



Abstract—In this paper we present two implementations of

event-driven algorithms for simulating molecular dynamics

using the Omnet++ Simulation Framework and its Future

Event Set (FES) implementation. The first one uses a cell-linked

list algorithm. The second one extends the cell-linked list

algorithm incorporating a Verlet neighbor list algorithm. We

also present results and compare both algorithms over a set of

different scenarios. Finally, we discuss the advantages of using

the Omnet++ Simulation Framework and the implemented

algorithm for simulating cell-signaling communications.

Index Terms—Event-driven, molecular dynamics, Omnet++,

particle system.

I. INTRODUCTION

Cells, in terms of biological organisms, are able to perceive

and produce a response to their environment accordingly. For

unicellular organisms, the ability to react to changes in their

environment is key for survival, whereas for multicellular

organisms the exchange of information between neighbor

cells governs basic cellular activities and actions. This

communication between cells is known as cell signaling.

There are different types of cell signaling communications:

cells can communicate with each other via direct contact

(juxtacrine signaling), over short distances (paracrine

signaling) or over large distances (endocrine signaling).

In this work we focus on the subset of juxtacrine and

paracrine signaling types, where event driven simulation

algorithms can be easily applied. Specifically, we will focus

on the simulation of large systems of particles modeling the

communication channel using a hard-sphere system approach.

Furthermore, since our goal is to provide the tools to study

these types of communications, we present an

implementation of two event-driven algorithms implemented

using the Omnet++ [1] framework simulator. We also

comment some of the results of running the algorithms on a

set of different scenarios.

To conclude, we discuss the advantages of using

event-driven algorithms on cell-signaling communications,

but we also point out the difficulties to model realistic

scenarios.

II. EVENT-DRIVEN MOLECULAR DYNAMICS

In molecular dynamics there are two different, well-known

Manuscript received November 10, 2013; revised January 15, 2014.

D. Huertas is with the Polytechnic University of Catalonia, Barcelona,

Spain (e-mail: huertas.dani@gmail.com).
A. Rojas is with the Telematics Engineering (ENTEL) Department,

Barcelona Telecommunication Engineering Technical School (ETSETB),

Polytechnic University of Catalonia (UPC), Barcelona, Spain (e-mail:

alfonso@entel.upc.edu).

simulation methods [2]. The first one, known as time-driven

simulation, divides the simulation in small steps and

performs the required computations after each time step. The

other one, referred to as event-driven simulation [3], [4],

defines a series of events that take place during the simulation

process, which are then processed one after the other. The

main difference from the time-driven method is that the

simulation time does not advance in small steps, but it

advances the difference in time between events, thus jumping

in time from one event to the next. Time-driven algorithms

tend to be inaccurate when the time step is large (in terms of

processed events), and become more accurate as the time step

tends to zero. On the other hand, event-driven algorithms

tend to keep accuracy since automatically adjust the time

step.

One example of molecular dynamics using a time-driven

simulation method applied to molecular communications is

the N3Sim [5] from the N3Cat Initiative, which has already

brought valuable results on the field of molecular

communications [6].

Although both simulation methods were considered we

chose to implement an event-driven algorithm [7]. The main

reason to do so is that it best suits for a network simulation

framework like Omnet++, since it already implements a

Future Event Set (FES) that can be easily adapted as a

self-ordering event heap for the algorithm. The main

structure of the algorithm is based on the hard-spheres model,

although it can be easily extended to other type of models

such as fluid and particle interaction models.

The hard-spheres model, also referred as the billiards

model, consists of a collection of non-overlapping spheres (or

disks in a 2D model) contained within a bounded region, each

moving with a certain velocity. The main features of the

model are that the spheres follow the Newtonian laws of

physics, that is, particles move along simple, deterministic

paths in between collisions. Also binary collisions are

considered to have no duration and involve deterministic

changes of velocities of the colliding particles. Furthermore,

elastic collisions are considered, thus conserving the total

momentum and kinetic energy of the system.

1 1 2 2 1 1 2 2m u m u m v m v   (1)

2 2 2 2

1 1 2 2 1 1 2 2

1 1 1 1

2 2 2 2
m u m u m v m v   (2)

Secondly, different types of events must be considered:

sphere to sphere collision evens and sphere to boundary

collision events are the main ones, but other events must be

considered to help reduce computational costs.

Finally, we model the cells, the signaling molecules and

Daniel Huertas González and Alfonso Rojas Espinosa

Simulation of Cell Signaling Communications Using

Event-Driven Algorithms

International Journal of Computer Theory and Engineering, Vol. 6, No. 4, August 2014

307DOI: 10.7763/IJCTE.2014.V6.880

the medium particles by choosing different sphere radius,

mass and velocity values accordingly.

III. THE ALGORITHM

A. The Main Loop

Starting from a naïve approach, the algorithm is composed

of the following steps:

S1: Compute the time of the next collision event.

S2: Advance all the particles in the system up to the

computed time.

S3: Change the state of the particles associated to the

computed event.

Then repeat these three steps up to the required simulation

time. This oversimplified algorithm can be applied as long as

the number of particles in the system is not very large. But

this algorithm does not scale well with the total number of

particles since the required number of calculations that have

to be performed each iteration depends on the number of

particle pairs as follows

1
(1)

2
cN n n  (3)

Then it is clear that some changes need to be made on the

previous algorithm to improve the performance and

scalability [8]. The first one is to save collision times, since

on two consecutive iterations the computed time on the first

iteration will likely be the same on the second one. Is at this

point where we make use of the Omnet++ Future Event Set

(FES) implementation, and saving the collision times in its

time ordered queue of events. The second change comes from

the realization that a collision between two particles is not

likely to affect distant particles in the near future. So in order

to reduce the number of pairs that need to be checked for each

particle we implement a cell list algorithm.

B. Cell List Algorithm

As Fig. 1 shows, a cell list algorithm consists in dividing

the simulation space into smaller cells and link the particles

to the region they are in. Then, when a particle needs to

compute the next collision event it only needs to check the

pairs with particles in cells nearby, since distant particles are

not likely to interfere.

Fig. 1. Simulation space divided into smaller cells.

This introduces a new type of event, conveniently called a

transfer event that needs to be handled in the algorithm. This

event is produced when particles leave one cell and enter

another one, and ensures that no collisions are overlooked.

This may seem that adds extra computation to our algorithm.

However, since distant particles are not constantly checked

for collisions (which is an expensive computation in terms of

CPU cycles) the overall performance is improved.

Furthermore, these transfer events will also be saved in the

Omnet++ queue of events to save the algorithm to be

constantly checking for them.

Nevertheless, since we need to create a list of particles for

each cell, this algorithm has a higher cost in memory usage:

the smaller the cell size the higher the number of lists needed

and the transfer events that need to be handled. We can see

that there is a lower limit for the size of the cell and thus in the

total number of cells: a cell can be no smaller than the

diameter of a particle. Also, the finer the grid, the fewer pairs

that need to be checked.

At this point, our algorithm is formed of the following

steps:

S1: Compute the time of the next event, be it a collision

event or a transfer event.

S2: Advance all the particles in the system up to the

computed time.

S3: Handle the event, that is, change the particle states in

case of a collision event, or update the cell lists in the event of

a transfer.

These three steps are conveniently placed in the event

handler that every Omnet++ module has to implement. This

is a relevant difference with previous hard-sphere

event-driven algorithms seen so far. Extending a sphere as an

Omnet++ module and placing the steps from the main loop in

its event handler we can remove step 2, which leaves the

algorithm with two main steps:

S1: Compute the time of the next event, be it a collision or

a transfer.

S2: Handle the event, that is, change the particle states in

case of a collision event, or update the cell list in the event of

a transfer.

This change gives the algorithm an asynchronous approach,

meaning that not all the particles are at the same simulation

time. This is easily handled by saving the last event time for

each of the particles.

C. Verlet Neighbor List Algorithm

In order to further improve the performance of the

algorithm, we have also included a Verlet Neighbor List

algorithm, or also known as Near-Neighbor List algorithm

[9]. This algorithm consist in skipping those particles that are

further away from a given cut off radius (cutR), only taking

into account the ones that fall inside, creating the so called

neighbor list. As Fig. 2 illustrates, only the particles that are

closer than cutR are taken into account. Collisions are then

checked only with those particles that are in the neighbor list.

In our case, the neighbor list algorithm uses the cell lists to

retrieve only the particles in the neighboring cells. Then,

applying the cut off radius further crops the list of particles to

be checked. However, this list will change over time and

needs to be updated. We then define the out-of-neighbor

event, that is, the current particle has left the neighbor area

and needs to update its neighbor list. Furthermore, this list

update is also performed when the particle leaves the space

cell where it is listed.

International Journal of Computer Theory and Engineering, Vol. 6, No. 4, August 2014

308

Fig. 2. 2D particles falling inside and outside of the cut off radius of the i-th

particle.

D. Events Translation and Omnet++ Visualization

From the previous algorithms we must translate three types

of events into Omnet++ messages. Therefore, we define three

different kinds of Omnet++ messages:

1) Collision message, whether it is a particle to particle or a

particle to boundary collision.

2) Transfer message.

3) Out-of-neighbor message.

These messages are then managed by Omnet++ and

delivered to each particle (module). Every time a message is

delivered it will trigger the execution of the steps before

mentioned, computing the next event and updating the

simulation state each time, until the desired simulation time is

reached.

At the same time, a novel web server module has been

introduced into the simulation algorithm. Omnet++ comes

with tcl/tk visualization support, but with no 3D space

representation. The idea behind this custom, self-content

module is to surpass some of these limitations and offer the

ability to visualize the current simulation status. This web

server runs on an independent, parallel thread and offers real

time 3D visualization using any of the latest web browsers

using the WebGL technology [10]. This opens the door to a

whole new set of tools to manage molecule dynamics

simulations with Omnet++.

IV. RESULT

In this section we validate that the algorithm behaves as

expected through a series of experiments. First we use

different initial particle distributions to compare how the

algorithm behaves. Secondly, we compare the running time

of both algorithms over a set of different configurations

parameters. Finally, we suggest possible modifications to

better fit the algorithm for the simulation of cell signaling

communications. All the experiments are performed using a

3D simulation space. The results presented hereafter have

been obtained running the algorithm on a x86_64 Intel(R)

Core(TM) i7-2600 CPU @ 3.40GHz GenuineIntel

GNU/Linux, 8.0 GB RAM.

Fig. 3. Chromium web browser visualizing a running simulation.

A. Initial Particle Distribution

We start with a fixed number of particles n=1000 and a low

volume density ρ~1%. First we place the particles randomly

over a sphere surface to minimize the neighbor particles.

Secondly we place all the particles near the center of the

simulation to increase it. Finally we repeat the simulation

placing the particles following a cube pattern. In Fig. 4 we see

that the centered particle distribution initially produces a

much higher amount of particle collisions to later tend to a

stationary state, similar to the sphere surface distribution,

which corresponds to what is expected.

Now we increase the number of particles to n=10000 and

the volume density up to ρ=35%. This means that the sphere

surface distribution cannot be used in the same way since

there is not enough room. We opt to place the particles over a

series of concentric sphere surfaces, which for higher volume

densities it tends to a close-packing sphere distribution. Fig. 5

shows the projection on a x-y plane of the particles position

for the cube distribution (left) and the sphere or close-packing

distribution (right).

This time we focus on both the number of collisions per

second at the start and end of the simulation, and the initial

and final particle distribution. In Fig. 6 we see how the two

different initial distributions rapidly tend to stabilize at a

certain rate of collisions. Fig. 5 shows the particle distribution

International Journal of Computer Theory and Engineering, Vol. 6, No. 4, August 2014

309

at the start of the simulation and Fig. 7 at the end. We see that

after a certain amount of time the effect of the initial

distribution becomes unnoticeable on the final particle

disposition. We also notice that the cube distribution tends

much faster than the dense-packed distribution to a steady

state.

In Fig. 6 we see how the transient tends to stabilize much

faster than the previous results with a lower volume density.

Also both distributions tend to the same collision rate. The

higher collision rate during the steady state relates to the

increased volume density, which reduces the time between

particle collisions.

In Fig. 7 we see the position of the particles centroid after

t=100ns for both initial distributions. The first half shows the

final position using the cube distribution, whereas the second

half shows the final position using the dense-packed

distribution. We see how different initial states tend to a

similar steady state distribution, as expected.

Fig. 4. Particle collisions vs. simulation time for three different initial

particle distributions (n=1000 particles, ρ~1%).

Fig. 5. Left: x-y projection of particles position at t = 0 ns, placed following a

cube pattern. Right: x-y projection of particles position at t = 0 ns,

dense-packed at the center of the simulation space.

Fig. 6. Particle collisions vs simulation time.

Fig. 7. Comparison of the final particles position between the cube

distribution (first half) and the dense-packed (second half), after 100 ns.

In Fig. 8 we plot the paths of a particle during the transient

state when using the cube distribution (on top) and the path

that follows a particle using the dense-packed distribution

(bottom). We see how the last part of the particles path

describes the same behavior (similar to a random-walk),

according to the steady state. On the other hand, at the

beginning of the paths the two particles show a different

behavior according to the initial distribution used (cube and

dense-packed, respectively). The first one (on top) shows a

uniform collision-free paths between sections with higher

collisions, whereas the second one (bottom) has a main

section with much more collisions that force the particle to

remain near the same place for longer time.

Since the cube distribution reaches the steady state faster

and minimizes the effect of the transient-state we opt to use it

in order to evaluate the algorithm performance.

Fig. 8. Particles path for the cube distribution (top) and dense packed

distribution (bottom). Shadowed regions show the end of the path.

B. Algorithm Running Time

We run both algorithms varying the number of particles

from 1000 to 27000 with a fixed volume density, keeping it at

ρ=15%. We also keep the cell size fixed at its lower limit,

equal to the diameter of the particles. The particles are placed

in the simulation space following a cube pattern. In Fig. 9 we

plot the running time versus the number of particles in the

system.

Fig. 9. Top: running time vs. number of particles of each algorithm for a

volume density of ρ=15% and ρ=35%. Bottom: running time vs. volume

density.

In Fig. 9 (top) we see that execution time grows linearly

with the amount of particles in the system. This behavior is

International Journal of Computer Theory and Engineering, Vol. 6, No. 4, August 2014

310

achieved thanks to the use of the cell list algorithm.

Furthermore, in both figures we see that the Verlet list

algorithm outperforms the previous one. However, we also

see that for lower volume densities there is no overall benefit

from choosing the Verlet list implementation over the cell list,

since the costs of building and updating a neighbor list is

higher for less neighbor particles. We must also note the

higher slope when using a volume density of ρ=35%. This is

due to the higher collisions that the algorithm needs to check.

Now we run the algorithms varying the volume density

while keeping a fixed number of particles n=1000 and a

Verlet list radius of r=2 (the list radius also equals the space

cell side length which is the smallest possible, that is, the

diameter of the particles). Again, the initial position of

particles follows a cube pattern, and the space cell size is set

to equal the diameter of the particles. In Fig. 9 (bottom) we

plot the running time versus the volume density of the system.

We see that the Verlet neighbor list algorithm performs

slightly better than the cell list algorithm in terms of running

time, as expected.

Fig. 10. Comparison between the running time vs. near neighbor list radius

(Verlet list radius) using different space cell lengths (n=10000 particles,
volume density 35%).

Given the previous results, now we fix the number of

particles n=10000 and the volume density ρ=35% and plot in

Fig. 10 the running time vs. the Verlet list radius when using

different values for the space cell side length. We clearly see

that as we increase the length of the space cell we can highly

reduce the running time of the simulation by using smaller

Verlet radius, up to a limit.

Fig. 11 shows a similar result, but this time comparing the

running time against the number of cells per side. We see

how there is a tradeoff between the use of different Verlet list

radius and the size of the space cells. However, it is

convenient to have a combination of both to improve the

running time of the algorithm.

Fig. 11. Running time vs. space cells per side.

Finally, in Fig. 12 we run the algorithm using similar

parameters to those used in [8], that is: n=50000 particles and

ρ=15%. We see that, despite the higher running time values

obtained due to the simulation time used, the overall behavior

of the algorithm is the same, indicating that the simulator is

well behaved. Herir Sigurgeirsson, Andrew Stuart and

Wing-Lok Wan in 2001 [8] report that for a 5000 particle

system, their algorithm handles about 16,000 collisions per

second on a Pentium III PC. For the same amount of particles

our algorithm handles around 30,600 collisions per second

using the cell list algorithm. This increase is mainly due to the

use of a newer CPU with a higher clock rate. However, the

use of a combination of both algorithms improves the

previous value up to 34000 collisions per second.

Fig. 12. Running time vs. number of space cells per side.

C. Cell Signaling

In Fig. 13 we reproduce the signaling process between two

cells modeled as spheres. The first one is configured as a

particle emitter, emitting particles with an emission rate of

1,000 particles/ns to all directions. Then a nearby sphere,

configured as a particle receiver, receives the emitted

particles removing them from the simulation space in the

process. As we can see, the emitted pulse is highly reduced in

amplitude mainly due to the distance between the emitter and

receiver, proportional to r
2
. Also the duration of the pulse

received has been increased compared to the emitted pulse

due to the particles propagation and collisions.

Fig. 13. Signaling process between a particle emitter and a particle receiver.

V. CONCLUSION

In this paper we have shown that both algorithms are

capable to run an N-body simulation with a large amount of

particles alongside an event-driven network simulator like

Omnet++. This leads us into thinking that we are at a good

start point to develop a new open, integrated framework for

Omnet++. We have also shown a new visualization software

developed with 3D capabilities (in parallel with the existing

tcl/tk) thanks to a novel web server module and the use of the

latest WebGL technology. This makes us think that the

Omnet++ framework may need an update with new

visualization capabilities, like incorporating The

International Journal of Computer Theory and Engineering, Vol. 6, No. 4, August 2014

311

Visualization Toolkit (VTK).

As part of future work, one of our immediate goals will be

to further develop this work and delve into new and more

elaborated simulation scenarios regarding the cell signaling

communications.

REFERENCES

[1] Omnet++ Open Source Network Simulation Framework. [Online].
Available: http://www.omnetpp.org/

[2] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, 3rd

ed., New York, McGraw-Hill , 2000.
[3] S. M. Ross, Simulation, Academic Press, 3rd ed. 2001.

[4] J. Banks, J. S. Carson, and B. N. Nelson, Discrete-Event System

Simulation, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1996.
[5] N3Sim: A Simulation Framework For Diffusion-based Molecular

Communication. [Online]. Available:

http://www.n3cat.upc.edu/n3sim/
[6] I. Llatser, I. Pascual, N. Garralda, A. C. Aparicio et al., “Exploring the

Physical Channel of Diffusion-based Molecular Communication by

Simulation,” in Proc. Global Telecommunications IEEE Conference

and Exhibition, 2011.

[7] D. C. Rapaport, “The event-driven approach to n-body simulation,”

Progress of Theoretical Physics Supplement, no. 178, 2009.

[8] H. Sigurgeirsson, A. Stuart, and W. L. Wan, “Algorithms for

particle-field simulation with collisions,” Journal of Computational

Physics, no. 172, pp. 766-807, 2001.
[9] A. A. Chialvo and P. G. Debenedetti, “On the use of Verlet neighbor

list in molecular dynamics,” Computer Physics Communications, vol.

60, 1990.
[10] Three.js. Open Source WebGL Javascript Library. [Online]. Available:

http://threejs.org/

[11] G. S. Fishman, “Monte Carlo: concepts, algotrithms, and
Applications,” Springer Series in Operations Research, Berlin,

Germany: Springer-Verlag, 1996.

Daniel Huertas was born in Barcelona. Currently he works on his final

project for his Telecommunications Engineering degree at Polytechnics

University of Catalonia, Barcelona, Spain.

Alfonso Rojas received the M.S. degree in telecommunication engineering

from the Polytechnic University of Catalonia in 1992 and the Ph.D. in
telematics engineering in 2000. He is a Tenured Lecturer with the Telematics

Engineering Department, Telecommunication Engineering Technical

School of Barcelona, Polytechnic University of Catalonia, Spain, and
employed since 1994. He has taught several theoretical subjects related with

teletraffic, mobile communications, channel coding, cryptography or

information theory and also laboratories of communications and simulation.
His research interests include engineering education, statistics and data

transmission in nano networks.

International Journal of Computer Theory and Engineering, Vol. 6, No. 4, August 2014

312

