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Abstract—A variety of mathematical transforms have 

traditionally been used in various logic synthesis applications.  
This paper investigates the use of the autocorrelation 
transform: 

C(τ) = f (v) • f (v ⊕ τ)
v= 0

2n −1

∑  

Properties of the coefficient resulting from the application of 
this transform to switching functions are examined and 
detailed, including properties to identify symmetries and 
decompositions. The potential uses in logic synthesis of these 
properties and other observations based on the autocorrelation 
coefficients are explored, with emphasis on proofs as 
mathematical justification of the theorems relating the 
observed properties of the coefficients to properties of the 
underlying switching functions. 
 

Index Terms—high level synthesis, logic synthesis, 
transforms,  Boolean logic, digital logic, function 
representations. 

  

I. INTRODUCTION 
  The autocorrelation transform has been used in various 
areas including optimization and synthesis of combinational 
logic [1], variable ordering for Binary Decision Diagrams [2], 
and to compute the estimate C(f) of a function's complexity [1, 
3]. Use of the autocorrelation transform, however, has been 
limited. This may be due to either the fact that their 
computation is not trivial, or that little has been known of the 
transform's properties. To address this first problem new 
computation methods have recently been introduced by Rice, 
Muzio and Serra [4, 5] as well as by Stankovic and 
Karpovsky [6]. To address the second we devote this work to 
an explanation of the theoretical use of the autocorrelation 
transform in the identification of properties that may be 
useful in activities such as logic synthesis of Boolean 
functions. Effort is made to provide proofs to both justify and 
explain how we propose these coefficients be used, and 
although this work does not yet include experimental results 
based on these theories, future work in this direction is 
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currently underway. 
We first present the definition and an explanation of the 

autocorrelation transform. We then introduce several 
theorems relating the values of the resulting autocorrelation 
coefficients to properties of the underlying switching 
function. A number of potential applications for these 
theorems are presented, and future directions for this work 
are discussed. 

 

II. BACKGROUND 
The autocorrelation transform is a special case of the 

correlation transform, which is defined in [3] as follows:  
2 1

=0

( ) = ( ) ( ).
n

fg

v

B f v g vτ τ
−

⋅ ⊕∑  (1) 

If f and g are the same function then this becomes the 
autocorrelation transform, also called the cross-correlation, 
or convolution function. The superscript is generally omitted 
when referring to the autocorrelation transform. By 
convention B(τ)  is evaluated with f in the usual Boolean 
domain of {0,1}. If {+1,-1} encoding is used then the 
resulting autocorrelation coefficients are denoted as C(τ) :  

2 1

=0

( ) = ( ) ( ).
n

v

C f v f vτ τ
−

⋅ ⊕∑  (2) 

 It is straightforward to derive the relationship between B and 
C, namely:  

( ) = 2 4 4 ( ).nC k Bτ τ− +  (3) 
 In this equation, k=B(0), which is also the number of true 

minterms in the function. We should also point out that the 
+  operator is used to indicate the OR operator when used in 
logical expressions, and to indicate arithmetic addition when 
used in arithmetic equations such as (3) or summations. 

The derivation is based on this relationship between {0,1} 
encoded outputs, labeled as zi, and {+1,-1} encoded outputs, 
labeled as yi:  yi = -2zi+1.   

 Although the same information is present in both C(τ) 
and B(τ) there are some patterns that are more easily 
identifiable when using {+1,-1} encoding, and vice versa. 
Thus it is useful to be able to use either encoding, particularly 
for analysis. 

It is useful to present some additional notation to aid in the 
understanding of this paper. 

• τ and τ’ indicate values ranging from 0 to 2n-1. τα is used 
to indicate one such value. These are usually expressed 
as a binary expansion. 
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• |τ| is the weight, or the number of ones in the binary 
expansion of τ. If |τ| = j then B(τ) and C(τ) are said to be 
jth order coefficients. 

• The variable ordering  xn, …, x1  is used through-out. 
Thus a coefficient B(001) or C(001) is the first order 
coefficient corresponding to x1. 

• τi refers to a value whose binary expansion contains a 1 
in the ith bit, while the remaining n-1 bits are 0. 

• τiα refers to a set of values for which the binary 
expansion contains a 1 in the ith bit while the remaining 
n-1 bits have the value α∈{0,…2n-1}. . τiα  refers to a set 
of values for which the binary expansion contains a 0 in 
the ith bit while the remaining n-1 bits have the value α. 

• k refers to the number of true minterms in a function. 
• we use the terms  true minterm or  positive minterm to 

refer to a combination of assignments to the input 
values that results in a true output  e.g. f(v) = 1, and the 
term  false minterm to refer to an input assignment that 
results in a false output  e.g. f(v) = 0. The term  minterm 
may refer to either type of input assignment. 

 

III. OBSERVATIONS 
There are a number of restrictions on the values of both the 

{0,1} and {+1,-1} autocorrelation coefficients. These may or 
may not be useful in a logic synthesis context, but provide an 
easy test for correctness and validity, and lend some insight 
into the behaviour of this transform and its resulting 
coefficients. 

The following observations are clear from the definition of 
the autocorrelation transform:  

• B(τ) ∈{0,…, 2n} and C(τ) ∈{-2n,…, 2n} ∀ τ ∈{0,…, 
2n-1},  

• both B(τ) and C(τ) are even ∀ τ ≠0, and 
• B(τ) ≤ B(0) ∀ τ ≠ 0 and B(0) =k, and C(τ) ≤ C(0) ∀ 

τ ≠ 0 and C(0) =2n. 
The final observation requires further explanation: 

• a function may have at most 2n-1 negative values for 
C(τ). 

Let us define a function f(X) for which there are 2n-1  negative 
coefficients. Without loss of generality we assume that for 
this function every value of C(τ), 2n-1 ≤ τ ≤ 2n-1, is negative. 
If 2n-1 ≤ τ ≤ 2n-1 then in the autocorrelation equation 0 ≤ v ≤ 
2n-1-1 ⇒ 2n-1 ≤  v ⊕ τ ≤ 2n-1 and 2n-1 ≤ v ≤ 2n-1 ⇒ 0 ≤  v ⊕ τ 
≤ 2n-1-1. 

In other words, in computing each of the negative 
coefficients we are matching a minterm from the top half of 
the function with one from the bottom half of the function, 
assuming that minterms are ordered numerically from 
xnxn-1…x1=00…0  to xnxn-1…x1=11…1  . For any one of the 
designated coefficients to be negative, there must be 2n-2+1  
of the values 0 ≤ v ≤ 2n-1-1 negative if the values in 2n-1 ≤ v ≤ 
2n-1 are positive, or vice versa. However, this results in the 
remaining 2n-1 coefficients having positive values. Thus there 
can be at most 2n-1 negative autocorrelation coefficients. 

Theorems 1 and 2 provide two further observations about 
the values of the autocorrelation coefficients.  

Theorem 1   

2 1
2

=0

( ) = .
n

B k
τ

τ
−

∑  (4) 

The proof of this theorem relies on the following Lemma:  
Lemma 1   

  
B(τ ) = 2

k
2






τ =1

2n −1

∑ . (5) 

  

k
2







 is the number of pairings of the minterms as 

computed in the summation of the autocorrelation 
coefficients. This is then multiplied by two to produce all 
possible pairings in the form i, j and j, i. 

Proof:  Using Lemma 1 the sum of all of the {0,1} 
autocorrelation coefficients is as follows:  

  

τ =0

2n −1

∑B(τ ) = B(0) + 2
k
2








= k + 2
k(k − 1)

2
= k2 .

 

 n 
Theorem 2  C(τ) = 2n – 4m ∀ τ (6) 

where m∈k,k-2,…,0 for even values of k and m∈k,k-2,…,1  
for odd values of k, k being the number of true minterms in 
the function or the number of false minterms in the function, 
whichever is fewer. 

Proof:  The largest possible number of mismatch pairs, that 
is, negative contributions to the total coefficient value is -2k. 
The remaining pairs, which of necessity result in positive 
contributions to the coefficient value is 2(2n-2-k). Thus the 
total value for the coefficient is  

1( ) = 2 2(2 )
= 2 2 2
= 2 4 .

n

n

n

C k k
k k

k

τ −− + −
− + −

−
 

 n 
 However, this assumes that all positive minterms will pair 

with false minterms and vice versa. This is not the case; for 
some coefficients a subset of false minterms may pair with 
other false minterms. Each time a false minterm is paired 
with another false minterm the number of negative 
contributions is reduced by 2, leading to the equation in 
Theorem 2.   

 

IV. GENERAL PROPERTIES 
This section introduces theorems that relate particular 

patterns in the autocorrelation coefficients to underlying 
properties of the switching function. We propose in future 
work to utilize these patterns in identifying properties in the 
switching functions that may be useful in logic synthesis. For 
example, identification of variables of which the function is 
independent may reduce the problem size to something more 
manageable, while determining the possible existence of 
symmetries is known to be a useful technique in logic 
synthesis [7]. 
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A. Trivial Functions 
A trivial function is one in which all output values of the 

function are 1, or all output values of the function are 0, 
assuming {0,1} encoding. 

Theorem 3  C(τ) = C(τ’) ∀ τ and τ’ ∈{0,…, 2n-1} and if 
and only if f(X)=1 or f(X)=0.  

Proof:  If all the coefficients are equal, they must all have 
the value 2n as the coefficient C(0) always has this value. 
Based on this, if all of the coefficients have equal value, then 
this implies that the function matches itself at every value of 
τ. This can only occur if the function consists entirely of true 
minterms, or entirely of false minterms.     n 

B.  Identifying Redundant Variables 
The following two theorems may be applied to identify 

redundant variables in a function. Theorem 4 describes the 
situation that occurs when a function does not depend on one 
of the input variables. Theorem 5 describes the situation 
when a function may depend on only one of the input 
variables.  

Theorem 4    A function f(X) is independent of input 
variable xi if and only if C(τi )=2n.  

Proof:  Without loss of generality let us define a function 
f(X) that is independent of xn. By definition, f(0, xn-1,…, x1) = 
f(1, xn-1,…, x1).. Then  

  

C(τ n ) = f (v) × f (v ⊕τ n )
v=0

2n −1

∑

= f (v) × f (v ⊕τ n )
v=0

2n−1 −1

∑

+ f (v) × f (v ⊕ τ n )
v= 2n−1

2n −1

∑

  

Let us define the range 0 to 2n-1-1 as A and 2n-1 to 2n-1  as B. 
Then nv A v Bτ∈ ⇒ ⊕ ∈  and nv B v Aτ∈ ⇒ ⊕ ∈ . 
Since the function is defined to have f(A) = f(B) then   

  

C(τ n ) = f (v) × f (v ⊕τ n )
v=0

2n−1 −1

∑

+ f (v) × f (v ⊕ τ n )
v= 2n−1

2n −1

∑

= 1+ 1
v=2n−1

2n −1

∑
v=0

2n−1 −1

∑
= 2n.

 

  To prove the second part of the theorem we define 
(without loss of generality) a function f(X) for which C(τn)=2n. 
This is only possible if ( ) = ( )nf v f v vτ⊕ ∀ . This 
implies that f(1, xn-1,…, x1) = f(0, xn-1,…, x1), indicating that 
f(X) is not dependent on xn.                                           n 

Theorem 5   A function f(X) has 2n-1 autocorrelation 
coefficients C(τ)=2n (including C(0)) and the remaining 2n-1 
coefficients C(τ’)=-2n if and only if the function is dependent 
on only one of its input variables OR is related to such a 
function through the application of one or more invariance 

operations.  
 A function that is dependent on only one of its input 

variables has exactly 2n-1 true minterms. However, this is not 
the only situation where a function can have exactly 2n-1 true 
minterms. As discussed in [8] any function that is  related to 
this type of function through the application of one of four 
invariance operations will have 2n-1 true minterms. The 
theorem above and the proof following refer to any of these 
types of functions. 

   Proof:  Without loss of generality let us define f(X)=x1 
where x1 is the lowest order bit of the input X. Then if τ is an 
odd number the binary expansion of τ contains a 1 in the 

lowest order bit, and then by definition ( ) = ( )f v f v τ⊕  
where the bar indicates the Boolean not operator. Then  

 
2 1

=0

( ) = 1 1 = 2 .
n

n

v

C τ
−

× − −∑  

 Similarly if τ’ is an even number, then the binary 
expansion contains a 0 in the lowest order bit and by 
definition f(v) = f(v ⊕ τ’).  Then 

2 1

=0

( ) = ( )1 ( )1 = 2 .
n

n

v

C τ
−

′ − × −∑  

 Given autocorrelation coefficients of the pattern described 
above the function must be dependent on only one of the 
input variables (or related to such a function). Without loss of 
generality we assume that C(τ’)=2n where τ’ is even and 
C(τ)=-2n where τ is odd.  C(τ’)=2n where τ’ is even indicates 
that the function matches up two false or two true minterms 
for every product in the summation. Additionally every 
product being computed is comparing two inputs for which x1 
remains unchanged. Moreover, C(τ)=-2n where τ is odd 
indicates that the function matches a false minterm with a 
true minterm for every product in the summation, and that 
every product is matching a pair of inputs for which x1 varies. 
Based on this we can determine that the function must be 
dependent only on x1.                                              n 

C. Dissimilar Minterms 
The following are three theorems that allow a designer to 

identify a sparse (or the inverse) function from the values of 
the function's autocorrelation coefficients. A sparse function 
is one in which a majority of the input values result in a 
particular output,  e.g. 0 , and the remaining minority 
(possibly only one) result in the other possible output value. 
The first two theorems detail two specific cases: functions 
that possess one and only one true minterm (or the inverse) 
and functions that possess only two true minterms (or the 
inverse).  

Theorem 6   A function f(X) has exactly one dissimilar 
minterm if and only if C(τ)=2n-4 ∀ τ ≠ 0.  

The proof is given in the Appendix. 
The corollary for the {0,1} encoding can be shown by 

applying (3) to the theorem above. The general result is as 
follows:  

Corollary 1  A function f(X) has exactly one dissimilar 
minterm if and only if B(τ)=k-1.  
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It should be pointed out that this general B(τ) are quite 
limited. This is because for a function to have exactly one 
dissimilar minterm then either k=2n-1, in which case 
B(τ)=2n-2 ∀ τ ≠ 0, or k=1, which results in B(τ)=0 ∀ τ ≠ 0. 

This type of analysis of the division of true and false 
minterms in the function can be extended to the situation 
with d dissimilar minterms. Initially we look at the case of 
d=2 before giving the general result.  

Theorem 7   A function f(X) has exactly two dissimilar 
minterms if and only if   

C(0) = 2n, 

C(τα)=2n, and 
C(τ) = 2n-8 ∀ τ, τα ≠ 0 and τ ≠ τα. 
The proof is given in the Appendix. 
Corollary 2  A function f(X) has exactly two dissimilar 

minterms if and only if  
B(0) = B(τα) = k and 
B(τ) = k -2 ∀ τ, τα ≠ 0 and τ ≠ τα. 
Again, although Corollary 2 states a general result, in 

practice the values are limited to the following:   
• B(0) = B(τα) = 2 and B(τ) = 0, or 
•B(0) = B(τα) = 2n-2 and B(τ) = 2n-4. 
It should also be noted that this pattern of coefficients 

indicates that the function is either itself degenerate or is 
related through the application of the autocorrelation 
invariance operators [8] to a degenerate function. 

Theorem 8   A function f(X) has d dissimilar minterms if 
and only if the autocorrelation coefficients have the 
following properties:   

• C(0) = 2n,  
• for 

 

d
p







 p ∈2,4,6,…, d (or 2,4,6, d-1 if d is odd) C(τ) = 2n 

-4d + 4p, and  
• for the remaining coefficients, C(τ) = 2n – 4d. 
Again, the proof is given in the Appendix. 

D. Identification of Exclusive-OR Logic 
In some approaches to logic synthesis it is useful to 

identify a decomposition of the function that utilizes the 
Boolean ⊕  (exclusive-or) operator [9].  

Theorem 9   C(τi) = -2n  if and only if the function f(X) has 
a decomposition f(X) = h(X) ⊕ xi where h(X) is independent 
of xi.  

 If no first order coefficients meet the requirements for the 
presence of this decomposition, we then go on to include the 
second order coefficients in the examination. This is 
described in Theorem 10.  

Theorem 10   C(τi) =C(τj) = C(τij ) = 0, i≠ j if and only if 
the function f(X) can be decomposed into h(X)⊕ g(X) where 
g(X) = xi*xj, *∈{∧,∨}, and h(X) is independent of both xi and 
xj.  

Theorem 10 can be further extended to functions where 
g(X)=∨(xi…xi+m) or g(X)=∧(xi…xi+m) , i∈{1…n} and i + m ≤ 
n:  

Theorem 11   If f(X) can be decomposed into h(X1)⊕g(X2) 
where X1 ∪ X2=X and X1 ∩ X2=∅ then Cff(τX2) = Cgg(τX2).  

This theorem describes a situation in which a function f(X) 

is known to have a decomposition of the format h(X)⊕ g(X) 
where h(X) is independent of all the variables in g. Thus 

== { }φ ∅ . In this case autocorrelation coefficients that are 
related to g’s variables for both functions f and g will then be 
equivalent. Since it is possible to construct examples such 
that f(X) = h(X1) ⊕ g(X2), Cff(τX2) = Cgg(τX2), and X1 ∩ X2 ≠ 
{∅}, the presence of such a pattern Cff(τX2) = Cgg(τX2) is not 
strong enough to uniquely identify all exclusive-or based 
decompositions of this type. However, given two functions 
f(X) and g(X) it is always possible to construct h(X) such that 
g(X) ⊕ h(X) since ⊕ is reversible and h(X) can be determined 
by finding f(X) ⊕ g(X). Thus using a known library it would 
be possible to perform a fast determination, using the 
autocorrelation coefficients, of whether a mutually exclusive 
decomposition was likely, and then use the above to construct 
the second function of the decomposition. Proofs for each of 
these theorems are given in the Appendix. 

 

V. USES 
The above properties have been put to a variety of uses, 

including determining three-level decompositions [5], 
variable ordering and optimization of binary decision 
diagrams (BDDs) [2, 10], and in classifying Boolean logic 
functions [8]. Further work is progressing on additional uses, 
such as developing heuristics for Kronecker decision 
diagram (KDD) decomposition selections and for 
determining whether a BDD, KDD or functional decision 
diagram (FDD) is a better representation for a function [11]. 
Below we investigate the use of autocorrelation coefficients 
in identifying properties such as symmetries, linearity and 
self-duality of functions. 

A. Totally Symmetric Functions 
There are a number of different types of symmetries. We 

begin with the most restrictive symmetry. A Boolean 
function is said to be totally symmetric if the output is 
unchanged by any permutation of the inputs to the function. 
For example, f =x1+x2+x3 is totally symmetric, as is the 
majority function f =x1x2+x2x3+x1x3. We also discuss a 
recently introduced type of symmetry termed  antisymmetries 
[12]. An antisymmetry occurs when permuting all or a subset 
of variables results in the exact inverse of the original 
function. 

Theorem 12   If a function f(X) is totally (anti)symmetric 
then all {+1,-1} autocorrelation coefficients for any given 
order will be equal within the order. This may be written as 
C(τ) = C(τ’) ∀ τ, τ’ such that |τ|=|τ’|.  

Proof:  Work in [8] showed that permuting any two 
variables j and k results in exchanging the values of the 
coefficients C(τjα) and C(τkα). Since a function symmetric in 
two variables j and k by definition will not change if j and k 
are permuted then the autocorrelation coefficients will also 
not change  the function remains the same. Thus for C(τjα) 
and C(τkα) to be exchanged and yet no change to occur, we 
must have C(τjα) = C(τkα). A function that is totally 
symmetric will not change for any permutation of its 
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variables, so C(τ1α) = C(τ2α) = ... = C(τnα), assuming the 
variables are numbered from 1 to n. We can express this as 
C(τ) = C(τ’) where |τ|=|τ’|  since α can take on any value and 
the property still holds.                                                  n 

We note that this implies that there are 
non-totally-symmetric functions with coefficients of this 
pattern. An example of this is given below in Subsection V-B. 
However, such a function must be related through the 
application of one or more invariance operators to some 
totally symmetric function. We expand upon this in Section 
VI. We note also that the above theorem includes totally 
antisymmetric functions, since the negation of a function 

does not affect the {+1,-1} autocorrelation coefficients. 

B. Partially Symmetric Functions 
A slightly less restrictive form of symmetry is that of 

partial symmetry. A Boolean function is said to be partially 
symmetric, or possess a partial symmetry if the output is 
unchanged by any permutation of some subset of the inputs to 
the function. 

Theorem 13 If a function f(X) is partially symmetric in a 
subset of its input variables xi1 ,…,xim then the 
autocorrelation coefficients C(τjα ) will have equal values for 
all j∈{i1,…,im}.  

 The same reasoning as used above for Theorem 12 can be 
used here. Permuting any m variables xi1 through xim results 
in exchanging the values of the coefficients C(τi1α

 α) through 
C(τimα

 α). However, the function does not change, by 
definition, and so coefficients C(τi1α

 α) through C(τimα
 α) must 

be equal. For example, the function 

  f ( X ) = x
1
x

2
x

3
+ x

3
x

4
+ x

1
x

4
+ x

2
x

3
+ x

1
x

2
+ x

1
x

3
 is partially 

symmetric in x1x2x3. Although it appears that the product 

  x2
x

4
 is missing it is unnecessary as it is covered by the other 

products. The autocorrelation coefficients for this function 
are given in Table I. Of note are the sets of values (for τ) 1000, 
0100 and 0010, and 1001, 0101 and 0011 which illustrate the 
theorem above.  

C. Functions with Symmetries of Degree Two 
A third type of symmetry is a symmetry of degree two. This 

is a partial symmetry in which two sub-functions of the 
original function are identical and also are independent of 
two of the function's variables. Symmetries of degree two are 
identified by finding patterns where f(x1,…, a,…, b,…, xn) = 
f(x1,…, c,…, d,…, xn), a,b,c,d ∈{0,1}.  Equivalence (E), 
non-equivalence (N) and single-variable (S) symmetries as 
defined by Hurst, Miller and Muzio are all types of 
symmetries of degree two, and are defined in Table II [13]. 
Without loss of generality these definitions label the two 
variables of interest as n and n-1.  x’ refers to the the inverse 
of x. 

Antisymmetries can also be extended to the symmetries of 
degree two. For instance, an anti-equivalence symmetry is 

usually denoted 1{ , }n nE x x− . 
Theorem 14 A function f(X) with some type of 

(anti)symmetry of degree two will have autocorrelation 
coefficient values as follows:   

  
E{xi ,x j}  or 

  
N{xi ,x j}→ C(τ iα ) = C(τ jα ) , 

{ | }j iS x x  or { | } ( ) = ( )ij i ijS x x C Cα ατ τ→ , and 

{ | }i jS x x  or { | } ( ) = ( )ji j ijS x x C Cα ατ τ→ . 

Proofs for these are given in [14]. 
 

 
 
 
 
 
 
 
 

TABLE I: {+1,-1}AC COEFFICIENTS FOR THE PARTIALLY SYMMETRIC 

FUNCTION   f ( X ) = x
1
x

2
x

3
+ x

3
x

4
+ x

1
x

4
+ x

2
x

3
+ x

1
x

2
+ x

1
x

3
. 

 
 

TABLE II: DEFINITIONS AND NOTATION FOR EQUIVALENCE, 
NON-EQUIVALENCE, AND SINGLE-VARIABLE SYMMETRIES. 

D. Is it Possible to Determine Symmetries from the 
Autocorrelation Coefficients? 
Hurst, Miller and Muzio provide tests based on a function's 

spectral coefficients that will ascertain whether or not the 
function possesses a particular symmetry [13]. However, as 
indicated by the example in Table I, the autocorrelation 
coefficients cannot be used in the same way. This can be 
explained by examining the spectral symmetry tests, as 
described in Table III. The notation used in this table is as 
follows:   

• S0 includes all spectral coefficients that involve neither of 
xi or xj,  

• S1 includes all spectral coefficients that involve xi but not 
xj,  

• S2 includes all spectral coefficients that involve xj but not 
xi, and  

• S3 includes all spectral coefficients that involve both xi 
and xj.  

The spectral coefficients are computed using  
= .nT Y S⋅  (7) 

 For example, for a n=3 Boolean function,   

τ  C(τ)   τ  C(τ)   τ  C(τ)   τ  C(τ)  
000

0  
 16  010

0  
 4  100

0  
 4  110

0  
12  

000
1  

 4  010
1  

 4  100
1  

 4  110
1  

 4  

001
0  

 4  011
0  

 12  101
0  

 12  111
0  

 4  

001
1  

 4  011
1  

 4  101
1  

 4  111
1  

 4  

Symmetry   Definition  
 E{xn-1, xn}  f(x1,…, xn-2, 0,0) = f(x1,…, xn-2, 1,1)  
N{xn-1, xn}   f(x1,…, xn-2, 0,1) = f(x1,…, xn-2, 1,0)    
S{xn| xn-1}    f(x1,…, xn-2, 1,0) = f(x1,…, xn-2, 1,1)   
S{xn| x’n-1}    f(x1,…, xn-2, 0,0) = f(x1,…, xn-2, 0,1)   
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1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

= ,1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

nT

 
 − − − − 
 − − − −
 − − − − 
 − − − −
 

− − − − 
 − − − −
 

− − − − 
 

 

Y is the output vector of the function, for example   

0

1

2

3

4

5

6

7

1
1
1
1

=
1
1
1

,1

y
y
y
y

Y
y
y
y
y

 
 − 
 −
 
 
 
 
 
 
 
−  

 

and S is the resulting spectral coefficients. Using the sample 
function from above, the coefficients would be   

0

1

2

12

3

13

23

123

2
2
2
2

=
2
2
2

.6

s
s
s
s

S
s
s
s
s

 
 
 
 
 
 
 −
 
− 

 −
 
  

 

Examination of the spectral symmetry tests for three 

variables illustrates that if 32

1312

=
ss
ss

  
  

   
 then the function 

must possess N{x2, x3}. Similarly, if 32

1312

=
ss
ss

−  
   −   

 then the 

function must possess E{x2, x3}. The notation used here for 
labeling of coefficients is as illustrated in the example above. 

In the autocorrelation coefficients, this distinction is lost. 
This brings to question the following situation. If 

32

1312

=
ss

ss
−  

  
   

 then the autocorrelation coefficients will still 

be equal; however, the symmetries do not exist. The same 
holds true if s2 = s3 and  s12 = -s13. Therefore it is not possible 
to determine if a function has a particular equivalence, 
nonequivalence or single variable symmetry solely by 
examining the autocorrelation coefficients. The same holds 
true for totally and partially symmetric functions. 

E. Self-Dual & Self-Anti-Dual Functions 
Definition 5.1 The dual of a function f(x1, x2, …, xn) is 

  f ( x
1
, x

2
, ..., x

n
)  and is denoted by fd [9].  

fd is obtained first by replacing each literal  xi
 with  xi

 and 
then by complementing the function. A self-dual function is a 

function such that f = fd. There are 
122

n−
 self-dual functions 

of n variables. A self-anti-dual function is a function such 
that   f = f ( x

1
, x

2
, ..., x

n
) . 

Theorem 15 A function f(X) will have C(2n-1) = -2n if and 
only if it is a self-dual function. Similarly, a function will 
have C(2n-1) = 2n  if and only if it is a self-anti-dual function.  

Proof:  If a function is self-dual, then by definition 

  f ( X ) = f ( X ) , which can be rewritten as 

  f ( X ) = f ( X ⊕ 2 n − 1) . Using {+1,-1} notation 

  f ( X )gf ( X ) = −1 . Then by definition 

C(2n − 1) =
v=0

2n −1

∑ f (v) ⋅ f (v ⊕ 2n − 1)

 

and thus  

  

=
v =0

2n −1

∑ f (v) ⋅ f (v)

= −2n.

 

 
 
 
 
 

 TABLE  III: SPECTRAL SYMMETRY TESTS FOR SYMMETRIES IN {XN-1, XN}. XI’ 
REFERS TO THE INVERSE OF XI. 

 Symmetry   Test  
 S{xn-1 | x’n}  S1 + S3 = 0 
 S{xn | x’n-1} S2 + S3 = 0 
 E{xn, xn-1} S1 + S2 = 0 
 N{xn, xn-1}  S1 - S2 = 0 
 S{xn | xn-1}   S2 - S3 = 0 
 S{xn-1 | xn}   S1 - S3 = 0 

 Similarly, for self-anti-dual functions, by definition 

  f ( X ) = f ( X ) , which can be rewritten 

  f ( X ) = f ( X ⊕ 2n − 1)  and so again, by definition 

C(2n − 1) =
v =0

2n −1

∑ f (v) ⋅ f (v ⊕ 2n − 1)

 

and thus   

  

=
v=0

2n −1

∑ f (v) ⋅ f (v)

= 2n.

 

 If C(2n-1) = -2n then every pair of minterms f(v) and 

f(v⊕2n-1) in the summation 2 1

=0
( ) ( 2 1)

n
n

v
f v f v−

⋅ ⊕ −∑  must 

result in a -1 when multiplied and thus must have inverse 
values of each other. So ( ) = ( 2 1)nf v f v ⊕ − , or, 

( ) = ( )f v f v , which is the definition of a self-dual function. 
Similarly, if C(2n-1) = 2n then every pair of minterms f(v) and 

f(v⊕2n-1) in the summation   v = 0

2
n

− 1∑ f (v) ⋅ f (v ⊕ 2 n
− 1)  must 

result in a 1 when multiplied and thus must have identical 

values. So   f (v) = f (v ⊕ 2n − 1) , or,   f (v) = f (v) , which is 
the definition of a self-anti-dual function.                                  n 
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F. Linear Functions 

Definition 5.2 If a logic function f  is represented as  
f =a0 ⊕ a1x1 ⊕ a2x2 ⊕ … ⊕ anxn  where  ai=0 or 1 then f is said 
to be a linear function [9].  

 It is interesting to note that a linear function is either a 
self-dual or self-anti-dual function. The proof is given in [9]. 
There are 2n+1 linear functions of n variables, and a linear 
function that is obtained by assigning a linear function to an 
arbitrary variable of a linear function is also a linear function. 

Theorem 16 A function f(X) is linear if and only if all of its 
coefficients C(τ)=-2n, such that the weight of τ  |τ |=1.  

 This theorem follows directly from Theorem 9. We extend 
this theorem further to specify that if ALL values of τ with a 
single one in the binary expansion result in C(τ) = -2n then 
the function must be decomposable for all variables in the 
fashion described above. 

 

VI. DISCUSSION AND FUTURE WORK 
As noted in Sections V-A and V-B, identifying where a 

function has equal coefficients within a given order, or in a 
subset of that order, is not sufficient to identify a symmetric 
function. However, other work has identified that a function 
that does not have a symmetry but whose autocorrelation 
coefficients reflect this property must be in the same 
autocorrelation class as some totally/partially symmetric 
function [8]. Thus it may be possible to identify the necessary 
operations to apply in order to transform the subject function 
into a symmetric function, thus making it possible to leverage 
the advantages inherent in symmetries. Future work will 
address tools to make this determination. 

A comment on the suitability of the autocorrelation 
transform as an analysis tool is appropriate; the authors have 
found that properties defined on the outputs of a function are 
better suited to analysis with autocorrelation coefficients than 
are properties defined based on the structure of a function. 
For instance, the properties of self-duality and 
self-anti-duality lend themselves very nicely to identification 
through autocorrelation coefficients, while on the other hand 
monotone functions are much more difficult to identify. 

 

VII. CONCLUSION 
There are many existing techniques for the identification 

of properties such as symmetries, including [15, 16] and [17]. 
Rather than competing with these, this paper concentrates 
instead on the theoretical aspects of the autocorrelation 
transform as an analysis tool. We can conclude from this 
work that the autocorrelation transform can identify if a 
function does  not possess a symmetry, but that the 
autocorrelation coefficients resulting from the transform do 
not provide a sufficient condition for the existence of 
symmetries. Ongoing work in this area includes 
implementation of our technique in order that we may 
compare it with existing techniques, as well as the various 
directions described in Section 6. An extension of the 

analysis led to necessary and sufficient conditions for the 
identification of self-dual/self-anti-dual and linear functions. 
Future work will include implementations for these 
properties as well. 

This paper presents an exploration of the properties 
inherent to the autocorrelation transform as applied to 
single-output completely specified boolean functions. 
Various uses have been suggested in other publications. The 
ultimate goal of this work is to develop a preprocessing tool 
which will be used to aid chip designers in making choices 
prior to or during the design process. For instance, if one can 
quickly identify that a function cannot result in a 
non-exponential BDD then much optimization time will be 
saved by beginning work with a KDD representation. The 
properties described here are being used in the development 
of such a tool. 

Other avenues for future work include extending this 
research to the incompletely specified and multiple-output 
cases. 

APPENDIX -- PROOFS 
Theorem 6:  A function f(X) has exactly one dissimilar 

minterm if and only if C(τ) = 2n-4 ∀ τ≠0. 
Proof:  Without loss of generality let us define a function f 

such that f(v)=1 when v ∈ 0,…, 2n-2 and f(v)=-1 when v=2n-1.  
Then  

  

C(τ ) = f (v) × f (v ⊕ τ )
v = 0

2n
−1

∑

= ( f (v)
v = 0

2n
− 2

∑ × f (v ⊕ τ ))

+ f (2n − 1) × f (2n − 1 ⊕ τ )

= ( 1 × f (v ⊕ τ )
v = 0

2n
− 2

∑ ) + (−1) × 1

= (2n − 2 − 1) − 1

= 2n − 4∀τ ≠ 0.

 

Thus if f(X) has exactly one true minterm then all of the 
coefficients C(τ) = 2n-4,  τ≠0. 

For the second part of this proof, if all that is known of the 
function is the coefficients of this pattern, then it can be 
shown as follows that the function must have either exactly 
one true or exactly one false minterm. 

For a coefficient C(τ) let us define q as the number of 
positive pairs in the summation, and r as the number of 
negative pairs in the summation. A pair in this case is a 
combination of two minterms i, j, and a positive pair results 
when both minterms are true or when both are false. It should 
be noted that in the summation for the autocorrelation 
equation each pair is encountered twice. Then 2q-2r = 2n-4 
and 2q+2r = 2n  

 These equations can be solved to show that r =1. If there is 
only one negative pair in the summation then there is only 
one pair combining a true and a false minterm; all other pairs 
must combine either two true minterms or two false 
minterms. If there is only one coefficient C(τ) for which this 
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holds, then there can be any number of combinations of true 
and false minterms to meet these requirements. However, 
there are 2n-1 coefficients that have only one negative pair; 
therefore there can be only one dissimilar minterm in the 
function.                                                                               n 

Theorem 7: A function has exactly two dissimilar 
minterms if and only if  C(0) = 2n, C(τα)=2n, and C(τ) = 2n-8 
∀ τ, τα ≠ 0 and τ ≠ τα. 

Proof:  We approach this proof by first demonstrating that 
if there is one coefficient C(τα)=2n, τ≠0 and the remaining 
2n-2 coefficients C(τ) = 2n-8, then the function has exactly 
two dissimilar minterms. Let us define a function f such that 
f(v) = 1 when v ∈0,…, 2n, v ≠ i, j and f(v) = 1 when v =i, j.  
Without loss of generality let i=0 and j=1. Then  

  

C(τ ) = f (v) × f (v ⊕ τ )
v = 0

2n
−1

∑

= f (i) × f (i ⊕ τ ) + f ( j) × f ( j ⊕ τ )

+ f (v) × f (v ⊕ τ )
v = 2

2n
−1

∑
= (−1) × f (0 ⊕ τ ) + (−1) × f (1 ⊕ τ )

+ 1 × f (v ⊕ τ )
v = 2

2n
−1

∑

 

Then if i ⊕ τ = j and j ⊕ τ = i ,  C(τ) = 2n. Otherwise C(τ) = 
-2 + (2n-4) -2 = 2n – 8. Because of the nature of the ⊕ operator, 
i ⊕ τ = j ⇔ j ⊕ τ = i, and so there is only one assignment of 
τ  for which this can occur. 

A similar process to that shown in the proof of Theorem 6 
can be used to prove that this pattern of coefficients can only 
result in a function with exactly two dissimilar minterms.  n 

Theorem 8:   A function has d dissimilar minterms if and 
only if the autocorrelation coefficients have the following 
properties:   

• C(0) = 2n,  

• for 
 

d

p







 p ∈2,4,6,…, d (or 2,4,6, d-1 if d is odd) C(τ) = 

2n -4d + 4p, and  
• for the remaining coefficients, C(τ) = 2n – 4d. 

The proof is similar to those for Theorems 6 and 7. 
Proof:  Let us define a function f(X) for which there are d 

dissimilar minterms. Without loss of generality we assume 
that f(v) = -1 when v ∈0,…, d-1 and f(v) = 1 when v ∈d,…, 
2n-1.  Then there are d-p mod 2 ways (resulting in 

  

d

2







+
d

4







+ ... +
d

d − 1







or
  

d

2







+
d

4







+ ... +
d

d







 coefficients) 

in which pairs of dissimilar minterms may match up, 
resulting in  

 

  

C(τ ) = 2 p − 2(d − p) +
d

2n
−1− d

∑ f (v) × f (v ⊕ τ )

= 2 p − 2(d − p) + 2n − 2d

= 4 p − 4d + 2n

 

where the first term 2p is the result of the sum of the 
matching dissimilar minterms, the second term 2(d-p) is the 
result of the sum of the non-matching dissimilar minterms, 
and the final term is the sum of the remaining minterms 
which are all similar. 

There are also coefficients resulting from the situation in 
which none of the dissimilar coefficients match in the 
summation:  

 

  

C(τ ) = −2d +
d

2
n

−1− d

∑ f (v) × f (v ⊕ τ )

= 2n − 4d .

 

Again, using a similar technique to that shown in the proof of 
Theorem 6, if q is the number of positive pairs and r  is the 
number of negative pairs then 2q+2r = 2n and 2q-2r = 2n-4d 
which results in r = d.                                             n 

Theorem 9:  C(τi) = -2n  if and only if the function f(X) has 
a decomposition f(X) = f*(X) ⊕ xi where f*(X) is independent 
of xi. 

   Proof:  We first determine that a function with the 
decomposition f(X) = f*(X) ⊕ xi has a first order 
autocorrelation coefficient C(τi) = -2n. Without loss of 
generality let i = n. Then  

  

C (τ
n
) = f (v) × f (v ⊕ τ

n
)

v = 0

2
n

− 1

∑

= ([ f * (v) ⊕ x
n
] × [ f * (v ⊕ τ

n
) ⊕

v = 0

2
n

− 1

∑ (x
n

⊕ τ
n
)])

= ( f * (v) ⊕ 0) × ( f * (v ⊕ τ
n
) ⊕

v = 0

2
n − 1

− 1

∑ (0 ⊕ τ
n
))

+ ( f * (v) ⊕ 1) × ( f * (v ⊕ τ
n
) ⊕

v = 2
n −1

2
n

− 1

∑ (1 ⊕ τ
n
))

= ( f * (v) ⊕ 0) × ( f * (v ⊕ τ
n
) ⊕

v = 0

2
n − 1

− 1

∑ (1))

+ ( f * (v) ⊕ 1) × ( f * (v ⊕ τ
n
) ⊕

v = 2
n −1

2
n

− 1

∑ (0))

= f * (v) × (− f * (v ⊕ τ
n
)

v = 0

2
n − 1

− 1

∑ )

+ (− f * (v)) × f * (v ⊕ τ
n

v = 2
n −1

2
n

− 1

∑ )

= − f * (v) × f * (v ⊕ τ
n
)

v = 0

2
n

− 1

∑

= −2 n.

 

since by definition f*(X) is independent of xn. 
We next determine that a first order {+1,-1} 

autocorrelation coefficient with the value -2n implies that the 
function f(X) can be decomposed into f*(X) ⊕ xi. If C(τi) = -2n  
then the equation  

2 1

=0
( ) = ( ) ( )

n

i i
v

C f v f vτ τ
−

× ⊕∑  

implies that f(v) = -f(v⊕τi) ∀ v. This means that half of the 



International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009 
1793-8201 

 

 554 

function is the inverse of the other half, which can be 
achieved by defining a function f(X) as f(X) = f*(X) ⊕ xi.    n 

Theorem 10:  C(τi) =C(τj) = C(τij ) = 0, i≠ j if and only if 
the function f(X) can be decomposed into h(X)⊕ g(X) where 
g(X) = xi*xj, *∈{∧,∨}, and h(X) is independent of both xi and 
xj.  

 Proof:  Let us define a function f(X) = f*(X)⊕ g(X) where 
g(X) = xi ∧ xj and f*(X) is independent of xi and xj, and let us 
assume without loss of generality that i = n and j = n-1. Then  

 

  

C(τ ) = f (v) × f (v ⊕ τ )
v=0

2n −1

∑
= f (v1) × f (v1 ⊕τ ) +

A
∑ f (v2 ) × f (v2 ⊕ τ )

B
∑

+ f (v3) × f (v3 ⊕τ ) +
C
∑ f (v4 ) × f (v4 ⊕τ )

D
∑

 

where   
    • A:  v1 = 0 to 2n-2 -1  (0000 ... 0011),  
    • B:  v2 = 2n-2 to 2n-1-1 (0100 ... 0111),  
    • C:  v3 = 2n-1 to 2n-2n-2-1 (1000 ... 1011), and  
    • D:  v4 = 2n-2n-2 to 2n-1 (1100 ... 1111).1 
 Then  

  

C(τ n−1) = [( f *(v1) ⊕ xn ∧ xn−1)
A

∑
×( f *(v1 ⊕ τ n−1) ⊕ (xn ∧ xn−1 ⊕ τ n−1))]

+ [( f *(v2 ) ⊕ xn ∧ xn−1)
B

∑
×( f *(v2 ⊕ τ n−1) ⊕ (xn ∧ xn−1 ⊕ τ n−1))]

+ [( f *(v3) ⊕ xn ∧ xn−1)
C
∑

×( f *(v3 ⊕ τ n−1) ⊕ (xn ∧ xn−1 ⊕ τ n−1))]

+ [( f *(v4 ) ⊕ xn ∧ xn−1)
D
∑

×( f *(v4 ⊕ τ n−1) ⊕ (xn ∧ xn−1 ⊕ τ n−1))]

 

 

    

  

= [( f *(v1) ⊕ 0 ∧ 0)
A

∑
×( f * (v1 ⊕ τ n−1) ⊕ (0 ∧ 0 ⊕ τ n−1))]

+ [( f * (v2 ) ⊕ 0 ∧ 1)
B

∑
×( f * (v2 ⊕ τ n−1) ⊕ (0 ∧ 1⊕ τ n−1))]

+ [( f * (v3) ⊕1∧ 0)
C
∑

×( f * (v3 ⊕ τ n−1) ⊕ (1∧ 0 ⊕ τ n−1))]

+ [( f * (v4 ) ⊕1∧ 1)
D
∑

×( f * (v4 ⊕ τ n−1) ⊕ (1∧ 1⊕ τ n−1))]

 

 

 
1 Four variable expansions are given for the sake of clarity only.  This does 

not limit the proof to four variables. 

   

  

= f * (v1)
A

∑ × f * (v1 ⊕ τ n−1)

+ f * (v2 )
B
∑ × f * (v2 ⊕ τ n−1)

+ f * (v3)
C
∑ × (− f * (v3 ⊕ τ n−1))

+ (− f * (v4
D
∑ )) × f * (v4 ⊕ τ n−1)

= 2n− 2 + 2n− 2 + (−2n− 2 ) + (−2n− 2 )
= 0

 

 and similarly for C(τn) and C(τn n-1). 
If C(τn)  = C(τn-1) = C(τn n-1) = 0 then each of the 

summations may be broken down into C(τ) = 2n-2 + 2n-2 - 2n-2 
- 2n-2.   Let us assume there exists some variable ordering 
such that  

 

2
1 1 1

2
2 2 1

2
3 3 1

2
4 4 1

( ) ( ) = 2 and

( ) ( ) = 2 and

( ) ( ) = 2 and

( ) ( ) = 2 .

n
n

A
n

n
B

n
n

C
n

n
D

f v f v

f v f v

f v f v

f v f v

τ

τ

τ

τ

−
−

−
−

−
−

−
−

× ⊕

× ⊕

× ⊕ −

× ⊕ −

∑
∑
∑
∑

 

Then the first two summations tell us that for part of the 
function f(v) is independent of variable xn-1 and the second 
two indicate that for part of the function f(v) contains ⊕ xn-1. 
This indicates that the solution must be of the form f(X) = 
f*(X) ⊕ g(X) where f*(X) is independent of xn-1  and g(X) 
contains xn-1 . The same process is then applied to the other 
known coefficients, C(τn n-1)  = C(τn) = 0. There are two 
possible solutions: 

  
Solution 1 

τ n−1 τ n τ n n−1

A
∑ f (v1) × f (v1 ⊕τ ) = 2n−2 = 2n− 2 = −2n− 2

B
∑ f (v2 ) × f (v2 ⊕τ ) = 2n−2 = −2n− 2 = 2n− 2

C
∑ f (v3) × f (v3 ⊕τ ) = −2n−2 = 2n− 2 = 2n− 2

D
∑ f (v4 ) × f (v4 ⊕τ ) = −2n−2 = −2n− 2 = −2n− 2

 

The above is obtained for g(X) = x1 ∧ x2. 
  
Solution 2 

τ n−1 τ n τ n n−1

A
∑ f (v1) × f (v1 ⊕τ ) = −2n−2 = −2n− 2 = −2n−2

B
∑ f (v2 ) × f (v2 ⊕τ ) = −2n−2 = 2n− 2 = 2n−2

C
∑ f (v3) × f (v3 ⊕τ ) = 2n−2 = −2n− 2 = 2n−2

D
∑ f (v4 ) × f (v4 ⊕τ ) = 2n−2 = 2n− 2 = 2n−2

The above is obtained for g(X) = x1 ∨ x2.                        n 
The proof is easily extended to any number of variables in 
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g since there is always only one input combination for which 
g(X) = xi ∧ xi+1 ∧ … ∧ xi+m = 1 and similarly where g(X) = xi 
∨ xi+1 ∨ … ∨ xi+m = 0. 

Theorem 11:  If f(X) can be decomposed into h(X1)⊕g(X2) 
where X1 ∪ X2=X and X1 ∩ X2=∅ then Cff(τX2) = Cgg(τX2). 

Proof:  Without loss of generality, let us assume that X2 
consists of some combination of the variables x1, x2,…, xm-1 
and X1 consists of the remaining variables from X . Then 
given a function f(X) that is decomposable into h(X1) ⊕ g(X2) 
as described in the theorem above, by definition we have h(X) 
= h(X ⊕ τX2); in other words, h is not affected if any of the 
variables in X2 are changed. Then, noting that in {+1,-1} 
notation performing an ⊕ operation is the same as the 
mathematical multiplication operation, the following holds: 

  
C ff (τ X 2 ) = f (v) × f (v ⊕ τ X 2 )

v =0

2n −1

∑
 

  
=

v=0

2n −1

∑[h(v) ⊕ g(v)]× [h(v ⊕τ X 2 ) ⊕ g(v ⊕τ X 2)]

 
  
=

v=0

2n −1

∑h(v) × h(v ⊕ τ X 2) × g(v) × g(v ⊕ τ X 2 )

 
  
=

v=0

2n −1

∑ (h(v))2 × g(v) × g(v ⊕τ X 2 )  

 
  
=

v=0

2n −1

∑1× g(v) × g(v ⊕ τ X 2 )  

   = C gg (τ X 2)  
                                                                                             
n 
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