
International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

 546

Abstract—A variety of mathematical transforms have

traditionally been used in various logic synthesis applications.
This paper investigates the use of the autocorrelation
transform:

C(τ) = f (v) • f (v ⊕ τ)
v= 0

2n −1

∑

Properties of the coefficient resulting from the application of
this transform to switching functions are examined and
detailed, including properties to identify symmetries and
decompositions. The potential uses in logic synthesis of these
properties and other observations based on the autocorrelation
coefficients are explored, with emphasis on proofs as
mathematical justification of the theorems relating the
observed properties of the coefficients to properties of the
underlying switching functions.

Index Terms—high level synthesis, logic synthesis,
transforms, Boolean logic, digital logic, function
representations.

I. INTRODUCTION
 The autocorrelation transform has been used in various
areas including optimization and synthesis of combinational
logic [1], variable ordering for Binary Decision Diagrams [2],
and to compute the estimate C(f) of a function's complexity [1,
3]. Use of the autocorrelation transform, however, has been
limited. This may be due to either the fact that their
computation is not trivial, or that little has been known of the
transform's properties. To address this first problem new
computation methods have recently been introduced by Rice,
Muzio and Serra [4, 5] as well as by Stankovic and
Karpovsky [6]. To address the second we devote this work to
an explanation of the theoretical use of the autocorrelation
transform in the identification of properties that may be
useful in activities such as logic synthesis of Boolean
functions. Effort is made to provide proofs to both justify and
explain how we propose these coefficients be used, and
although this work does not yet include experimental results
based on these theories, future work in this direction is

Manuscript received June 9, 2009. This work was supported in part by the
Natural Sciences and Engineering Research Council of Canada.

Dr. Rice is with the Dept. of Mathematics and Computer Science at the
University of Lethbridge, Lethbridge, AB, Canada (phone: 403-329-2783; fax:
403-317-2882; email: j.rice@uleth.ca).

Dr. Muzio is with the Dept. of Computer Science at the University of
Victoria, Victoria, BC, Canada (email: jmuzio@cs.uvic.ca).

Contributions by Mr. Anderson and Ms. Jansen were made while they were
undergraduate research assistants to Dr. Rice at the University of Lethbridge.

currently underway.
We first present the definition and an explanation of the

autocorrelation transform. We then introduce several
theorems relating the values of the resulting autocorrelation
coefficients to properties of the underlying switching
function. A number of potential applications for these
theorems are presented, and future directions for this work
are discussed.

II. BACKGROUND
The autocorrelation transform is a special case of the

correlation transform, which is defined in [3] as follows:
2 1

=0

() = () ().
n

fg

v

B f v g vτ τ
−

⋅ ⊕∑ (1)

If f and g are the same function then this becomes the
autocorrelation transform, also called the cross-correlation,
or convolution function. The superscript is generally omitted
when referring to the autocorrelation transform. By
convention B(τ) is evaluated with f in the usual Boolean
domain of {0,1}. If {+1,-1} encoding is used then the
resulting autocorrelation coefficients are denoted as C(τ) :

2 1

=0

() = () ().
n

v

C f v f vτ τ
−

⋅ ⊕∑ (2)

 It is straightforward to derive the relationship between B and
C, namely:

() = 2 4 4 ().nC k Bτ τ− + (3)
 In this equation, k=B(0), which is also the number of true

minterms in the function. We should also point out that the
+ operator is used to indicate the OR operator when used in
logical expressions, and to indicate arithmetic addition when
used in arithmetic equations such as (3) or summations.

The derivation is based on this relationship between {0,1}
encoded outputs, labeled as zi, and {+1,-1} encoded outputs,
labeled as yi: yi = -2zi+1.

 Although the same information is present in both C(τ)
and B(τ) there are some patterns that are more easily
identifiable when using {+1,-1} encoding, and vice versa.
Thus it is useful to be able to use either encoding, particularly
for analysis.

It is useful to present some additional notation to aid in the
understanding of this paper.

• τ and τ’ indicate values ranging from 0 to 2n-1. τα is used
to indicate one such value. These are usually expressed
as a binary expansion.

Properties of Autocorrelation Coefficients for
Single-Output Switching Functions

J. E. Rice, Member, IEEE, J. C. Muzio, Senior Member, IEEE, N. A. Anderson and R. Jansen

mailto:j.rice@uleth.ca
mailto:jmuzio@cs.uvic.ca

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

547

• |τ| is the weight, or the number of ones in the binary
expansion of τ. If |τ| = j then B(τ) and C(τ) are said to be
jth order coefficients.

• The variable ordering xn, …, x1 is used through-out.
Thus a coefficient B(001) or C(001) is the first order
coefficient corresponding to x1.

• τi refers to a value whose binary expansion contains a 1
in the ith bit, while the remaining n-1 bits are 0.

• τiα refers to a set of values for which the binary
expansion contains a 1 in the ith bit while the remaining
n-1 bits have the value α∈{0,…2n-1}. . τiα refers to a set
of values for which the binary expansion contains a 0 in
the ith bit while the remaining n-1 bits have the value α.

• k refers to the number of true minterms in a function.
• we use the terms true minterm or positive minterm to

refer to a combination of assignments to the input
values that results in a true output e.g. f(v) = 1, and the
term false minterm to refer to an input assignment that
results in a false output e.g. f(v) = 0. The term minterm
may refer to either type of input assignment.

III. OBSERVATIONS
There are a number of restrictions on the values of both the

{0,1} and {+1,-1} autocorrelation coefficients. These may or
may not be useful in a logic synthesis context, but provide an
easy test for correctness and validity, and lend some insight
into the behaviour of this transform and its resulting
coefficients.

The following observations are clear from the definition of
the autocorrelation transform:

• B(τ) ∈{0,…, 2n} and C(τ) ∈{-2n,…, 2n} ∀ τ ∈{0,…,
2n-1},

• both B(τ) and C(τ) are even ∀ τ ≠0, and
• B(τ) ≤ B(0) ∀ τ ≠ 0 and B(0) =k, and C(τ) ≤ C(0) ∀

τ ≠ 0 and C(0) =2n.
The final observation requires further explanation:

• a function may have at most 2n-1 negative values for
C(τ).

Let us define a function f(X) for which there are 2n-1 negative
coefficients. Without loss of generality we assume that for
this function every value of C(τ), 2n-1 ≤ τ ≤ 2n-1, is negative.
If 2n-1 ≤ τ ≤ 2n-1 then in the autocorrelation equation 0 ≤ v ≤
2n-1-1 ⇒ 2n-1 ≤ v ⊕ τ ≤ 2n-1 and 2n-1 ≤ v ≤ 2n-1 ⇒ 0 ≤ v ⊕ τ
≤ 2n-1-1.

In other words, in computing each of the negative
coefficients we are matching a minterm from the top half of
the function with one from the bottom half of the function,
assuming that minterms are ordered numerically from
xnxn-1…x1=00…0 to xnxn-1…x1=11…1 . For any one of the
designated coefficients to be negative, there must be 2n-2+1
of the values 0 ≤ v ≤ 2n-1-1 negative if the values in 2n-1 ≤ v ≤
2n-1 are positive, or vice versa. However, this results in the
remaining 2n-1 coefficients having positive values. Thus there
can be at most 2n-1 negative autocorrelation coefficients.

Theorems 1 and 2 provide two further observations about
the values of the autocorrelation coefficients.

Theorem 1

2 1
2

=0

() = .
n

B k
τ

τ
−

∑ (4)

The proof of this theorem relies on the following Lemma:
Lemma 1

B(τ) = 2

k
2






τ =1

2n −1

∑ . (5)

k
2







 is the number of pairings of the minterms as

computed in the summation of the autocorrelation
coefficients. This is then multiplied by two to produce all
possible pairings in the form i, j and j, i.

Proof: Using Lemma 1 the sum of all of the {0,1}
autocorrelation coefficients is as follows:

τ =0

2n −1

∑B(τ) = B(0) + 2
k
2








= k + 2
k(k − 1)

2
= k2 .

 n
Theorem 2 C(τ) = 2n – 4m ∀ τ (6)

where m∈k,k-2,…,0 for even values of k and m∈k,k-2,…,1
for odd values of k, k being the number of true minterms in
the function or the number of false minterms in the function,
whichever is fewer.

Proof: The largest possible number of mismatch pairs, that
is, negative contributions to the total coefficient value is -2k.
The remaining pairs, which of necessity result in positive
contributions to the coefficient value is 2(2n-2-k). Thus the
total value for the coefficient is

1() = 2 2(2)
= 2 2 2
= 2 4 .

n

n

n

C k k
k k

k

τ −− + −
− + −

−

 n
 However, this assumes that all positive minterms will pair

with false minterms and vice versa. This is not the case; for
some coefficients a subset of false minterms may pair with
other false minterms. Each time a false minterm is paired
with another false minterm the number of negative
contributions is reduced by 2, leading to the equation in
Theorem 2.

IV. GENERAL PROPERTIES
This section introduces theorems that relate particular

patterns in the autocorrelation coefficients to underlying
properties of the switching function. We propose in future
work to utilize these patterns in identifying properties in the
switching functions that may be useful in logic synthesis. For
example, identification of variables of which the function is
independent may reduce the problem size to something more
manageable, while determining the possible existence of
symmetries is known to be a useful technique in logic
synthesis [7].

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

 548

A. Trivial Functions
A trivial function is one in which all output values of the

function are 1, or all output values of the function are 0,
assuming {0,1} encoding.

Theorem 3 C(τ) = C(τ’) ∀ τ and τ’ ∈{0,…, 2n-1} and if
and only if f(X)=1 or f(X)=0.

Proof: If all the coefficients are equal, they must all have
the value 2n as the coefficient C(0) always has this value.
Based on this, if all of the coefficients have equal value, then
this implies that the function matches itself at every value of
τ. This can only occur if the function consists entirely of true
minterms, or entirely of false minterms. n

B. Identifying Redundant Variables
The following two theorems may be applied to identify

redundant variables in a function. Theorem 4 describes the
situation that occurs when a function does not depend on one
of the input variables. Theorem 5 describes the situation
when a function may depend on only one of the input
variables.

Theorem 4 A function f(X) is independent of input
variable xi if and only if C(τi)=2n.

Proof: Without loss of generality let us define a function
f(X) that is independent of xn. By definition, f(0, xn-1,…, x1) =
f(1, xn-1,…, x1).. Then

C(τ n) = f (v) × f (v ⊕τ n)
v=0

2n −1

∑

= f (v) × f (v ⊕τ n)
v=0

2n−1 −1

∑

+ f (v) × f (v ⊕ τ n)
v= 2n−1

2n −1

∑

Let us define the range 0 to 2n-1-1 as A and 2n-1 to 2n-1 as B.
Then nv A v Bτ∈ ⇒ ⊕ ∈ and nv B v Aτ∈ ⇒ ⊕ ∈ .
Since the function is defined to have f(A) = f(B) then

C(τ n) = f (v) × f (v ⊕τ n)
v=0

2n−1 −1

∑

+ f (v) × f (v ⊕ τ n)
v= 2n−1

2n −1

∑

= 1+ 1
v=2n−1

2n −1

∑
v=0

2n−1 −1

∑
= 2n.

 To prove the second part of the theorem we define
(without loss of generality) a function f(X) for which C(τn)=2n.
This is only possible if () = ()nf v f v vτ⊕ ∀ . This
implies that f(1, xn-1,…, x1) = f(0, xn-1,…, x1), indicating that
f(X) is not dependent on xn. n

Theorem 5 A function f(X) has 2n-1 autocorrelation
coefficients C(τ)=2n (including C(0)) and the remaining 2n-1
coefficients C(τ’)=-2n if and only if the function is dependent
on only one of its input variables OR is related to such a
function through the application of one or more invariance

operations.
 A function that is dependent on only one of its input

variables has exactly 2n-1 true minterms. However, this is not
the only situation where a function can have exactly 2n-1 true
minterms. As discussed in [8] any function that is related to
this type of function through the application of one of four
invariance operations will have 2n-1 true minterms. The
theorem above and the proof following refer to any of these
types of functions.

 Proof: Without loss of generality let us define f(X)=x1
where x1 is the lowest order bit of the input X. Then if τ is an
odd number the binary expansion of τ contains a 1 in the

lowest order bit, and then by definition () = ()f v f v τ⊕
where the bar indicates the Boolean not operator. Then

2 1

=0

() = 1 1 = 2 .
n

n

v

C τ
−

× − −∑

 Similarly if τ’ is an even number, then the binary
expansion contains a 0 in the lowest order bit and by
definition f(v) = f(v ⊕ τ’). Then

2 1

=0

() = ()1 ()1 = 2 .
n

n

v

C τ
−

′ − × −∑

 Given autocorrelation coefficients of the pattern described
above the function must be dependent on only one of the
input variables (or related to such a function). Without loss of
generality we assume that C(τ’)=2n where τ’ is even and
C(τ)=-2n where τ is odd. C(τ’)=2n where τ’ is even indicates
that the function matches up two false or two true minterms
for every product in the summation. Additionally every
product being computed is comparing two inputs for which x1
remains unchanged. Moreover, C(τ)=-2n where τ is odd
indicates that the function matches a false minterm with a
true minterm for every product in the summation, and that
every product is matching a pair of inputs for which x1 varies.
Based on this we can determine that the function must be
dependent only on x1. n

C. Dissimilar Minterms
The following are three theorems that allow a designer to

identify a sparse (or the inverse) function from the values of
the function's autocorrelation coefficients. A sparse function
is one in which a majority of the input values result in a
particular output, e.g. 0 , and the remaining minority
(possibly only one) result in the other possible output value.
The first two theorems detail two specific cases: functions
that possess one and only one true minterm (or the inverse)
and functions that possess only two true minterms (or the
inverse).

Theorem 6 A function f(X) has exactly one dissimilar
minterm if and only if C(τ)=2n-4 ∀ τ ≠ 0.

The proof is given in the Appendix.
The corollary for the {0,1} encoding can be shown by

applying (3) to the theorem above. The general result is as
follows:

Corollary 1 A function f(X) has exactly one dissimilar
minterm if and only if B(τ)=k-1.

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

549

It should be pointed out that this general B(τ) are quite
limited. This is because for a function to have exactly one
dissimilar minterm then either k=2n-1, in which case
B(τ)=2n-2 ∀ τ ≠ 0, or k=1, which results in B(τ)=0 ∀ τ ≠ 0.

This type of analysis of the division of true and false
minterms in the function can be extended to the situation
with d dissimilar minterms. Initially we look at the case of
d=2 before giving the general result.

Theorem 7 A function f(X) has exactly two dissimilar
minterms if and only if

C(0) = 2n,

C(τα)=2n, and
C(τ) = 2n-8 ∀ τ, τα ≠ 0 and τ ≠ τα.
The proof is given in the Appendix.
Corollary 2 A function f(X) has exactly two dissimilar

minterms if and only if
B(0) = B(τα) = k and
B(τ) = k -2 ∀ τ, τα ≠ 0 and τ ≠ τα.
Again, although Corollary 2 states a general result, in

practice the values are limited to the following:
• B(0) = B(τα) = 2 and B(τ) = 0, or
•B(0) = B(τα) = 2n-2 and B(τ) = 2n-4.
It should also be noted that this pattern of coefficients

indicates that the function is either itself degenerate or is
related through the application of the autocorrelation
invariance operators [8] to a degenerate function.

Theorem 8 A function f(X) has d dissimilar minterms if
and only if the autocorrelation coefficients have the
following properties:

• C(0) = 2n,
• for

d
p







 p ∈2,4,6,…, d (or 2,4,6, d-1 if d is odd) C(τ) = 2n

-4d + 4p, and
• for the remaining coefficients, C(τ) = 2n – 4d.
Again, the proof is given in the Appendix.

D. Identification of Exclusive-OR Logic
In some approaches to logic synthesis it is useful to

identify a decomposition of the function that utilizes the
Boolean ⊕ (exclusive-or) operator [9].

Theorem 9 C(τi) = -2n if and only if the function f(X) has
a decomposition f(X) = h(X) ⊕ xi where h(X) is independent
of xi.

 If no first order coefficients meet the requirements for the
presence of this decomposition, we then go on to include the
second order coefficients in the examination. This is
described in Theorem 10.

Theorem 10 C(τi) =C(τj) = C(τij) = 0, i≠ j if and only if
the function f(X) can be decomposed into h(X)⊕ g(X) where
g(X) = xi*xj, *∈{∧,∨}, and h(X) is independent of both xi and
xj.

Theorem 10 can be further extended to functions where
g(X)=∨(xi…xi+m) or g(X)=∧(xi…xi+m) , i∈{1…n} and i + m ≤
n:

Theorem 11 If f(X) can be decomposed into h(X1)⊕g(X2)
where X1 ∪ X2=X and X1 ∩ X2=∅ then Cff(τX2) = Cgg(τX2).

This theorem describes a situation in which a function f(X)

is known to have a decomposition of the format h(X)⊕ g(X)
where h(X) is independent of all the variables in g. Thus

== { }φ ∅ . In this case autocorrelation coefficients that are
related to g’s variables for both functions f and g will then be
equivalent. Since it is possible to construct examples such
that f(X) = h(X1) ⊕ g(X2), Cff(τX2) = Cgg(τX2), and X1 ∩ X2 ≠
{∅}, the presence of such a pattern Cff(τX2) = Cgg(τX2) is not
strong enough to uniquely identify all exclusive-or based
decompositions of this type. However, given two functions
f(X) and g(X) it is always possible to construct h(X) such that
g(X) ⊕ h(X) since ⊕ is reversible and h(X) can be determined
by finding f(X) ⊕ g(X). Thus using a known library it would
be possible to perform a fast determination, using the
autocorrelation coefficients, of whether a mutually exclusive
decomposition was likely, and then use the above to construct
the second function of the decomposition. Proofs for each of
these theorems are given in the Appendix.

V. USES
The above properties have been put to a variety of uses,

including determining three-level decompositions [5],
variable ordering and optimization of binary decision
diagrams (BDDs) [2, 10], and in classifying Boolean logic
functions [8]. Further work is progressing on additional uses,
such as developing heuristics for Kronecker decision
diagram (KDD) decomposition selections and for
determining whether a BDD, KDD or functional decision
diagram (FDD) is a better representation for a function [11].
Below we investigate the use of autocorrelation coefficients
in identifying properties such as symmetries, linearity and
self-duality of functions.

A. Totally Symmetric Functions
There are a number of different types of symmetries. We

begin with the most restrictive symmetry. A Boolean
function is said to be totally symmetric if the output is
unchanged by any permutation of the inputs to the function.
For example, f =x1+x2+x3 is totally symmetric, as is the
majority function f =x1x2+x2x3+x1x3. We also discuss a
recently introduced type of symmetry termed antisymmetries
[12]. An antisymmetry occurs when permuting all or a subset
of variables results in the exact inverse of the original
function.

Theorem 12 If a function f(X) is totally (anti)symmetric
then all {+1,-1} autocorrelation coefficients for any given
order will be equal within the order. This may be written as
C(τ) = C(τ’) ∀ τ, τ’ such that |τ|=|τ’|.

Proof: Work in [8] showed that permuting any two
variables j and k results in exchanging the values of the
coefficients C(τjα) and C(τkα). Since a function symmetric in
two variables j and k by definition will not change if j and k
are permuted then the autocorrelation coefficients will also
not change  the function remains the same. Thus for C(τjα)
and C(τkα) to be exchanged and yet no change to occur, we
must have C(τjα) = C(τkα). A function that is totally
symmetric will not change for any permutation of its

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

 550

variables, so C(τ1α) = C(τ2α) = ... = C(τnα), assuming the
variables are numbered from 1 to n. We can express this as
C(τ) = C(τ’) where |τ|=|τ’| since α can take on any value and
the property still holds. n

We note that this implies that there are
non-totally-symmetric functions with coefficients of this
pattern. An example of this is given below in Subsection V-B.
However, such a function must be related through the
application of one or more invariance operators to some
totally symmetric function. We expand upon this in Section
VI. We note also that the above theorem includes totally
antisymmetric functions, since the negation of a function

does not affect the {+1,-1} autocorrelation coefficients.

B. Partially Symmetric Functions
A slightly less restrictive form of symmetry is that of

partial symmetry. A Boolean function is said to be partially
symmetric, or possess a partial symmetry if the output is
unchanged by any permutation of some subset of the inputs to
the function.

Theorem 13 If a function f(X) is partially symmetric in a
subset of its input variables xi1 ,…,xim then the
autocorrelation coefficients C(τjα) will have equal values for
all j∈{i1,…,im}.

 The same reasoning as used above for Theorem 12 can be
used here. Permuting any m variables xi1 through xim results
in exchanging the values of the coefficients C(τi1α

 α) through
C(τimα

 α). However, the function does not change, by
definition, and so coefficients C(τi1α

 α) through C(τimα
 α) must

be equal. For example, the function

 f (X) = x
1
x

2
x

3
+ x

3
x

4
+ x

1
x

4
+ x

2
x

3
+ x

1
x

2
+ x

1
x

3
 is partially

symmetric in x1x2x3. Although it appears that the product

 x2
x

4
 is missing it is unnecessary as it is covered by the other

products. The autocorrelation coefficients for this function
are given in Table I. Of note are the sets of values (for τ) 1000,
0100 and 0010, and 1001, 0101 and 0011 which illustrate the
theorem above.

C. Functions with Symmetries of Degree Two
A third type of symmetry is a symmetry of degree two. This

is a partial symmetry in which two sub-functions of the
original function are identical and also are independent of
two of the function's variables. Symmetries of degree two are
identified by finding patterns where f(x1,…, a,…, b,…, xn) =
f(x1,…, c,…, d,…, xn), a,b,c,d ∈{0,1}. Equivalence (E),
non-equivalence (N) and single-variable (S) symmetries as
defined by Hurst, Miller and Muzio are all types of
symmetries of degree two, and are defined in Table II [13].
Without loss of generality these definitions label the two
variables of interest as n and n-1. x’ refers to the the inverse
of x.

Antisymmetries can also be extended to the symmetries of
degree two. For instance, an anti-equivalence symmetry is

usually denoted 1{ , }n nE x x− .
Theorem 14 A function f(X) with some type of

(anti)symmetry of degree two will have autocorrelation
coefficient values as follows:

E{xi ,x j} or

N{xi ,x j}→ C(τ iα) = C(τ jα) ,

{ | }j iS x x or { | } () = ()ij i ijS x x C Cα ατ τ→ , and

{ | }i jS x x or { | } () = ()ji j ijS x x C Cα ατ τ→ .

Proofs for these are given in [14].

TABLE I: {+1,-1}AC COEFFICIENTS FOR THE PARTIALLY SYMMETRIC

FUNCTION f (X) = x
1
x

2
x

3
+ x

3
x

4
+ x

1
x

4
+ x

2
x

3
+ x

1
x

2
+ x

1
x

3
.

TABLE II: DEFINITIONS AND NOTATION FOR EQUIVALENCE,
NON-EQUIVALENCE, AND SINGLE-VARIABLE SYMMETRIES.

D. Is it Possible to Determine Symmetries from the
Autocorrelation Coefficients?
Hurst, Miller and Muzio provide tests based on a function's

spectral coefficients that will ascertain whether or not the
function possesses a particular symmetry [13]. However, as
indicated by the example in Table I, the autocorrelation
coefficients cannot be used in the same way. This can be
explained by examining the spectral symmetry tests, as
described in Table III. The notation used in this table is as
follows:

• S0 includes all spectral coefficients that involve neither of
xi or xj,

• S1 includes all spectral coefficients that involve xi but not
xj,

• S2 includes all spectral coefficients that involve xj but not
xi, and

• S3 includes all spectral coefficients that involve both xi
and xj.

The spectral coefficients are computed using
= .nT Y S⋅ (7)

 For example, for a n=3 Boolean function,

τ C(τ) τ C(τ) τ C(τ) τ C(τ)
000

0
 16 010

0
 4 100

0
 4 110

0
12

000
1

 4 010
1

 4 100
1

 4 110
1

 4

001
0

 4 011
0

 12 101
0

 12 111
0

 4

001
1

 4 011
1

 4 101
1

 4 111
1

 4

Symmetry Definition
 E{xn-1, xn} f(x1,…, xn-2, 0,0) = f(x1,…, xn-2, 1,1)
N{xn-1, xn} f(x1,…, xn-2, 0,1) = f(x1,…, xn-2, 1,0)
S{xn| xn-1} f(x1,…, xn-2, 1,0) = f(x1,…, xn-2, 1,1)
S{xn| x’n-1} f(x1,…, xn-2, 0,0) = f(x1,…, xn-2, 0,1)

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

551

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

= ,1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

nT

 
 − − − − 
 − − − −
 − − − − 
 − − − −
 

− − − − 
 − − − −
 

− − − − 
 

Y is the output vector of the function, for example

0

1

2

3

4

5

6

7

1
1
1
1

=
1
1
1

,1

y
y
y
y

Y
y
y
y
y

 
 − 
 −
 
 
 
 
 
 
 
−  

and S is the resulting spectral coefficients. Using the sample
function from above, the coefficients would be

0

1

2

12

3

13

23

123

2
2
2
2

=
2
2
2

.6

s
s
s
s

S
s
s
s
s

 
 
 
 
 
 
 −
 
− 

 −
 
  

Examination of the spectral symmetry tests for three

variables illustrates that if 32

1312

=
ss
ss

  
  

   
 then the function

must possess N{x2, x3}. Similarly, if 32

1312

=
ss
ss

−  
   −   

 then the

function must possess E{x2, x3}. The notation used here for
labeling of coefficients is as illustrated in the example above.

In the autocorrelation coefficients, this distinction is lost.
This brings to question the following situation. If

32

1312

=
ss

ss
−  

  
   

 then the autocorrelation coefficients will still

be equal; however, the symmetries do not exist. The same
holds true if s2 = s3 and s12 = -s13. Therefore it is not possible
to determine if a function has a particular equivalence,
nonequivalence or single variable symmetry solely by
examining the autocorrelation coefficients. The same holds
true for totally and partially symmetric functions.

E. Self-Dual & Self-Anti-Dual Functions
Definition 5.1 The dual of a function f(x1, x2, …, xn) is

 f (x
1
, x

2
, ..., x

n
) and is denoted by fd [9].

fd is obtained first by replacing each literal xi
 with xi

 and
then by complementing the function. A self-dual function is a

function such that f = fd. There are
122

n−
 self-dual functions

of n variables. A self-anti-dual function is a function such
that f = f (x

1
, x

2
, ..., x

n
) .

Theorem 15 A function f(X) will have C(2n-1) = -2n if and
only if it is a self-dual function. Similarly, a function will
have C(2n-1) = 2n if and only if it is a self-anti-dual function.

Proof: If a function is self-dual, then by definition

 f (X) = f (X) , which can be rewritten as

 f (X) = f (X ⊕ 2 n − 1) . Using {+1,-1} notation

 f (X)gf (X) = −1 . Then by definition

C(2n − 1) =
v=0

2n −1

∑ f (v) ⋅ f (v ⊕ 2n − 1)

and thus

=
v =0

2n −1

∑ f (v) ⋅ f (v)

= −2n.

 TABLE III: SPECTRAL SYMMETRY TESTS FOR SYMMETRIES IN {XN-1, XN}. XI’
REFERS TO THE INVERSE OF XI.

 Symmetry Test
 S{xn-1 | x’n} S1 + S3 = 0
 S{xn | x’n-1} S2 + S3 = 0
 E{xn, xn-1} S1 + S2 = 0
 N{xn, xn-1} S1 - S2 = 0
 S{xn | xn-1} S2 - S3 = 0
 S{xn-1 | xn} S1 - S3 = 0

 Similarly, for self-anti-dual functions, by definition

 f (X) = f (X) , which can be rewritten

 f (X) = f (X ⊕ 2n − 1) and so again, by definition

C(2n − 1) =
v =0

2n −1

∑ f (v) ⋅ f (v ⊕ 2n − 1)

and thus

=
v=0

2n −1

∑ f (v) ⋅ f (v)

= 2n.

 If C(2n-1) = -2n then every pair of minterms f(v) and

f(v⊕2n-1) in the summation 2 1

=0
() (2 1)

n
n

v
f v f v−

⋅ ⊕ −∑ must

result in a -1 when multiplied and thus must have inverse
values of each other. So () = (2 1)nf v f v ⊕ − , or,

() = ()f v f v , which is the definition of a self-dual function.
Similarly, if C(2n-1) = 2n then every pair of minterms f(v) and

f(v⊕2n-1) in the summation v = 0

2
n

− 1∑ f (v) ⋅ f (v ⊕ 2 n
− 1) must

result in a 1 when multiplied and thus must have identical

values. So f (v) = f (v ⊕ 2n − 1) , or, f (v) = f (v) , which is
the definition of a self-anti-dual function. n

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

 552

F. Linear Functions

Definition 5.2 If a logic function f is represented as
f =a0 ⊕ a1x1 ⊕ a2x2 ⊕ … ⊕ anxn where ai=0 or 1 then f is said
to be a linear function [9].

 It is interesting to note that a linear function is either a
self-dual or self-anti-dual function. The proof is given in [9].
There are 2n+1 linear functions of n variables, and a linear
function that is obtained by assigning a linear function to an
arbitrary variable of a linear function is also a linear function.

Theorem 16 A function f(X) is linear if and only if all of its
coefficients C(τ)=-2n, such that the weight of τ |τ |=1.

 This theorem follows directly from Theorem 9. We extend
this theorem further to specify that if ALL values of τ with a
single one in the binary expansion result in C(τ) = -2n then
the function must be decomposable for all variables in the
fashion described above.

VI. DISCUSSION AND FUTURE WORK
As noted in Sections V-A and V-B, identifying where a

function has equal coefficients within a given order, or in a
subset of that order, is not sufficient to identify a symmetric
function. However, other work has identified that a function
that does not have a symmetry but whose autocorrelation
coefficients reflect this property must be in the same
autocorrelation class as some totally/partially symmetric
function [8]. Thus it may be possible to identify the necessary
operations to apply in order to transform the subject function
into a symmetric function, thus making it possible to leverage
the advantages inherent in symmetries. Future work will
address tools to make this determination.

A comment on the suitability of the autocorrelation
transform as an analysis tool is appropriate; the authors have
found that properties defined on the outputs of a function are
better suited to analysis with autocorrelation coefficients than
are properties defined based on the structure of a function.
For instance, the properties of self-duality and
self-anti-duality lend themselves very nicely to identification
through autocorrelation coefficients, while on the other hand
monotone functions are much more difficult to identify.

VII. CONCLUSION
There are many existing techniques for the identification

of properties such as symmetries, including [15, 16] and [17].
Rather than competing with these, this paper concentrates
instead on the theoretical aspects of the autocorrelation
transform as an analysis tool. We can conclude from this
work that the autocorrelation transform can identify if a
function does not possess a symmetry, but that the
autocorrelation coefficients resulting from the transform do
not provide a sufficient condition for the existence of
symmetries. Ongoing work in this area includes
implementation of our technique in order that we may
compare it with existing techniques, as well as the various
directions described in Section 6. An extension of the

analysis led to necessary and sufficient conditions for the
identification of self-dual/self-anti-dual and linear functions.
Future work will include implementations for these
properties as well.

This paper presents an exploration of the properties
inherent to the autocorrelation transform as applied to
single-output completely specified boolean functions.
Various uses have been suggested in other publications. The
ultimate goal of this work is to develop a preprocessing tool
which will be used to aid chip designers in making choices
prior to or during the design process. For instance, if one can
quickly identify that a function cannot result in a
non-exponential BDD then much optimization time will be
saved by beginning work with a KDD representation. The
properties described here are being used in the development
of such a tool.

Other avenues for future work include extending this
research to the incompletely specified and multiple-output
cases.

APPENDIX -- PROOFS
Theorem 6: A function f(X) has exactly one dissimilar

minterm if and only if C(τ) = 2n-4 ∀ τ≠0.
Proof: Without loss of generality let us define a function f

such that f(v)=1 when v ∈ 0,…, 2n-2 and f(v)=-1 when v=2n-1.
Then

C(τ) = f (v) × f (v ⊕ τ)
v = 0

2n
−1

∑

= (f (v)
v = 0

2n
− 2

∑ × f (v ⊕ τ))

+ f (2n − 1) × f (2n − 1 ⊕ τ)

= (1 × f (v ⊕ τ)
v = 0

2n
− 2

∑) + (−1) × 1

= (2n − 2 − 1) − 1

= 2n − 4∀τ ≠ 0.

Thus if f(X) has exactly one true minterm then all of the
coefficients C(τ) = 2n-4, τ≠0.

For the second part of this proof, if all that is known of the
function is the coefficients of this pattern, then it can be
shown as follows that the function must have either exactly
one true or exactly one false minterm.

For a coefficient C(τ) let us define q as the number of
positive pairs in the summation, and r as the number of
negative pairs in the summation. A pair in this case is a
combination of two minterms i, j, and a positive pair results
when both minterms are true or when both are false. It should
be noted that in the summation for the autocorrelation
equation each pair is encountered twice. Then 2q-2r = 2n-4
and 2q+2r = 2n

 These equations can be solved to show that r =1. If there is
only one negative pair in the summation then there is only
one pair combining a true and a false minterm; all other pairs
must combine either two true minterms or two false
minterms. If there is only one coefficient C(τ) for which this

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

553

holds, then there can be any number of combinations of true
and false minterms to meet these requirements. However,
there are 2n-1 coefficients that have only one negative pair;
therefore there can be only one dissimilar minterm in the
function. n

Theorem 7: A function has exactly two dissimilar
minterms if and only if C(0) = 2n, C(τα)=2n, and C(τ) = 2n-8
∀ τ, τα ≠ 0 and τ ≠ τα.

Proof: We approach this proof by first demonstrating that
if there is one coefficient C(τα)=2n, τ≠0 and the remaining
2n-2 coefficients C(τ) = 2n-8, then the function has exactly
two dissimilar minterms. Let us define a function f such that
f(v) = 1 when v ∈0,…, 2n, v ≠ i, j and f(v) = 1 when v =i, j.
Without loss of generality let i=0 and j=1. Then

C(τ) = f (v) × f (v ⊕ τ)
v = 0

2n
−1

∑

= f (i) × f (i ⊕ τ) + f (j) × f (j ⊕ τ)

+ f (v) × f (v ⊕ τ)
v = 2

2n
−1

∑
= (−1) × f (0 ⊕ τ) + (−1) × f (1 ⊕ τ)

+ 1 × f (v ⊕ τ)
v = 2

2n
−1

∑

Then if i ⊕ τ = j and j ⊕ τ = i , C(τ) = 2n. Otherwise C(τ) =
-2 + (2n-4) -2 = 2n – 8. Because of the nature of the ⊕ operator,
i ⊕ τ = j ⇔ j ⊕ τ = i, and so there is only one assignment of
τ for which this can occur.

A similar process to that shown in the proof of Theorem 6
can be used to prove that this pattern of coefficients can only
result in a function with exactly two dissimilar minterms. n

Theorem 8: A function has d dissimilar minterms if and
only if the autocorrelation coefficients have the following
properties:

• C(0) = 2n,

• for

d

p







 p ∈2,4,6,…, d (or 2,4,6, d-1 if d is odd) C(τ) =

2n -4d + 4p, and
• for the remaining coefficients, C(τ) = 2n – 4d.

The proof is similar to those for Theorems 6 and 7.
Proof: Let us define a function f(X) for which there are d

dissimilar minterms. Without loss of generality we assume
that f(v) = -1 when v ∈0,…, d-1 and f(v) = 1 when v ∈d,…,
2n-1. Then there are d-p mod 2 ways (resulting in

d

2







+
d

4







+ ... +
d

d − 1







or

d

2







+
d

4







+ ... +
d

d







 coefficients)

in which pairs of dissimilar minterms may match up,
resulting in

C(τ) = 2 p − 2(d − p) +
d

2n
−1− d

∑ f (v) × f (v ⊕ τ)

= 2 p − 2(d − p) + 2n − 2d

= 4 p − 4d + 2n

where the first term 2p is the result of the sum of the
matching dissimilar minterms, the second term 2(d-p) is the
result of the sum of the non-matching dissimilar minterms,
and the final term is the sum of the remaining minterms
which are all similar.

There are also coefficients resulting from the situation in
which none of the dissimilar coefficients match in the
summation:

C(τ) = −2d +
d

2
n

−1− d

∑ f (v) × f (v ⊕ τ)

= 2n − 4d .

Again, using a similar technique to that shown in the proof of
Theorem 6, if q is the number of positive pairs and r is the
number of negative pairs then 2q+2r = 2n and 2q-2r = 2n-4d
which results in r = d. n

Theorem 9: C(τi) = -2n if and only if the function f(X) has
a decomposition f(X) = f*(X) ⊕ xi where f*(X) is independent
of xi.

 Proof: We first determine that a function with the
decomposition f(X) = f*(X) ⊕ xi has a first order
autocorrelation coefficient C(τi) = -2n. Without loss of
generality let i = n. Then

C (τ
n
) = f (v) × f (v ⊕ τ

n
)

v = 0

2
n

− 1

∑

= ([f * (v) ⊕ x
n
] × [f * (v ⊕ τ

n
) ⊕

v = 0

2
n

− 1

∑ (x
n

⊕ τ
n
)])

= (f * (v) ⊕ 0) × (f * (v ⊕ τ
n
) ⊕

v = 0

2
n − 1

− 1

∑ (0 ⊕ τ
n
))

+ (f * (v) ⊕ 1) × (f * (v ⊕ τ
n
) ⊕

v = 2
n −1

2
n

− 1

∑ (1 ⊕ τ
n
))

= (f * (v) ⊕ 0) × (f * (v ⊕ τ
n
) ⊕

v = 0

2
n − 1

− 1

∑ (1))

+ (f * (v) ⊕ 1) × (f * (v ⊕ τ
n
) ⊕

v = 2
n −1

2
n

− 1

∑ (0))

= f * (v) × (− f * (v ⊕ τ
n
)

v = 0

2
n − 1

− 1

∑)

+ (− f * (v)) × f * (v ⊕ τ
n

v = 2
n −1

2
n

− 1

∑)

= − f * (v) × f * (v ⊕ τ
n
)

v = 0

2
n

− 1

∑

= −2 n.

since by definition f*(X) is independent of xn.
We next determine that a first order {+1,-1}

autocorrelation coefficient with the value -2n implies that the
function f(X) can be decomposed into f*(X) ⊕ xi. If C(τi) = -2n
then the equation

2 1

=0
() = () ()

n

i i
v

C f v f vτ τ
−

× ⊕∑

implies that f(v) = -f(v⊕τi) ∀ v. This means that half of the

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

 554

function is the inverse of the other half, which can be
achieved by defining a function f(X) as f(X) = f*(X) ⊕ xi. n

Theorem 10: C(τi) =C(τj) = C(τij) = 0, i≠ j if and only if
the function f(X) can be decomposed into h(X)⊕ g(X) where
g(X) = xi*xj, *∈{∧,∨}, and h(X) is independent of both xi and
xj.

 Proof: Let us define a function f(X) = f*(X)⊕ g(X) where
g(X) = xi ∧ xj and f*(X) is independent of xi and xj, and let us
assume without loss of generality that i = n and j = n-1. Then

C(τ) = f (v) × f (v ⊕ τ)
v=0

2n −1

∑
= f (v1) × f (v1 ⊕τ) +

A
∑ f (v2) × f (v2 ⊕ τ)

B
∑

+ f (v3) × f (v3 ⊕τ) +
C
∑ f (v4) × f (v4 ⊕τ)

D
∑

where
 • A: v1 = 0 to 2n-2 -1 (0000 ... 0011),
 • B: v2 = 2n-2 to 2n-1-1 (0100 ... 0111),
 • C: v3 = 2n-1 to 2n-2n-2-1 (1000 ... 1011), and
 • D: v4 = 2n-2n-2 to 2n-1 (1100 ... 1111).1
 Then

C(τ n−1) = [(f *(v1) ⊕ xn ∧ xn−1)
A

∑
×(f *(v1 ⊕ τ n−1) ⊕ (xn ∧ xn−1 ⊕ τ n−1))]

+ [(f *(v2) ⊕ xn ∧ xn−1)
B

∑
×(f *(v2 ⊕ τ n−1) ⊕ (xn ∧ xn−1 ⊕ τ n−1))]

+ [(f *(v3) ⊕ xn ∧ xn−1)
C
∑

×(f *(v3 ⊕ τ n−1) ⊕ (xn ∧ xn−1 ⊕ τ n−1))]

+ [(f *(v4) ⊕ xn ∧ xn−1)
D
∑

×(f *(v4 ⊕ τ n−1) ⊕ (xn ∧ xn−1 ⊕ τ n−1))]

= [(f *(v1) ⊕ 0 ∧ 0)
A

∑
×(f * (v1 ⊕ τ n−1) ⊕ (0 ∧ 0 ⊕ τ n−1))]

+ [(f * (v2) ⊕ 0 ∧ 1)
B

∑
×(f * (v2 ⊕ τ n−1) ⊕ (0 ∧ 1⊕ τ n−1))]

+ [(f * (v3) ⊕1∧ 0)
C
∑

×(f * (v3 ⊕ τ n−1) ⊕ (1∧ 0 ⊕ τ n−1))]

+ [(f * (v4) ⊕1∧ 1)
D
∑

×(f * (v4 ⊕ τ n−1) ⊕ (1∧ 1⊕ τ n−1))]

1 Four variable expansions are given for the sake of clarity only. This does

not limit the proof to four variables.

= f * (v1)
A

∑ × f * (v1 ⊕ τ n−1)

+ f * (v2)
B
∑ × f * (v2 ⊕ τ n−1)

+ f * (v3)
C
∑ × (− f * (v3 ⊕ τ n−1))

+ (− f * (v4
D
∑)) × f * (v4 ⊕ τ n−1)

= 2n− 2 + 2n− 2 + (−2n− 2) + (−2n− 2)
= 0

 and similarly for C(τn) and C(τn n-1).
If C(τn) = C(τn-1) = C(τn n-1) = 0 then each of the

summations may be broken down into C(τ) = 2n-2 + 2n-2 - 2n-2
- 2n-2. Let us assume there exists some variable ordering
such that

2
1 1 1

2
2 2 1

2
3 3 1

2
4 4 1

() () = 2 and

() () = 2 and

() () = 2 and

() () = 2 .

n
n

A
n

n
B

n
n

C
n

n
D

f v f v

f v f v

f v f v

f v f v

τ

τ

τ

τ

−
−

−
−

−
−

−
−

× ⊕

× ⊕

× ⊕ −

× ⊕ −

∑
∑
∑
∑

Then the first two summations tell us that for part of the
function f(v) is independent of variable xn-1 and the second
two indicate that for part of the function f(v) contains ⊕ xn-1.
This indicates that the solution must be of the form f(X) =
f*(X) ⊕ g(X) where f*(X) is independent of xn-1 and g(X)
contains xn-1 . The same process is then applied to the other
known coefficients, C(τn n-1) = C(τn) = 0. There are two
possible solutions:

Solution 1

τ n−1 τ n τ n n−1

A
∑ f (v1) × f (v1 ⊕τ) = 2n−2 = 2n− 2 = −2n− 2

B
∑ f (v2) × f (v2 ⊕τ) = 2n−2 = −2n− 2 = 2n− 2

C
∑ f (v3) × f (v3 ⊕τ) = −2n−2 = 2n− 2 = 2n− 2

D
∑ f (v4) × f (v4 ⊕τ) = −2n−2 = −2n− 2 = −2n− 2

The above is obtained for g(X) = x1 ∧ x2.

Solution 2

τ n−1 τ n τ n n−1

A
∑ f (v1) × f (v1 ⊕τ) = −2n−2 = −2n− 2 = −2n−2

B
∑ f (v2) × f (v2 ⊕τ) = −2n−2 = 2n− 2 = 2n−2

C
∑ f (v3) × f (v3 ⊕τ) = 2n−2 = −2n− 2 = 2n−2

D
∑ f (v4) × f (v4 ⊕τ) = 2n−2 = 2n− 2 = 2n−2

The above is obtained for g(X) = x1 ∨ x2. n
The proof is easily extended to any number of variables in

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

555

g since there is always only one input combination for which
g(X) = xi ∧ xi+1 ∧ … ∧ xi+m = 1 and similarly where g(X) = xi
∨ xi+1 ∨ … ∨ xi+m = 0.

Theorem 11: If f(X) can be decomposed into h(X1)⊕g(X2)
where X1 ∪ X2=X and X1 ∩ X2=∅ then Cff(τX2) = Cgg(τX2).

Proof: Without loss of generality, let us assume that X2
consists of some combination of the variables x1, x2,…, xm-1
and X1 consists of the remaining variables from X . Then
given a function f(X) that is decomposable into h(X1) ⊕ g(X2)
as described in the theorem above, by definition we have h(X)
= h(X ⊕ τX2); in other words, h is not affected if any of the
variables in X2 are changed. Then, noting that in {+1,-1}
notation performing an ⊕ operation is the same as the
mathematical multiplication operation, the following holds:

C ff (τ X 2) = f (v) × f (v ⊕ τ X 2)

v =0

2n −1

∑

=

v=0

2n −1

∑[h(v) ⊕ g(v)]× [h(v ⊕τ X 2) ⊕ g(v ⊕τ X 2)]

=

v=0

2n −1

∑h(v) × h(v ⊕ τ X 2) × g(v) × g(v ⊕ τ X 2)

=

v=0

2n −1

∑ (h(v))2 × g(v) × g(v ⊕τ X 2)

=

v=0

2n −1

∑1× g(v) × g(v ⊕ τ X 2)

 = C gg (τ X 2)

n

REFERENCES
[1] R. Tomczuk, Autocorrelation and decomposition methods in

combinational logic design, Ph.D. thesis, University of Victoria (1996).
[2] J. E. Rice, J. C. Muzio, M. Serra, The use of autocorrelation coefficients

for variable ordering for ROBDDs, in: Proceedings of the 4th
International Workshop on Applications of the Reed-Müller Expansion in
Circuit Design, 1999, pp. 185--196.

[3] M. Karpovsky, Finite Orthogonal Series in the Design of Digital Devices,
John Wiley & Sons, 1976.

[4] J. E. Rice, J. C. Muzio, Methods for calculating autocorrelation
coefficients, in: Proceedings of the 4th International Workshop on
Boolean Problems, (IWSBP2000), 2000, pp. 69--76.

[5] J. E. Rice, On the use of autocorrelation coefficients in the identification
of three-level decompositions, in: Proceedings of the International
Workshop on Logic Synthesis (IWLS), 2003, pp. 187--191.

[6] R. S. Stankovic, M. G. Karpovsky, Remarks on calculation of
autocorrelation on finite dyadic groups by local transformations of
decision diagrams, in: R. Moreno-Daz, F. Pichler, A. Quesada-Arencibia
(Eds.), EUROCAST, Vol. 3643 of Lecture Notes in Computer Science,
Springer, 2005, pp. 301--310.

[7] S. L. Hurst, The Logical Processing of Digital Signals, Crane Russak &
Company, Inc., 1978.

[8] J. E. Rice, J. C. Muzio, Use of the autocorrelation function in the
classification of switching functions, in: Proceedings of the Euromicro
Symposium on Digital System Design: Architectures, Methods and Tools
(DSD), 2002, pp. 244--251.

[9] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic
Publishers, 1999.

[10] Y. Kolotov, I. Levin, V. Ostrovsky, M. G. Karpovsky, Software tool for
BDD optimizing by using autocorrelation functions, in: Proceedings of
the 23rd IEEE Convention of EEEI, 2004, pp. 129--132.

[11] [11] J. E. Rice, Making a choice between FDDs and BDDs, in:
Proceedings of the International Workshop on Logic Synthesis (IWLS),
2005, pp. 46--50.

[12] J. E. Rice, J. C. Muzio, Antisymmetries in the realization of boolean
functions, in: Proceedings of the International Symposium on Circuits and
Systems (ISCAS), 2002, CD ROM paper number 2666.

[13] S. L. Hurst, D. M. Miller, J. C. Muzio, Spectral Techniques in Digital
Logic, Academic Press, Inc., Orlando, Florida, 1985.

[14] J. E. Rice, Autocorrelation coefficients in the representation and
classification of switching functions, Ph.D. thesis, University of Victoria
(2003).

[15] D. Möller, J. Mohnke, M. Weber, Detection of symmetry of Boolean
functions represented by ROBDDs, in: Proceedings of the International
Conference on Computer-Aided Design (ICCAD), 1993, pp. 680--684.

[16] S. Kannurao, B. J. Falkowski, Identification of complement single
variable symmetry in Boolean functions through Walsh transform, in:
Proceedings of the International Symposium on Circuits and Systems
(ISCAS), 2002, pp. 745--748.

[17] S. Panda, F. Somenzi, B. Plessier, Symmetry detection and dynamic
variable ordering of decision diagrams, in: Proceedings of International
Conference on Computer-Aided Design (ICCAD), 1994, pp. 628--631.

