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Abstract—In this paper we will implement a new version of 

master-worker architecture that improves the previous ones. 
The common Master-Worker paradigm consists of two entities: 
a master and multiple workers. The master is responsible for 
decomposing the problem into small tasks and managing them 
until all tasks are completed. Therefore, the master should 
endures heavy load either communication or computation. This 
bottleneck in the master process typically occurs when the 
number of workers increases because the master process will 
not be able to keep all workers equally busy. The paper presents 
a novel technique for hierarchically nesting the basic 
master-worker scheme. This technique resolves the said 
problem by presenting a hierarchical scheme and reduces the 
communicational messages due to the usage of the Linda model. 
The obtained results for large matrix multiplication case study 
on a real cluster show the effectiveness of our model. 
 

Index Terms—Hierarchical Master-worker, Linda model, 
Linda-based Submaster, Communication overhead. 

 

I. INTRODUCTION 
Grid computing [1] has become an alternative to traditional 
supercomputing environments for developing parallel 
applications, in recent years. But, its building is more 
complex than traditional parallel computing environments. 
There are several high-level programming frameworks have 
been proposed to simplify the development of large parallel 
applications for Computational Grids (for example Netsolve 
[8], Nimrod/G [9], MW [10]). 

The Master-Worker paradigm is a common model to 
evaluate a pool of tasks that is used by many scientific and 
engineering applications like tree search algorithms, genetic 
algorithms, training of neural networks, stochastic 
optimization, parameter analysis for engineering design and 
Monte Carlo simulation [2].  

In the simplest version of master-worker model we just 
have one master that produces tasks and many workers that 
do these tasks. Therefore, the master will be busy all the time 
while workers are idle. So the master is bottleneck. During 
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the time some researchers struggle to improve this version. 
These efforts led to Hierarchical Master-Worker Skeletons [3] 
to decrease the load of master. In this model they investigate 
techniques for hierarchically nesting the basic master-worker 
scheme. It presents a skeleton implementation for nesting 
several master-worker instances. With this scheme the 
administrative load of task handling to a whole hierarchy of 
masters. The hierarchies have been elegantly expressed as 
foldings over the modified basic schemes. 

 But a problem is seen yet. If the number of workers or 
submasters grows, the submasters also will be bottleneck 
because many communications appear between workers and 
their submasters. In this paper we introduce a new 
architecture for hierarchical master-worker to decrease the 
communication cost. For this purpose we define submasters 
as shared spaces which can be accessed by their own workers. 
We use the Linda space to implement these shared areas. In 
this architecture, several workers can refer to a submaster 
concurrently and many communications will be eliminated.   
In general, the performance of master-worker applications 
will depend on the temporal characteristics of the tasks as 
well as on the dynamic allocation and scheduling of 
processors to the application. 

In evaluating common master-worker architectures, two 
performance measures of particular interest are speedup and 
efficiency. Speedup is defined, for each number of processors 
n, as the ratio of the execution time when executing a 
program on a single processor to the execution time when n 
processors are used. Ideally, we would expect that the larger 
the number of workers assigned to the application the better 
the speedup achieved. The efficiency measure is the 
utilization of the n allocated processors. It is defined as the 
ratio of the time that n processors spent doing useful work to 
the time those processors would be able to do work. 
Efficiency will be a value in the interval [0,1]. If efficiency is 
becoming closer to 1 as processors are added, we have linear 
speedup. This is the ideal case, where all the allocated 
workers can be kept usefully busy. In this work we used these 
measures to evaluate our proposed architecture. 

 The rest of this paper is organized as follows. In Section 2 
we discuss the common master-worker models in the 
literature. Section 3 reviews the Linda model at a glance. The 
structure of our Linda-based master-worker is presented in 
Section 4. We illustrate the effectiveness of our proposed 
model in Section 5. The conclusion is given in Section 6. 

II. REVIEW OF THE COMMON MASTER-WORKER MODELS 
The master-worker model is a simple scheme in which 

each processor is designated as number of workers, similar to 
the system suggested by Andrews and Polychronopoulos [4]. 
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Workers simply perform given operations, while masters are 
responsible for preparing work for the workers and 
correlating their output into a global result. Masters are 
required to partition the problem-space, schedule work, and 
balance the load of the workers to maintain efficiency [5]. 

 Space-based architecture (SBA) is a tool for 
implementation of a master-worker style application. The 
activities of each worker process in the system are 
coordination by a shared dependency graph. The dependency 
graph stores the current state of an application's execution, 
and is used by workers to determine which task should be 
executed next. The graph itself is a directed acyclic graph, 
with vertices representing an application's tasks, and the 
edges denoting the data dependencies between them. So, 
before a worker obtains a task for execution, it first takes the 
dependency graph from the space to see which task it should 
execute. The worker then takes this task from the space, and 
marks the corresponding node in the dependency graph as 
being in-progress. Also, a worker will use the graph to 
determine if the task depends on the results of any previously 
executed task, and, if so, will obtain these results before 
executing the current task.  When a worker has completed the 
execution of a task, it will obtain the dependency graph and 
mark the node as complete, before returning the results of the 
task's execution to the space. Workers continue this process 
until all nodes in the graph are marked as complete, at which 
time the master process takes all of the results from the space 
and assembles them into some meaningful whole, depending 
on the particular application [6]. Fig.1 demonstrates a 
detailed master-worker model in this implementation.  
 

 
 

Fig. 1: Master-worker implimentation in SBA 
 

MW is another tool for making a master-worker style 
application that works in the distributed, opportunistic 
environment of Condor. MW applications use Condor as a 
resource management tool, and can use either Condor-PVM 
or MW-File a file-based, remote I/O scheme for message 
passing. Writing a parallel application for use in the Condor 
system can be a lot of work. Since the workers are not 
dedicated machines, they can leave the computation at any 
time. In MW the master class manages a list of uncompleted 
tasks and a list of workers. The default scheduling 
mechanism in MW is to simply assign the task at the head of 

the task list to the first idle worker in the worker list. 
However, MW gives flexibility to the user in the manner in 

which each of the lists is ordered. For example, MW allows 
the user to easily implement both a Last-In-First-Out policy 
(LIFO) and a First-In-First-Out policy (FIFO) by simply 
specifying the location at which new tasks are added to the 
task list to be one of add at end or add at begin in the method 
[7]. Details of this architecture are shown in Fig. 2. 
 

 
Fig. 2: Relationships between Condor, PVM, and the 

MWDriver 
 

Berthold et al. proposed hierarchical master-worker 
skeletons. In this model they investigate techniques for 
hierarchically nesting the basic master-worker scheme. It 
presents a skeleton implementation for nesting several 
master-worker instances. With this scheme the administrative 
load of task handling to a whole hierarchy of masters. The 
hierarchies have been elegantly expressed as foldings over 
the modified basic schemes. A simple structure of this 
paradigm is shown in Fig. 3. 
 

 
 

Fig. 3: Hierarchical master-worker system 
 

The main problem of master-worker models is that the 
master is busy all the time. Hierarchical master-worker model 
use submasters to decrease the workload of the master. Fig. 4 
shows a typical activity profile for a master-worker system 
comprising 15 worker processes. It has been generated during 
the evaluation of a Mandelbrot graphics with 1000*1000 
pixels. The rows of the profile are showing the activity of the 
processes over time. The worker processes inhabit the upper 
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rows while the master activity is shown in the bottom bar. 
Light areas indicate high activity and dark areas indicate low 
activity. 

 
 

Fig. 4:  Activity profile of master-worker system with 15 
workers 

 
The profile clearly shows that the master is busy all the 

time while the workers are waiting for new tasks most of the 
time. This bottleneck in the master process typically occurs 
when the number of workers increases. The master process 
will not be able to keep all workers equally busy. 

But a problem still exists. If the number of workers or 
submasters grows, the submasters also will be bottleneck 
because many communications appear between workers and 
their submasters. In the next section we propose a 
Linda-based architecture for hierarchical master-worker to 
decrease the communication cost. 

 

III. THE LINDA MODEL 
Linda is a parallel programming model for creation and 

coordination of multiple processes that run in one or more 
processors. The Linda model is embedded in a computation 
language (C, Lisp, etc.) and the result is a parallel 
programming language [11, 12]. 

The tuple space is a logical associative shared memory, a 
repository of elementary data structures, accessible only 
through the four Linda operations. A tuple is simply a 
sequence of values corresponding to typed fields. Linda 
provides operators for dropping tuples into the tuple space, 
removing tuples out of the tuple space and reading them 
without removing them. Associative search is used to find 
tuples in the tuple space. Templates, including values of a 
subset of the fields of a tuple, are used to select tuples for 
removal or reading. The Linda model defines four operations 
on the tuple space. These are: 

out(t): it causes tuple t to be added into the tuple space. 
in(s): it causes an arbitrary tuple t that matches the 

template s to be withdrawn from the tuple space. If 
such tuple does not exist, the call blocks. 

rd(s): it is the same as in(s) expect that the matching tuple 
is not withdrawn from the tuple space. 

eval(t): it causes a process to be created to evaluate the 
fields of the tuple t. When the evaluation ends the 
tuple t is put in the tuple space. Since the native 
environment already offers process creation, this 
operation was not implemented. 

 

IV. LINDA-BASED HIERARCHICAL MASTER-WORKER 
ARCHITECTURE 

In this section we describe our proposed architecture (Fig. 
4) for resolving the problems that were mentioned in previous 
sections. Linda-based submasters provide a shared space 
(tuple-space) to save the tasks of the master for the workers 
and their results for the master. 

 

 
Fig. 5: Linda-based hierarchical master-worker 

architecture 
 
Here, the workers can easily refer to their own submasters, 

by using the simple Linda operations, to take a task and put 
the results in/to the space. For large number of workers, if we 
use traditional hierarchical master-worker system, 
submasters will be under high workload. In this situation, a 
long queue of workers is created. They want to get a task 
from a submaster or give their result to it. On the other hand, 
if we have several levels of submasters, the communication 
between them is a critical problem.  

We found the solution in assuming each submaster as a 
shared space in which each worker can easily access it, get a 
task and give back the results. We implement this shared 
space with Linad tuple spaces because it is easy to use and 
has simple operations. Therefore, each Linda-based 
submaster (LBSM) acts as a Linda tuple space. 

In the next section we will report the effectiveness of our 
proposed architecture. 

 

V. EXPERIMENTAL RESULTS 
For evaluating the effectiveness of our proposed 

architecture, we execute a task on a cluster with 9 nodes. The 
primary task is multiplication of two large matrices. We test 
this experiment for four cases. At first, we execute this case 
study on a node with one processor. Then we test this 
experiment for common master-worker scheme with one 
master node and eight worker nodes. Finally, hierarchical and 
our Linda-based hierarchical models are examined with a 
structure which is shown in Fig. 6. P0 is the master, P1 and P5 
are the submasters and P2, P3, P4, P6, P7, and P8 are the 
workers.   
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Fig. 6: Structure of the hierarchical and Linda-based 
master-worker systems in the experiment 

The activity profiles for mentioned experiments are shown 
in Fig. 7. Green areas indicate high activity and red areas 
indicate low activity. White areas indicate wait on 
communication (if the paper is printed in color).  

 

 
(a) Single processor 

 

 
(b) Common master-worker system 

 

 
(c) Hierarchical master-worker 

 

 
(d) Linda-based hierarchical master-worker 

 
Fig.7: The activity profiles of the experiment for different 

architectures 
As shown in Fig. 7, our proposed system performed the 

task in shorter time. It happens because we eliminate some of 
the communication overheads. When the master put a task on 
the shared space placed in the submasters, all of their workers 
can access the tuple space concurrently. As a result the blocks 
of communication (white area) in Fig. 7.d are decreased 
noticeably. As soon as a submaster receives a result from a 
worker, the master can take it. On the other hand if the master 
put a task on submaster shared space, the workers can take it 
immediately.   

Also, the workload on submaster is decreased. This 
experiment is done with small number of workers. Even 
though the number of workers is increased, the efficiency of 
the proposed architecture has not noticeable change. The 
reason is that we implement each submaster as a shared 
space.     

When evaluating a parallel system, we are often interested 
in knowing how much performance gain is achieved by 
parallelizing a given application over a sequential 
implementation. Speedup is a measure that captures the 
relative benefit of solving a problem in parallel. It is defined 
as the ratio of the time taken to solve a problem on a single 
processing element to the time required to solve the same 
problem on a parallel computer with p identical processing 
elements [13]. We denote speedup by the symbol S. 
Therefore, speedup is defined as: 

 

 
  
where Time(1) is the time taken to solve a problem on a 

single processing element and Time(p) is the time required to 
solve the same problem on a parallel computer with p 
identical processing elements. 

Only an ideal parallel system containing p processing 
elements can deliver a speedup equal to p. In practice, ideal 
behavior is not achieved because while executing a parallel 
algorithm, the processing elements cannot devote 100% of 
their time to the computations of the algorithm.  

Another parameter for evaluating a parallel system is 
efficiency. Efficiency is a measure of the fraction of time for 
which a processing element is usefully employed; it is 
defined as the ratio of speedup to the number of processing 
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elements [13]. In an ideal parallel system, speedup is equal to 
p and efficiency is equal to one. In practice, speedup is less 
than p and efficiency is between zero and one, depending on 
the effectiveness with which the processing elements are 
utilized. We denote efficiency by the symbol E. 
Mathematically, it is given by 

 

 
 

where S is speedup and p is the number of processing 
elements. 

We evaluate three master-worker architectures which are 
introduced in this section with execution time and two 
parameters speedup and efficiency. The task is multiplication 
of two large matrices. The results are summarized in Table 1, 
Table 2, and Table 3, respectively. 

Table 1: Evaluation of common master-worker system with 
one master and 8 workers 

No. of 
nodes 1 3 5 7 9 

Speedup 1 2.44 3.88 4.49 5.51 

Efficiency 1 0.81 0.78 0.64 0.61 
Exec. 

Time (sec) 391.91 160.67 100.92 87.23 71.09 

Table 2: Evaluation of hierarchical master-worker system 
with two submasters and 6 workers 

Speedup Efficiency Exec. Time 
(sec) 

6.91 0.77 56.65 

Table 3: Evaluation of Linda-based hierarchical 
master-worker system with two submasters and 6 workers 

Speedup Efficiency Exec. Time 
(sec) 

8.05 0.89 48.65 

 
As we see our proposed Linda-based hierarchical 

architecture shows better results in comparison to other 
approaches. 

VI. CONCLUSIONS 
Master-worker is a high-level programming framework 

that has been proposed to simplify the development of large 
parallel applications for Computational Grids. A common 
problem in traditional master-worker system is that the 
master is responsible for giving the tasks to the workers and 
gathering the results. Therefore, the master is bottleneck. For 
solving this problem a hierarchical master-worker model was 
presented. But with large number of workers, the submasters 
also become a bottleneck. 

We proposed architecture in which each submaster as a 
shared space in which each worker can easily access it, get a 

task and give the result. We implement this shared space with 
Linad tuple spaces because it is easy to use and has simple 
operations. Therefore, each Linda-based submaster (LBSM) 
acts as a Linda tuple space. Evaluation of the proposed 
method showed the superiority of it in practice. 
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