality provided by the

software (unlike in ABM toolkits, modelers are unable to

extend or integrate additional tools), especially if the toolkit

is written in its own programming language (e.g., NetLogo).

Most simulation packages claim they are object-oriented or

use Java as development language.

An agent-based model could be programmed completely

from scratch using a low-level programming language such

as Python, Java, or C. However, development from scratch

can be prohibitively expensive, given that this requires the

development of many services already provided by

specialized agent modelling tools. Most large-scale

agent-based models use specialized tools, toolkits, or

development environments because of their usability, ease of

learning, cross-platform compatibility, and the need for

sophisticated database connection capabilities, graphical user

interfaces, and GIS [7]. In particular, the use of toolkits can

reduce the burden modelers face when programming the

parts of a simulation that are not content-specific [8].

III. METHODOLOGY

Fig. 2 presents the structure of the simulation based on the

requirements defined in this paper. Our focus is on simulating

the organization in the .NET framework. To implement this,

we integrated the thread and the delegate methods included in

the C# .NET framework. These technologies enable us to

easily refine the architecture of the GICoordinator to achieve

our purpose.

A delegate is a type that defines a method signature. When

a delegate is instigated, its instance can be associated with

any method with a compatible signature. The method can be

Fig. 2. Structure of the simulation based on the requirements defined in

this paper

International Journal of Computer Theory and Engineering, Vol. 6, No. 5, October 2014

427

invoked (or called) through the delegate instance. Delegates

are used to pass methods as arguments to other methods.

Event handlers are simply methods that are invoked through

delegates. A custom method can be created and a class such

as a Windows control can call this method when a certain

event occurs. Threading enables the C# program to perform

concurrent processing so that more than one operation may

be done at a time [9].

C# supports the parallel execution of code through

multithreading. A thread is an independent execution path,

able to run simultaneously with other threads. Hence, it is

possible to write applications that perform multiple tasks at

the same time. Tasks with the potential of holding up other

tasks can execute on separate threads, a process known as

multithreading or free threading [9].

To demonstrate this, a basic program was developed in C#

to show how to implement a contract-net protocol (CNP)

among three simple agents in a simulated organization (given

in Listing 1). CNP is a task-sharing protocol in multi-agent

systems consisting of a collection of nodes or software agents

that form the “contract net.” When a node receives a

composite task (or for any reason cannot solve its present

task) it breaks the problem down into sub-tasks and

announces the sub-task to the contract net that acts as a

manager. Bids are then received from potential contractors

and the winning contractor(s) are awarded the job(s) [10].

The role of agent "a0" is to announce an auction. Because

the roles of "a1" and "a2" are to bid for this auction, they do

not need to communicate with each other. Hence, we have

not defined (established) communication between these two

agents. This makes our code clear and easily understood.

using System;

using System.Threading;

using System.Collections.Generic;

namespace SIMULATOR

{

 delegate void d_Send_f0t1(message msg);

 delegate void d_Send_f0t2(message msg);

 delegate void d_Send_f1t0(message msg);

 delegate void d_Send_f2t0(message msg);

 class Simulation

 {

 static void Main(string[] args)

 {

 Agent0 a0 = new Agent0("a0");

 Agent1 a1 = new Agent1("a1");

 Agent2 a2 = new Agent2("a2");

 a0.f_Send_t1 = new

d_Send_f0t1(a1.f_Recieve_f0);

 a0.f_Send_t2 = new

d_Send_f0t2(a2.f_Recieve_f0);

 a1.f_Send_t0 = new

d_Send_f1t0(a0.f_Recieve_f1);

 a2.f_Send_t0 = new

d_Send_f2t0(a0.f_Recieve_f2);

 Thread T_a0 = new Thread(a0.Run); T_a0.Start();

 Thread T_a1 = new Thread(a1.Run); T_a1.Start();

 Thread T_a2 = new Thread(a2.Run); T_a2.Start();

 Thread.Sleep(30000);

 }

 }

 class Agent0

 {

 public string agentId;

 public int count;

 private List<message> Messages;

 public d_Send_f0t1 f_Send_t1;

 public d_Send_f0t2 f_Send_t2;

 public Agent0(string id) { agentId = id; }

 public void Run()

 {

 Thread T0 = new Thread(f_ReactiveRules);

 T0.Start();

 message msg = new message

 {

 from = agentId,

 to = "ALL",

 subject = "Announcement-a-contract",

 };

 count = 0;

 Messages = new List<message>();

 var T1 = new Thread(() => f_Send_t1(msg));

T1.Start();

 var T2 = new Thread(() => f_Send_t2(msg));

T2.Start();

 }

 public void f_Recieve_f1(message msg)

 {

 Console.WriteLine(agentId + ": f= " + msg.from +

" :Bid= " + msg.content);

 Messages.Add(msg);

 count = count + 1;

 }

 public void f_Recieve_f2(message msg)

 {

 Thread.Sleep(1000);

 Console.WriteLine(agentId + ": f= " + msg.from +

" :Bid= " + msg.content);

 Messages.Add(msg);

 count = count + 1;

 }

 private void f_ReactiveRules()

 {

 /* Monitor the enviroment and Do something for

Example*/

 while (true)

 {

 if (count != 2) { Thread.Sleep(1000);

continue; }

 List<message> Winners = new List<message>();

 if (Messages[0].content >

Messages[1].content)

 { Winners.Add(Messages[0]); }

 else if (Messages[0].content <

Messages[1].content)

 { Winners.Add(Messages[1]); }

 else if (Messages[0].content ==

Messages[1].content)

 { Winners.Add(Messages[0]);

Winners.Add(Messages[1]); }

 message award = new message

 {

 from = agentId,

 subject = "Award",

 };

 foreach (message winner in Winners)

 {

 if (winner.from == "a1")

 {

 var T1 = new Thread(() =>

f_Send_t1(award)); T1.Start();

 }

 if (winner.from == "a2")

 {

 var T2 = new Thread(() =>

f_Send_t2(award)); T2.Start();

 }

 }

 break;

 }

 }

 }

 class Agent1

 {

 public string agentId;

 public d_Send_f1t0 f_Send_t0;

 public Agent1(string id) { agentId = id; }

 public void Run()

 {

 /* Do something */

 }

 public void f_Recieve_f0(message msg)

 {

International Journal of Computer Theory and Engineering, Vol. 6, No. 5, October 2014

428

 Thread.Sleep(1000);

 Console.WriteLine(agentId + ": f= " + msg.from +

" :Sub= " + msg.subject);

 if (msg.subject == "Announcement-a-contract")

 {

 message msg2 = new message

 {

 from = agentId,

 to = "a0",

 subject = "Bidding",

 content = (new Random()).Next(1, 3)

 };

 var T1 = new Thread(() => f_Send_t0(msg2));

T1.Start();

 }

 if (msg.subject == "Award")

 {

 Console.WriteLine(agentId + ":: A Nice

Day");

 }

 }

 }

 class Agent2

 {

 public string agentId;

 public d_Send_f2t0 f_Send_t0;

 public Agent2(string id) { agentId = id; }

 public void Run()

 {

 }

 public void f_Recieve_f0(message msg)

 {

 Thread.Sleep(1000);

 Console.WriteLine(agentId + ": f= " + msg.from +

" :Sub= " + msg.subject);

 if (msg.subject == "Announcement-a-contract")

 {

 message msg2 = new message

 {

 from = agentId,

 to = "a0",

 subject = "Bidding",

 content = (new Random()).Next(1, 3)

 };

 var T1 = new Thread(() => f_Send_t0(msg2));

T1.Start();

 }

 if (msg.subject == "Award")

 {

 Console.WriteLine(agentId + ":: A Nice

Day");

 }

 }

 }

 class message

 {

 public string from { get; set; }

 public string to { get; set; }

 public string subject { get; set; }

 public int content { get; set; }

 }

}

Listing 1. Visual C# .NET Code for the Implementation of a CNP in the

Simulated Organization of Three Simple Social Agents.

To establish a communication network among three

agents, four delegates were declared. As Fig. 3 illustrates,

there are two methods for setting up a communication

network among agents.

1) An agent can communicate with another agent via an

independent delegate. The network of GICoordinator

instances is decentralized and the number of nodes is

fixed, similar to a peer-to-peer network.

2) There is a shared delegate that enables all other agents to

send their message to this agent.

The following code shows a delegate declaration that is

used by agent a1 to send its messages to agent a0.

delegate void d_Send_f1t0(message msg);

Communication is used by agents to share or exchange

data and information. To do this, the class "message" is

declared to encode three kinds of data. A number of

sophisticated classes may be designed for sending different

types of data.

To present agents, three classes were declared. The

architecture of an agent includes: 1) several delegates for

sending its messages to others, 2) several functions for

receiving messages from others, and 3) other properties and

methods. The three agents were then created.

To setup a communication channel between two agents,

e.g., between agents a0 and a1, the following code is

necessary. It states that a0 can send a message to a1 if it calls

the function "f_Send_t1" and a1 receives a message from a0

through the function "f_Recieve_f0” In fact, a0 executes a

method of a1.

a0.f_Send_t1 = new d_Send_f0t1(a1.f_Recieve_f0);

To create three autonomous agents, the newly created

agents are run in three threads. The following code shows a

thread that has been created for the "run" method of a0:

Thread T_a0 = new Thread(a0.Run);

T_a0.Start();

A proper delegate should be run by an agent to send a

message to a certain agent. The agent a0 executes the

following delegate in order to send a message to the agent a1.

var T1 = new Thread(() => f_Send_t1(msg));

T1.Start();

The function “f_ReactiveRules” of a0 enables this agent to

autonomously monitor and scan the environment. In this

code, this function continuously scans the total number of

bids. If this agent receives two proposals, a simple

sub-algorithm is run to select the winner(s).

IV. RESULTS

Two results were achieved in this study. After running the

code presented in Listing 1, we achieved the result shown in

Fig. 4. It presents the responses and actions of three agents

during a simulated CNP.

Fig. 5 presents the second result, a simulator that runs

Fig. 4. The result of running the code presented in Listing 1

Fig. 3. Two possibilities for configuration of a communication network.

International Journal of Computer Theory and Engineering, Vol. 6, No. 5, October 2014

429

multiple instances of GICoordinator. We enhanced the code

shown in Listing 1 to achieve the the structure shown in Fig.

2 and requirements stated in Section I. Each GICoordinator

has its own user interface that allows the human user to select

and interact with it. Agents send messages containing data

and information that are required by agents to coordinate

their actions and decisions. In addition, a geographic

information system (ArcGIS [11]) provides geographic

information managed by a geodatabase [12].

V. CONCLUSION

This paper described a simulator that runs multiple

instances of an agent, the GICoordinator that was developed

in earlier work by the authors. The goal was to simulate the

operation of multiple agents that are distributed. The agents

are addressable and communicate through message passing

implemented with C# delegate methods. The thread methods

in C# allow for the parallelization of agent operations and

their communications. Demonstration code of the

contract-net protocol (CNP) was also presented.

This paper presented C# code that can simulate a virtual

society of distributed agents using the .NET framework. This

basic code demonstrated how to implement a communication

network among social agents. This code can be modified by

other software engineers and C# developers to satisfy their

requirements.

The proposed methodology provides a flexible framework

to develop, simulate, and evaluate multi-agent systems on the

.NET platform. It enables work on decentralized algorithms

for distributed GICoordinators by embedding a number of

these agents in a simulated environment and demonstrating

their actions.

For mutual communication between two agents, we

dedicated two delegates such that each agent has its own

communication channels. It is possible to specify a delegate

for an agent and share it so that other agents can send

messages through the delegate (or communication channel).

Multithreading methods allow us to execute several agents

and actions simultaneously.

It remains a difficult challenge for a software engineer to

develop and run a simulator with many agent instances. All

communication challenges among agents must be specified

and defined.

Future work will be to design and develop distributed

algorithms to coordinate distributed decisions among ICs in

disaster emergency response operations. This simulated

framework will be an essential tool for this research.

ACKNOWLEDGMENT

R. Nourjou is grateful for the financial support of

GCOE-HSE of Kyoto University, which enabled him to be a

visiting scholar at the Information Sciences Institute of

University of Southern California and the Robotics Institute

of the Carnegie Mellon University from December 2011 to

November 2012.

Fig. 5. The simulator that runs three instances of GICoordinator with

their user-interface and the GIS that is used by human

International Journal of Computer Theory and Engineering, Vol. 6, No. 5, October 2014

430

REFERENCES

[1] R. Nourjou, M. Hatayama, and H. Tatano, "Design requirements of

spatial intelligent coordinators for incident commanders," in Proc. the

11th International Conference on Information Systems for Crisis

Response and Management, 2014.

[2] R. Nourjou, M. Hatayama, S. F. Smith, A. Sadeghi, and P. Szekely,

“Design of a GIS-based assistant software agent for the incident

commander to coordinate emergency response operations,” Cornell

University Library, 2014.

[3] R. Nourjou, S. F. Smith, M. Hatayama, and P. Szekely, “Intelligent

algorithm for assignment of agents to human strategy in centralized

multi-agent coordination,” Journal of Software, 2014.

[4] R. Nourjou, S. F. Smith, M. Hatayama, N. Okada, and P. Szekely.

“Dynamic assignment of geospatial-temporal macro tasks to agents

under human strategic decisions for centralized scheduling in

multi-agent systems,” International Journal of Machine Learning and

Computing (IJMLC), vol. 4, no. 1, pp. 39-46, 2014.

[5] R. Nourjou, P. Szekely, M. Hatayama, G.-A. Mohsen, and S. F. Smith,

“Data model of the strategic action planning and scheduling problem in

a disaster response team,” Journal of Disaster Research, vol. 9, no. 3,

pp. 381-399, 2014.

[6] R. Nourjou, M. Hatayama, and H. Tatano, “Introduction to spatially

distributed intelligent assistant agents for coordination of human-agent

teams’ actions,” in Proc. 2011 IEEE International Symposium on in

Safety, Security, and Rescue Robotics (SSRR), IEEE, 2011, pp.

251-258.

[7] C. M. Macal and M. J. North, “Tutorial on agent-based modelling and

simulation,” Journal of Simulation 4, no. 3, pp. 151-162, 2010.

[8] C. J. E. Castle and A. T. Crooks, “Principles and concepts of

agent-based modelling for developing geospatial simulations,” CASA

Working Paper 110, Centre for Advanced Spatial Analysis (UCL),

London, UK, 2006.

[9] Microsoft, Visual C#. [Online]. Available:

http://msdn.microsoft.com/en-us/library/vstudio/kx37x362.aspx

[10] R. Davis and R. G. Smith, “Negotiation as a metaphor for distributed

problem solving,” Artificial intelligence 20, no. 1, pp. 63-109, 1983.

[11] T. Ormsby, “Getting to know ArcGIS desktop: Basics of Arcview,

ArcEditor, and ArcInfo: Exercise data,” ESRI Press, 2001.

[12] A. MacDonald, “Building a geodatabase,” ESRI press, 2001.

Reza Nourjou was born in Urmia, Iran in 1979. He

received the B.Sc. degree in geomatics engineering and

the M.Sc. degree in geographic information systems

(GIS) from the K.N.Toosi University of Technology,

Iran, in 2002 and 2007, respectively. In 2006, he joined

the Risk Management Research Center, International

Institute of Earthquake Engineering and Seismology

(IIEES), Tehran, Iran as a GIS expert and a research

assistant. Since 2010, he has been a Ph.D. candidate in graduate school of

Informatics, Kyoto University, Japan.

His current research interests include multi-agent systems, automated

planning and scheduling, intelligent agents, game theory, artificial

intelligence, distributed algorithms, and GIS. He is a member of Association

for the Advancement of Artificial Intelligence.

 He was the recipient of the first prize in the GIS competition ranked first

in the national student competition, Iran in 2001. He received the Japanese

Government Scholarship from October 2009 to March 2013 for the Ph.D.

program. He was a visiting scholar at the Information Sciences Institute of

the University of Southern California and the Robotics Institute of Carnegie

Mellon University from November 2011 to November 2012.

Michinori Hatayama was born in Osaka, Japan in

1968. He received the B.S. and M.S. degrees in control

engineering from Osaka University in 1992 and 1994

respectively, and the Ph.D. degree in computational

intelligence and systems science from Tokyo Institute of

Technology in 2000. In 2002, he became an assistant

professor and from 2004 is an associate professor in

Disaster Prevention Research Institute, Kyoto

University, Kyoto, Japan.

His research carrier in disaster risk management area began from the Great

Hanshin-Awaji Earthquake in Kobe in 1995. After that, his group developed

an original temporal GIS named DiMSIS and applied it to disaster response

activity and disaster risk management in some local governments and

regional communities. This software was used in real sites by officials in

Kobe (1995), Turkey (1999 and 2000), Niigata (2004) and Tohoku (2011).

 His current research interests include ICT based disaster risk assessment

system, disaster response system, rescue activity support, and disaster

planning support system.

International Journal of Computer Theory and Engineering, Vol. 6, No. 5, October 2014

431

