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Properties of Autocorrelation Coefficients for
Single-Output Switching Functions

J. E. Rice, Member, |IEEE, J. C. Muzio, Senior Member, IEEE, N. A. Anderson and R. Jansen

Abstract—A variety of mathematical transforms have
traditionally been used in various logic synthesis applications.
This paper investigates the use of the autocorrelation
transform:

2"-1
[o]
cit)=a f(v)- f(vAt)

v=0
Properties of the coefficient resulting from the application of
this transform to switching functions are examined and
detailed, including properties to identify symmetries and
decompositions. The potential uses in logic synthesis of these
propertiesand other observations based on the autocorrelation
coefficients are explored, with emphasis on proofs as
mathematical justification of the theorems reating the
observed properties of the coefficients to properties of the
underlying switching functions.
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[. INTRODUCTION

The autocorrelation transform has been used in various
areasincluding optimization and synthesis of combinational
logic[1], variable ordering for Binary Decision Diagrams|[2],
and to computethe estimate C(f) of afunction's complexity [1,
3]. Use of the autocorrelation transform, however, has been
limited. This may be due to either the fact that their
computationisnot trivial, or that little has been known of the
transform's properties. To address this first problem new
computati on methods have recently been introduced by Rice,
Muzio and Serra [4, 5] as well as by Stankovic and
Karpovsky [6]. To address the second we devote this work to
an explanation of the theoretical use of the autocorrelation
transform in the identification of properties that may be
useful in activities such as logic synthesis of Boolean
functions. Effort is made to provide proofs to both justify and
explain how we propose these coefficients be used, and
although thiswork does not yet include experimental results
based on these theories, future work in this direction is
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currently underway.

We first present the definition and an explanation of the
autocorrelation transform. We then introduce severa
theorems re ating the values of the resulting autocorrel ation
coefficients to properties of the underlying switching
function. A number of potential applications for these
theorems are presented, and future directions for this work
are discussed.

II. BACKGROUND

The autocorrelation transform is a special case of the
correlation transform, which isdefined in [3] as foll ows:

2N
B(t) =3 f(v)g(vAt). M

v=0
If f and g are the same function then this becomes the
autocorrelation transform, also called the cross-correlation,
or convolution function. The superscript is generally omitted
when referring to the autocorrelation transform. By
convention B(t) is evaluated with f in the usual Boolean
domain of {0,1}. If {+1,-1} encoding is used then the

resulting autocorrel ation coefficients are denoted as C(t) :

2N
Ct)=aq f(v)xf (VAt). )
v=0
It isstraightforward to derivetherelationship between B and
C, namely:
Ct)=2"- 4k+4B(t). ©))

In thiseguation, k=B(0), which is also the number of true
minterms in the function. We should also point out that the
+ operator isused toindicate the OR operator when used in
logical expressions, and to indicate arithmetic addition when
used in arithmetic equations such as (3) or summations.

Thederivation isbased on this reationship between { 0,1}
encoded outputs, labeled as z, and {+1,-1} encoded outpults,
labeled asy;: y; = -2z+1.

Although the same information is present in both C(t)
and B(t) there are some patterns that are more easily
identifiable when using {+1,-1} encoding, and vice versa.
Thusitisuseful to beableto useeither encoding, particularly
for analysis.

Itisuseful to present some additional notationtoaid in the
understanding of this paper.

+t andt’ indicatevaluesranging from0to2"-1.t, isused

toindicate one such value. These are usually expressed
as ahinary expansion.

546


mailto:j.rice@uleth.ca
mailto:jmuzio@cs.uvic.ca

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

* [t] isthe weight, or the number of onesin the binary
expansion of t. If |t| =] then B(t) and C(t) aresaid to be
j™ order coefficients.

» Thevariable ordering X, ..., X3 isused through-out.
Thus a coefficient B(001) or C(001) isthefirst order
coefficient corresponding to X;.

« t; refersto a value whose binary expansion containsa 1
in theit" bit, while the remai ning n-1 bitsare 0.

* ti5 refersto a set of values for which the binary
expansion containsalin thei™ bit whilethe remaining
n-1bitshavethevalueal {0,...2""}. .t;, referstoaset
of valuesfor which the binary expansion containsa0in
thei™ bit whiletheremaining n-1 bitshave the valuea.

* k refers to the number of true mintermsin a function.

* we usetheterms true mintermor positive mintermto
refer to a combination of assignments to the input
valuesthat resultsin atrue output e.g. f(v) = 1, and the
term false mintermto refer to an input assignment that
resultsin afalse output e.g. f(v) =0. Theterm minterm
may refer to either type of input assignment.

IIl. OBSERVATIONS

Thereareanumber of restrictions on the values of both the
{0,1} and {+1,-1} autocorrelation coefficients. These may or
may not be useful in alogic synthesis context, but provide an
easy test for correctness and validity, and lend some insight
into the behaviour of this transform and its resulting
coefficients.

The following observations are clear from the definition of
the autocorrelation transform:

B(t)T{0,...,2% andC(t) T {-2",...,2% " t1{0,...,
2"-13,
both B(t) and C(t) areeven" t 1 0, and
B(t) £B(0)" t ! 0and B(0) =k, and C(t) £ C(0) "
t ¢ 0and C(0) =2".
The final observation requires further explanation:
afunction may have at most 2" negative val ues for
C(t).
Let usdefineafunction f(X) for which thereare 2™ negative
coefficients. Without loss of generality we assume that for
this function every value of C(t), 2"* £t £ 2"-1, is negative.
If 2"1 £t £ 2"-1 then in the autocorrelation equation 0 £ v £
2"1p 2 E VAt £2™1and2" EVE2™-1P Of VAt
£2M-1,

In other words, in computing each of the negative
coefficients we are matching a minterm from the top half of
the function with one from the bottom half of the function,
assuming that minterms are ordered numerically from
XnXn-1...X3=00...0 t0 X Xn.1...%=11...1 . For any one of the
designated coefficients to be negative, there must be 2"%+1
of thevaluesO £ v £ 2"*-1 negative if thevaluesin 2" £ v £
2"-1 are positive, or vice versa. However, this resultsin the
remaining 2" coefficients having positivevalues. Thusthere
can be at most 2" negative autocorrelation coefficients.

Theorems 1 and 2 provide two further observations about
the values of the autocorrelation coefficients.
Theorem 1
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22-1
aB(t) =k @
t=0
The proof of this theorem relies on the following Lemma:
Lemmal

n_q ..
8 B)=220

5
o 825 ©®

‘*k(_’ is the number of pairings of the minterms as

€20
computed in the summation of the autocorrelation
coefficients. This is then multiplied by two to produce all
possible pairingsin theformi, j and j, i.

Proof: Using Lemma 1 the sum of al of the {0,1}
autocorrelation coefficientsis as follows:

N1

o ako

Bt) =BO)+2. .

EO (t) ) 625

=k+2k(k_1)

2

=K.

N
Theorem2 C(t) = 2"-4m" t (6)

where ml k,k-2,...,0 for even values of k and mi kk-2,...,1
for odd values of k, k being the number of true mintermsin
the function or the number of false mintermsin the function,
whichever isfewer.

Proof: Thelargest possible number of mismatch pairs, that
is, negative contributionsto thetotal coefficient valueis -2k.
The remaining pairs, which of necessity result in positive
contributions to the coefficient value is 2(2"-k). Thus the
total value for the coefficient is

Clt) =-2k+2(2"'- k)
=-2k+2"- 2k

=2"- 4k.
N

However, thisassumesthat al positive mintermswill pair
with false minterms and vice versa. Thisis not the case; for
some coefficients a subset of false minterms may pair with
other false minterms. Each time a false minterm is paired
with another false minterm the number of negative
contributions is reduced by 2, leading to the equation in
Theorem 2.

IV. GENERAL PROPERTIES

This section introduces theorems that relate particular
patterns in the autocorrelation coefficients to underlying
properties of the switching function. We propaose in future
work to utilize these patternsin identifying propertiesin the
switching functionsthat may be useful in logic synthesis. For
example, identification of variables of which the function is
independent may reduce the problem size to something more
manageable, while determining the possible existence of
symmetries is known to be a useful technique in logic

synthesis [7].
( e@ IACSIT
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A. Trivial Functions

A trivia function isonein which all output values of the
function are 1, or all output values of the function are 0,
assuming {0,1} encoding.

Theorem 3 C(t)=C(t)" tandt’T{0,.., 2"1} and if
and only if f(X)=1 or f(X)=0.

Proof: If dl the coefficients are equal, they must all have
the value 2" as the coefficient C(0) always has this value.
Based on this, if all of the coefficients have equal value, then
thisimpliesthat the function matchesitself at every value of
t. Thiscan only occur if thefunction consists entirely of true
minterms, or entirely of false minterms. N

B. Identifying Redundant Variables

The following two theorems may be applied to identify
redundant variables in a function. Theorem 4 describes the
situation that occurswhen afunction does not depend on one
of the input variables. Theorem 5 describes the situation
when a function may depend on only one of the input
variables.

Theorem 4 A function f(X) is independent of input
variable x; if and only if C(t; )=2".

Proof: Without loss of generality let us define a function
f(X) that isindependent of x,. By definition, f(0, Xp.1,..., X1) =
f(1, Xp-1,..., X1).. Then

Ct)= 8 fv) f(vAt)
=8 (v fvAL)

v=0

"1
+a f(v) f(vAt)
v=2"1
Let usdefinetherange0to2"-1asA and 2"* to 2"-1 asB.
Then vi AP vAt T B and vi BP VAL T A.

Since the function is defined to have f(A) = f(B) then

vl
Ct)=a fv f(vAt)

v=0
Zg-l

+a f(v) f(vAt)
v=2mt

2“;-1 22’-1

=altal
v=0 v=2nt

=2"

To prove the second part of the theorem we define

(without loss of generality) afunction f(X) for which C(t,)=2".

This is only possble if f(v)=f(vAt )" v. This
impliesthat f(1, X,.1,..., X1) = f(O, Xq.1,..., X1), indicating that
f(X) isnot dependent on x,. N
Theorem 5 A function f(X) has 2"* autocorrelation
coefficients C(t)=2" (including C(0)) and the remaining 2"*
coefficients C(t ")=-2"if and only if the function is dependent
on only one of its input variables OR is related to such a
function through the application of one or more invariance

operations.

A function that is dependent on only one of its input
variables has exactly 2™ true minterms. However, thisis not
the only situation where a function can have exactly 2"* true
minterms. Asdiscussed in [8] any function that is related to
this type of function through the application of one of four
invariance operations will have 2" true minterms. The
theorem above and the proof following refer to any of these
types of functions.

Proof: Without loss of generality let us define f(X)=x,
where x; isthelowest order bit of theinput X. Thenif t isan
odd number the binary expansion of t containsa 1 in the
lowest order bit, and then by definition f(v) = f(VAt)
where the bar indicates the Bool ean not operator. Then

22-1
Ct)=g1 -1=-2"
v=0

Similarly if t” is an even number, then the binary
expansion contains a 0 in the lowest order bit and by
definition f(v) = f(vA t ). Then

211
Ct9=a ()1 (-)1=2"
v=0
Given autocorrelation coefficients of the pattern described
above the function must be dependent on only one of the
input variables (or related to such afunction). Without loss of
generality we assume that C(t’)=2" where t’ is even and
C(t)=-2"wheret isodd. C(t’)=2"wheret’ iseven indicates
that the function matches up two false or two true minterms
for every product in the summation. Additionally every
product being computed is comparing two inputsfor which x;
remains unchanged. Moreover, C(t)=-2" where t is odd
indicates that the function matches a false minterm with a
true minterm for every product in the summation, and that
every product ismatching a pair of inputs for which x; varies.
Based on this we can determine that the function must be
dependent only on x;. N

C. Dissimilar Minterms

Thefollowing are three theorems that allow a designer to
identify a sparse (or the inverse) function from the values of
the function's autocorrelation coefficients. A sparse function
is one in which a majority of the input values result in a
particular output, e.g. O, and the remaining minority
(possibly only one) result in the other possible output value.
The first two theorems detail two specific cases: functions
that possess one and only one true minterm (or the inverse)
and functions that possess only two true minterms (or the
inverse).

Theorem 6 A function f(X) has exactly one dissimilar
mintermif and only if C(t)=2"-4" t 1 0.

The proof is given in the Appendix.

The corollary for the {0,1} encoding can be shown by
applying (3) to the theorem above. The general result is as
follows:

Corollary 1 A function f(X) has exactly one dissimilar
mintermif and only if B(t)=k-1.
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It should be pointed out that this general B(t) are quite
limited. This is because for a function to have exactly one
dissmilar minterm then either k=2"-1, in which case
B(t)=2"-2" t 1 0, or k=1, which resultsin B(t)=0" t 1 0.

This type of analysis of the division of true and false
minterms in the function can be extended to the situation
with d dissimilar minterms. Initially we look at the case of
d=2 before giving the general result.

Theorem 7 A function f(X) has exactly two dissimilar
minterms if and only if

co=2"

C(t,)=2", and

Ct)=2"-8" t,t,! Oandt ! t,.

The proof isgiven in the Appendix.

Corollary 2 A function f(X) has exactly two dissimilar
minterms if and only if

B(0) = B(t,) = kand

Bt)=k-2" t,t,t Oandt? t,.

Again, although Corollary 2 states a general result, in
practice the values are limited to the following:

*B(0) =B(t,) =2andB(t) =0, or

*B(0) = B(t,) = 2"-2 and B(t) = 2"-4.

It should also be noted that this pattern of coefficients
indicates that the function is ether itself degenerate or is
related through the application of the autocorrelation
invariance operators [8] to a degenerate function.

Theorem 8 A function f(X) has d dissimilar mintermsiif
and only if the autocorrelation coefficients have the
following properties:

- C(0) =2",

«for &0 pl246,...,d(or2,4,6,d-1if disodd) C(t) = 2"

&po
-4d + 4p, and
« for the remaining coefficients, C(t) = 2" — 4d.
Again, the proof is given in the Appendix.

D. Identification of Exclusive-OR Logic

In some approaches to logic synthesis it is useful to
identify a decomposition of the function that utilizes the
Boolean A (exclusive-or) operator [9].

Theorem 9 C(t;) = -2" if and only if the function f(X) has
a decomposition f(X) = h(X) A x; where h(X) is independent
of ;.

If nofirst order coefficients meet the requirements for the
presence of this decomposition, we then go on to include the
second order coefficients in the examination. This is
described in Theorem 10.

Theorem 10 C(t;) =C(t;) = C(t;;) = 0, i* j if and only if
the function f(X) can be decomposed into h(X)A g(X) where
g(X) = x*x;, *1 {U,J}, and h(X) isindependent of both x; and
Xj.

Theorem 10 can be further extended to functions where
g(X)=U% ... X+ m) OF gX)=U(X; ... %i+m) , il {1...n} andi+ m£E
n:

Theorem 11 1 f(X) can be decomposed into h(X1)A g(X2)
where X1 E X2=X and X1 C X2=/Ethen C(tx,) = C¥(txo).

Thistheorem describes a situation in which afunction f(X)

549

is known to have a decompasition of the format h(X)A g(X)
where h(X) is independent of all the variables in g. Thus
f =={A8 . Inthiscase autocorrelation coefficientsthat are

related to g’svariablesfor both functions f and g will then be
equivalent. Since it is possible to construct examples such
that f(X) = h(X1) A g(X2), C"(txo) = C¥(tx,), and X1 C X21
{/5, the presence of such a pattern C"(tx2) = C%(txo) is not
strong enough to uniquely identify all exclusive-or based
decompositions of this type. However, given two functions
f(X) and g(X) it isalways possible to construct h(X) such that
g(X) A h(X) since A isreversible and h(X) can be determined
by finding f(X) A g(X). Thus using a known library it would
be possible to perform a fast determination, using the
autocorrelation coefficients, of whether a mutually exclusive
decomposition waslikely, and then usethe aboveto construct
the second function of the decomposition. Proofs for each of
these theorems are given in the Appendix.

V. USES

The above properties have been put to a variety of uses,
including determining three-level decompositions [5],
variable ordering and optimization of binary decision
diagrams (BDDs) [2, 10], and in classifying Boolean logic
functions[8]. Further work is progressing on additional uses,
such as developing heuristics for Kronecker decision
diagram (KDD) decomposition sdections and for
determining whether a BDD, KDD or functional decision
diagram (FDD) is a better representation for a function [11].
Below we investigate the use of autocorrelation coefficients
in identifying properties such as symmetries, linearity and
self-duality of functions.

A. Totally Symmetric Functions

There are a number of different types of symmetries. We
begin with the most restrictive symmetry. A Boolean
function is said to be totally symmetric if the output is
unchanged by any permutation of the inputs to the function.
For example, f =x;+X+X3 is totally symmetric, as is the
majority function f =Xyxo+Xoxzt+Xix3. We aso discuss a
recently introduced type of symmetry termed antisymmetries
[12]. An antisymmetry occurswhen permuting all or a subset
of variables results in the exact inverse of the original
function.

Theorem 12 If a function f(X) is totally (anti)symmetric
then all {+1,-1} autocorrelation coefficients for any given
order will be equal within the order. This may be written as
Ct)=C(t")" t,t suchthat |t]=]t].

Proof: Work in [8] showed that permuting any two
variables j and k results in exchanging the values of the
coefficients C(tj,) and C(t ). Since a function symmetricin
two variablesj and k by definition will not change if j and k
are permuted then the autocorrelation coefficients will also
not change ¥ thefunction remainsthe same. Thusfor C(t;,)
and C(tk,) to be exchanged and yet no change to occur, we
must have C(tj,) = C(tw). A function that is totally
symmetric will not change for any permutation of its

r@lﬂ_c_glr
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variables, so C(t13) = C(t2a) = ... = C(ta), @ssuming the
variables are numbered from 1 to n. We can express this as
C(t) =C(t’) wherelt|=|t’| sihcea can take on any value and
the property till holds. N
We note that this implies that there are
non-totally-symmetric functions with coefficients of this
pattern. An example of thisis given below in Subsection V-B.
However, such a function must be related through the
application of one or more invariance operators to some
totally symmetric function. We expand upon thisin Section
VI. We note also that the above theorem includes totally
antisymmetric functions, since the negation of a function

Symmetry Definition

E{Xp.1, Xn} f(Xq,..., Xn.2, 0,0) = f(Xy,..., Xq2, 1,1)
N{Xp.1, Xn} f(X,..., Xn.2, 0,1) = f(Xy, ..., Xq2, 1,0)
Xl Xn.1} f(X,..., Xn.2, 1,0) = f(Xy,..., Xq2, 1,1)
Xa| X'n-1} f(Xq,..., Xn-2, 0,0) = f(Xq,..., Xn-2, 0,1)

does not affect the {+1,-1} autocorrelation coefficients.

B. Partially Symmetric Functions

A dightly less restrictive form of symmetry is that of
partial symmetry. A Boolean function is said to be partially
symmetric, or possess a partial symmetry if the output is
unchanged by any permutati on of some subset of the inputsto
the function.

Theorem 13 If a function f(X) is partially symmetric in a

subset of its input variables X, ,..X, then the
autocorrelation coefficients C(t;» ) will have equal val ues for
all jT {iy,....im}.

The samereasoning as used above for Theorem 12 can be
used here. Permuting any m variables x;, through x; ; results
in exchanging the values of the coefficients C(t; 1, a) through
C(tima a)- However, the function does not change, by
definition, and so coefficients C(t ; 1, a) through C(t; m a) Must
be equal. For the function

example,
f(X)=XXX +XX +XX +XX +XX +XxXx_ is partialy
12 3 3 4 1 4 2 3 12 13
symmetric in X;XoXs. Although it appears that the product
X X, ismissingitisunnecessary asit is covered by the other

products. The autocorrelation coefficients for this function
aregivenin Tablel. Of note arethe sets of val ues (for t) 1000,
0100 and 0010, and 1001, 0101 and 0011 which illustratethe
theorem above.

C. Functionswith Symmetries of Degree Two

A third type of symmetry isasymmetry of degreetwo. This
is a partial symmetry in which two sub-functions of the
original function are identical and also are independent of
two of the function'svariables. Symmetries of degreetwo are
identified by finding patterns where f(xy, ..., a,..., b, ..., Xp) =
f(Xs,..., Gy Giooey %), ab,c,d 1{0,1}. Equivaence (E),
non-equivalence (N) and single-variable (S) symmetries as
defined by Hurst, Miller and Muzio are al types of
symmetries of degree two, and are defined in Table 11 [13].
Without loss of generality these definitions label the two
variables of interest asnand n-1. x’ refersto thetheinverse
of X.

Antisymmetries can also be extended to the symmetries of
degree two. For instance, an anti-equivalence symmetry is

usually denoted E{ X X}

Theorem 14 A function f(X) with some type of
(anti)symmetry of degree two will have autocorrelation
coefficient values as follows:

E{x.x} or N{x,x}® C(t,)=C(t )
S[x %} o S[x |x}® C(t,)=C(t,;,) . and
Sx X} or (X [x}® C(t,,)=C(t;.)-

Proofs for these are given in [14].

t C(t) t C(t) t C(t) t C(t)

000 16 | 010 4 | 100 4 | 110 | 12
0 0 0 0

000 4 | 010 4 | 100 4 | 110 4
1 1 1 1

001 4 | 011 12 | 101 12 | 111 4
0 0 0 0

001 4 | 011 4 | 101 4 | 111 4
1 1 1 1

TABLE |: { +1,-1} AC COEFFICIENTS FOR THE PARTIALLY SYMMETRIC

FuncTion f(X) = XXX + XX + XX +X X + XX + XX .
12 3 3 4 1 4 2 3 12 13

TABLE |1: DEFINITIONS AND NOTATION FOR EQUIVALENCE,

NON-EQUIVALENCE, AND SINGLE-VARIABLE SYMMETRIES.
D. Isit Possible to Determine Symmetries from the
Autocorrelation Coefficients?

Hurst, Miller and Muzio providetests based on afunction's
spectral coefficients that will ascertain whether or not the
function possesses a particular symmetry [13]. However, as
indicated by the example in Table I, the autocorrelation
coefficients cannot be used in the same way. This can be
explained by examining the spectral symmetry tests, as
described in Table I11. The notation used in this table is as
follows:

« S includesall spectral coefficients that involve neither of
Xi Or X;,

« Stincludes all spectral coefficientsthat involve x; but not
X

+ S includes all spectral coefficientsthat involve x; but not
Xi, and

« & includes all spectral coefficients that involve both x;
and x;.

The spectral coefficients are computed using

T"x =S 7

For example, for an=3 Boolean function,
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& 1 1 1 1 1 1 1

g -1 1-1 1 -1 1 -17

e 1 -1 -1 1 1—1—@

u

(:el—l—l 1 1 -1 -1 1@

T"=€1 1 1 1 -1 -1 -1 -1y,

u

al -1 1 -1 -1 1 -1 a

¢ 1 -1 -1 -1 -1 1 13

&1 -1 -1 1 -1 1 1 -1

Y isthe output vector of the function, for example

¢ 1y,
Y1
10y,
1[] Ys
-y,
1[21 Y5
A
18 s

and Sisthe resulting spectral coefficients. Using the sample
function from above, the coefficients would be

AL
=
oo

@ > M D> D> D> D> D> P>
c

e2u
é ,u
g %
€20 s
é 21]
s=€%1 %
é ou
&q >
é'zl] Si3
é 21]
e l;l 323
8 60 Sus-
Examination of the spectral symmetry tests for three
variables illustrates that if gsz u_ &S u then the function
6. W6 U
&S0 éS:U
must possess N{x,, xz}. Similarly, if ?32 @: ? S @then the
e.u"e . u
&S0 & Skl

function must possess E{X,, xs}. The notation used here for
labeling of coefficientsisasillustrated in the example above.
In the autocorrelation coefficients, this distinction is lost.
This brings to question the following situation. |If
g% E: g %E then the autocorreation coefficients will still
€S0 €S 0
be equal; however, the symmetries do not exist. The same
holdstrueif s,= s and s, = -5;3. Thereforeit isnot possible
to determine if a function has a particular equivalence,
nonequivalence or single variable symmetry solely by
examining the autocorrelation coefficients. The same holds
true for totally and partially symmetric functions.

E. Self-Dual & Self-Anti-Dual Functions

% isobtained first by replacing each literal X with X and
then by complementing thefunction. A self-dual functionisa

-1

function such that f = f°. Thereare 22n self-dual functions
of n variables. A sef-anti-dual function is a function such
that f = f(X,X,...X).

Theorem 15 A function f(X) will have C(2"-1) = -2"if and
only if it is a self-dual function. Smilarly, a function will
have C(2"-1) = 2" if and only if it isa self-anti-dual function.

Proof: If a function is self-dual, then by definition

f(X)=f(X) , which can be rewritten as

fF(X)=F(XA2 -1 notation

f(X)gf (X) = - 1. Then by definition

Using {+1,-1}

CE'-1) =8 fw)xf(vA2- 1)

and thus 20-1 _
=a f(v)xf(v)

v=0

=-2"

TABLE |1l: SPECTRAL SYMMETRY TESTS FOR SYMMETRIES IN { Xy.1, Xx} - X,
REFERS TO THE INVERSE OF X,.

Symmetry Test
SXn1 [ X'n} S+8=0
S{an X’n-l} SZ+ 83: 0
E{Xn, Xn-1} S+ =0
N{Xq, X1} S-g=0
S | Yo} §-s=0
Xt | %o} S-s$=0
Similarly, for sdf-anti-dual functions, by definition
f(X)= f(X) which can be  rewritten

f(X)= f(XA 2 -1) and soagain, by definition

c@-1 = 2éilf(v) xf (VA 2" - 1)

v=0

= & f(V)xf (V)

v=0

and thus

=2"

If C(2"-1) = -2" then every pair of minterms f(v) and
f(vA2"-1) in the summation § i:(;lf (V) xf (vA 2" - 1) must
result in a -1 when multiplied and thus must have inverse
values of each other. So f(v)=f(VA2"'-1) , o,
f (v) = f (v), which is the definition of a self-dual function.
Similarly, if C(2"-1) = 2" then every pair of mintermsf(v) and

f(vA2"1) in the summation é zf (v) xf(vA 2" - 1) must
result in a 1 when multiplied and thus must have identical

Definition 5.1 The dual of a function f(xy, X2, ..., X)) IS yalues. So f(v)= f(vA 2" - 1), or, f(v)= f(\_,), which is
f(X,X,...X) and isdenoted by f[9]. the definition of aself-anti-dual function. N
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F. Linear Functions

Definition 5.2 If a logic function f is represented as
f=apA ax; A apA ... A ax, where a;=0o0r 1then fissaid
to be alinear function [9].

It isinteresting to note that a linear function is either a
self-dual or self-anti-dual function. The proof isgivenin [9].
There are 2™ linear functions of n variables, and a linear
function that is obtained by assigning a linear function to an
arbitrary variableof alinear functionisalsoalinear function.

Theorem 16 Afunction f(X) islinear if and only if all of its
coefficients C(t)=-2", such that the weight of t |t |=1.

Thistheorem follows directly from Theorem 9. We extend
this theorem further to specify that if ALL values of t with a
single onein the binary expansion result in C(t) = -2" then
the function must be decomposable for al variables in the
fashion described above.

V1. DISCUSSION AND FUTURE WORK

As noted in Sections V-A and V-B, identifying where a
function has equal coefficients within a given order, or in a
subset of that order, is not sufficient to identify a symmetric
function. However, other work hasidentified that a function
that does not have a symmetry but whaose autocorrelation
coefficients reflect this property must be in the same
autocorrelation class as some totally/partially symmetric
function [8]. Thusit may be possibleto identify the necessary
operationsto apply in order to transform the subject function
intoasymmetric function, thusmakingit possibletoleverage
the advantages inherent in symmetries. Future work will
address tools to make this determination.

A comment on the suitability of the autocorrelation
transform as an analysistool is appropriate; the authors have
found that properties defined on the outputs of afunction are
better suited to analysiswith autocorrelation coeffi cientsthan
are properties defined based on the structure of a function.
For instance, the properties of sef-duality and
self-anti-duality lend themselves very nicely to identification
through autocorrelation coefficients, while on the other hand
monotone functions are much more difficult to identify.

VII. CONCLUSION

There are many existing techniques for the identification
of properties such assymmetries, including [ 15, 16] and [17].
Rather than competing with these, this paper concentrates
instead on the theoretical aspects of the autocorrelation
transform as an analysis tool. We can conclude from this
work that the autocorrelation transform can identify if a
function does not possess a symmetry, but that the
autocorrelation coefficients resulting from the transform do
not provide a sufficient condition for the existence of
symmetries. Ongoing work in this area includes
implementation of our technique in order that we may
compare it with existing techniques, as well as the various
directions described in Section 6. An extension of the

analysis led to necessary and sufficient conditions for the
identification of self-dual/self-anti-dua and linear functions.
Future work will include implementations for these
properties as well.

This paper presents an exploration of the properties
inherent to the autocorrelation transform as applied to
single-output completely specified boolean functions.
Various uses have been suggested in other publications. The
ultimate goal of thiswork isto develop a preprocessing tool
which will be used to aid chip designers in making choices
prior to or during the design process. For instance, if one can
quickly identify that a function cannot result in a
non-exponential BDD then much optimization time will be
saved by beginning work with a KDD representation. The
properties described here are being used in the development
of such atool.

Other avenues for future work include extending this
research to the incompletely specified and multiple-output
Cases.

APPENDIX -- PROOFS

Theorem 6: A function f(X) has exactly one dissimilar
mintermif and only if C(t) = 2"-4" t10.

Proof: Without loss of generality let us define afunction f
suchthat f(v)=1whenv1 0,..., 2"-2 and f(v)=-1 when v=2"-1.
Then

C(t):glf(v)’ f(vAt)

v=0

=(& f(v)" T(vAL))

v=0

+f(2"-1D° f(2"-1At)

:(2521’ f(VAE)+(-) 1

v=0
=(2"-2-1-1

=2"-4"t10.
Thus if f(X) has exactly one true minterm then all of the
coefficients C(t) = 2"-4, t10.

For the second part of this proof, if al that is known of the
function is the coefficients of this pattern, then it can be
shown as follows that the function must have either exactly
onetrue or exactly one false minterm.

For a coefficient C(t) let us define q as the number of
positive pairs in the summation, and r as the number of
negative pairs in the summation. A pair in this case is a
combination of two mintermsi, j, and a positive pair results
when both mintermsare true or when both arefalse. It should
be noted that in the summation for the autocorrelation
equation each pair is encountered twice. Then 2g-2r = 2"-4
and 2q+2r = 2"

These equations can be solved to show that r =1. If thereis
only one negative pair in the summation then there is only
onepair combining atrueand afalse minterm; all other pairs
must combine either two true minterms or two false
minterms. If thereisonly one coefficient C(t) for which this
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halds, then there can be any number of combinations of true
and false minterms to meet these requirements. However,
there are 2"-1 coefficients that have only one negative pair;
therefore there can be only one dissimilar minterm in the
function. N

Theorem 7: A function has exactly two dissimilar
mintermsif and only if C(0) = 2", C(t,)=2", andC(t) = 2"-8
"t,t, 0andtt t,.

Proof: We approach thisproof by first demonstrating that
if there is one coefficient C(t,)=2", t1 0 and the remaining
2"-2 coefficients C(t) = 2"-8, then the function has exactly
two dissimilar minterms. Let us define a function f such that
f(vy=1whenv10,..,2" vi,jandf(v)=1whenvs=i,j.
Without loss of generality let i=0 and j=1. Then

C(t):alf(v)’ f(vAt)

v=0

=) fAGA)+1(j)" f(jAt)

+31f(v)' f(vAt)

v=2

=(-1)" f(OAt)+(-1)" f@1A1t)

+Q 1 f(vAt)
ThenifiAt=jandj At =i, C(t) =2" Otherwise C(t) =
-2+ (2"-4) -2 = 2" - 8. Because of the nature of the A operator,
iAt=j0 jAt=i, and sothereisonly one assignment of
t for which this can occur.

A similar processto that shown in the proof of Theorem 6
can be used to prove that this pattern of coefficients can only
result in afunction with exactly two dissimilar minterms. N

Theorem 8: A function hasd dissimilar mintermsif and
only if the autocorrelation coefficients have the following
properties:

- C(0) =2",

« for %Ig pT 2,46,...,d(or 24,6, d-1if disodd) C(t) =
&0
2"-4d + 4p, and
« for the remaining coefficients, C(t) = 2" — 4d.
The proof issimilar to those for Theorems 6 and 7.

Proof: Let us define afunction f(X) for which thereared
dissmilar minterms. Without loss of generality we assume
that f(v) = -1whenv10,..., d-1 and f(v) = 1 when vT d,...,
2"-1. Then there are d-p mod 2 ways (resulting in
&0 o & 0 _ =) =0 20

—to —+ ..+ - or et it ot
gzﬁ §4ﬁ gd- 19 826 846 gdﬁ
in which pairs of dissimilar minterms may match up,
resulting in

coefficients)

2".1d

Ct) =2p-2d- p)+ a f(v)" f(vAt)

=2p- 2(d- p)+2"- 2d
=4p- 4d+2"
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where the first term 2p is the result of the sum of the
matching dissimilar minterms, the second term 2(d-p) is the
result of the sum of the non-matching dissimilar minterms,
and the final term is the sum of the remaining minterms
which are all similar.

There are also coefficients resulting from the situation in
which none of the dissimilar coefficients match in the
summation:

2".1d

Ct) =-2d+ @ f(v)" f(vAt)

=2"- 4d.

Again, using asimilar techniquetothat shown in the proof of
Theorem 6, if qisthe number of positive pairsand I isthe
number of negative pairsthen 2g+2r = 2" and 2g-2r = 2"-4d
which resultsinr = d. N

Theorem 9: C(t;) = -2" if and only if the function f(X) has
a decomposition f(X) = f*(X) A x where f*(X) isindependent
of x.

Proof: We first determine that a function with the
decomposition f(X) = f(X) A x has a first order
autocorrelation coefficient C(t;) = -2". Without loss of
generality leti = n. Then

2 -1
o

ct)=a f(v f(vAt)

2.
o

=& WA [T+ (WAL )AK AL

2

=Q (F*WAQ” (f*(vAt )A(QAL)

+él(f*(v)Al)’ (fx(vAt YAQAL))
=& (F* WA (f*(vAt)A®)
+él(f*(v)Al)’ (f*(vAt YA(0)

v=2

=Q (W (- T*(vAL))

PR TH W) fr(vAL)

v=2

-élf*(v)’ f*(vAt)

=-2"
since by definition *(X) isindependent of Xp.

We next determine that a first order {+1,-1}
autocorrelation coefficient with the value -2" impliesthat the
function f(X) can bedecomposedinto f* (X) A x,. If C(t;) =-2"
then the equation

ct)=810) 1AL,

implies that f(v) = -f(vAt;) " v. This means that half of the
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function is the inverse of the other half, which can be
achieved by defining afunction f(X) asf(X) = *(X) A x. N

Theorem 10: C(t;) =C(t;) = C(t;;) = 0, i* j if and only if
the function f(X) can be decomposed into h(X)A g(X) where
g(X) = x*x;, *1 {U,U}, and h(X) isindependent of both x; and
Xj.

Proof: Let usdefineafunction f(X) = f*(X)A g(X) where
g(X) = x Ux and f*(X) isindependent of x; and x;, and let us
assumewithout loss of generality thati = nandj = n-1. Then

2.1
Ct)=Q f(v)" f(vAt)

0

f(v)” f(v,At)+Q f(v,)  f(,AtL)

+

o Qo » Qo 5

f(v,)” fy,At)+q f(v,)" f(v,At)

where
A
*B:
*C:
*D:
Then

Ct,)=al(f*v)Ax Ux )
“(Fr(vAt, DA (x Ux At )]
+Q [(f*(v)Ax Ux_ )

v;=0to2"2-1 (0000 ... 0011),

Vo= 2"t0 2"-1 (0100 ... 0111),

vy= 2" t0 2"-2"2-1 (1000 ... 1011), and
vy= 2"2"2 10 2"-1 (1100 ... 1111).1

“(Fr(v,At_)A(x Ux At )
+Q [(F*(v)Ax Ux )

“(Frv, At )A(x Ux At )]
+Q [(f*(v,)Ax Ux )

“(f *(V4At n_l)A (X, an_lAt -)l

=Q(f*(v)AoUo)

“(f*(vAt, )AQUOAt )]
+Q [(f*(v)A0UY

“(F*(v,At,_)A(QULAt )]
+Q [(f * (v,)A100)

“(f*(v,At_)A@UOAt )]
+Q [(f*(v,)A1U02)

(v, At DA QUIAL )]

* Four variable expansions are given for the sake of clarity only. Thisdoes
not limit the proof to four variables.
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=Q fr(v) f*vAt, )
+éAf*(v2)’ frv,At )
+;°; fr(v) (- f*(v,At,_)
+;°;(- fr(v) f*(v,At, )

- 2n-2 + 2n-2 +(_ 2n-2)+(_ 2n-2)
=0
and similarly for C(t,)) and C(t  n.1)-
If Ct) = C(tns) = Cltn na) = O then each of the
summations may be broken down into C(t) = 272 + 2™2. 272

- 22 Let us assume there exists some variable ordering
such that

afv) fvAt, )=2"2and

A

afw) f(w,At, )=2"2and

B

af\v) fvuAt, )=-2"2and

C

atw) fvAt, )=-22

D

Then the first two summations tell us that for part of the
function f(v) is independent of variable x,.; and the second
two indicatethat for part of the function f(v) contains A X,.,.
This indicates that the solution must be of the form f(X) =
*(X) A g(X) where f*(X) is independent of x,., and g(X)
contains x,; . The same process is then applied to the other
known coefficients, C(t, n.1) = C(t,) = 0. There are two
possible solutions:

Solution 1
tn-l tn tnn_l
af(v) f(yAt) =2v2 =22 =_pm2
A
é_f(Vz)' f(VzAt) =22 —_pr2 —on2
B
21(v) f(LAL) =-202 =272 =22
C
é_f(V4)' f(V4At) —.ov2 —_om2 __on2
D
The above is obtained for g(X) = x; U Xo.
Solution 2
tn-l t” tnn-l
é.f(vl), f(VlAt) =_on2 _on2 _on2
A
21(v) f(y,AL) =-2v% =202 =2
B
éf(va)’ f(v,At) =2m2 =.2m2 =2
C
27(v) f(At) =27 =27 =2
D

The above s obtained for g(X) = x; U Xo. N

The proof is easily extended to any number of variablesin
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g sincethere isaways only one input combination for which
g(X¥) = % Ux+1U ... Ui+ = Land similarly where g(X) = x,
U Xi+1 U U Xi+m= 0.

Theorem 11 If f(X) can be decomposed into h(X1)A g(X2)
where X1 E X2=X and X1 C X2=/Ethen C(tx,) = C¥(txo).

Proof: Without loss of generality, let us assume that X2
consi sts of some combination of the variables Xy, Xo,..., Xm1
and X1 consists of the remaining variables from X . Then
given afunction f(X) that isdecomposable into h(X1) A g(X2)
asdescribed in the theorem above, by definition we have h(X)
= h(X A tyo); in other words, h is not affected if any of the
variables in X2 are changed. Then, noting that in {+1,-1}
notation performing an A operation is the same as the
mathematical multiplication operation, the following holds:

o

C't,)= A T0) f(vAL,,)

= é [h(W) A g(v)]” [h(vAt,,)A g(vAt,,)]
=& hv)’ h(vAt,,)” o(v)" g(vAt,,)

v=0

& (V)" ov)” g(vAt )

v=0

&1 gv) gvAt )

v=0

=C(t

XZ)
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