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Abstract—As security threats change and advance in a
drastic way, most of the organizations implement multiple
Network Intrusion Detection Systems (NIDSs) to optimize
detection and to provide comprehensive view of intrusion
activities. But NIDSstrigger a massive amount of alerts even for
a day and overwhemed security experts. Thus, automated and
intelligent clustering is important to reveal their structural
correlation by grouping alerts with common attributes. We
propose anew hybrid clustering model based on I mproved Unit
Range (IUR), Principal Component Analysis (PCA) and
unsuper vised lear ning algorithm (Expectation M aximization) to
agoregate similar alerts and to reduce the number of alerts. We
tested against other unsupervised learning algorithms to
validate the performance of the proposed model. Our empirical
results show using DARPA 2000 dataset the proposed model
gives better results in terms of the clustering accuracy and
processing time.

Index Terms—alert clustering and filtering, Expectation
Maximization, Principal Component Analysis, unsupervised
learning.

I. INTRODUCTION

Network Intrusion Detection Systems (NIDSs) have been
extensively used by researchers and practitionersto maintain
trustworthiness in systems [1]. However, NIDSs usualy
generated thousands of alerts even for a day. Worse, those
alerts are in low quality because they mixed with false
positives, and repeated warnings for the same attack, or alert
notifications from erroneous activity [2]. Therefore,
manua ly analyze those alerts are tedious, time-consuming
and error-prone [3].

A promising technique to automaticaly analyze the
intruson aerts is caled correlation. In specific, Alert
Correlation System (ACS) is post-processing modules that
provide high-level insight on the security state of the network
and filter fal se positives aswell as redundant alertsefficiently
from the output of NIDSs. The analyses from ACS actualy
become an important guidance for security expert (SE) to
plan and devel op the responsive and preventive mechanisms.
Generally, corrdlation can be of two types: structural
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correlation and causal correlation. In this paper, we address
the structural correlation (or aert clustering) aspect of NIDSs
datato aggregate alerts with similar attributes.

The main problem in existing ACSs is they require high
levels of human involvement in creating the system and/or
maintaining it, as patterns of attacks change as often as from
month to month [4]. Our god isto minimize the intervention
(i.e, to ease the burden) of SE as much as possible, but not to
replace them. In this paper we propose new, automated and
intelligent hybrid clustering model called Improved Unit
Range and Principal Component Analysis with Expectation
Maximization (IPCA-EM) to aggregate similar alerts as well
asto filter thelow quality aderts.

The following section presents the overview of some
related researches and necessary background information in
the area of intruson alert correlation. Section 3 describes
each component involved in our propased approach. Section
4 explains the dataset, experiments conducted followed by
discussions of the results. Lastly, we conclude the paper and
present potential future work.

II. RELATED WORK

Most of the previous works [2], [3], [5], [6], [7] of alert
clustering for finding structural correlation required strong
dependencies on SE in devel oping and/or maintaining their
correlaion system. They either need pre-defined rules or
human expert knowledge to manage and anayze the
intruson alerts. As a result, rules or knowledge for such
systems need to be updated periodicaly as patterns of attacks
change drastically.

In [3], Aggregation and Correation Component (ACC) is
proposed to group derts into Situations based on any
combination of the three attributes: source, target and alert
class. ACC relieson a set of rulesto cluster the alerts. Whilst
in CRIM [6] and Rule-Based Tempora ACS [7], they
implemented a knowledge-based database to correlate and
filter fdse positives derts. Such database stored predicate
logics to support logica reasoning in finding similarity
between incoming alerts and existing alerts. In both cases,
these approaches were time-consuming since they required a
large number of predefined rules’knowledge in order to
correlae alerts.

There are few works that cluster alerts based on supervised
machine learning. For ingtance, algorithm introduced by [5]
required a significant amount of alerts to be managed
manually (i.e., hand-clustered) beforehand. Likewise, system
by [2] required manua tuning periodically. Moreover, in
their first system deployment, it needs to encode network
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properties to assist the clustering algorithm. Again, these
approaches were time-consuming since regular setup and
maintenance are significantly required for their system.
Therefore, those constraints make the development of
supervised learning-based correlation system less practical.

The closest work to ours was by [4] which used
Expectation Maximization (EM) clustering algorithm aswell
in their second stage of correlation. A mgjor different is that
we implemented Principal Component Analysis (PCA) to
obtain better performance. Detail justifications on the
implementation of PCA in our work are presented in the next
section.

I11. OUR APPROACH

Thegoal of thiswork isto find the best integration of PCA
and unsupervised learning agorithm for clustering intrusion
alerts.  Our system architecture composed of six main
components asillustrated in Fig. 1 (i.e., alert normalization,
alert preprocessing, dimension reduction, alert clustering,
alert ranking and verification, and alert reduction). In the
first component, aerts that were generated by multiples
NIDSs were collected and stored in database before they
were modeled and converted into a standard format called
Intrusion Detection Message Exchange Format (IDMEF).
Theformatted aerts were represented in numerical value and
scaled to produce a balanced dataset. Since the number of
alerts was huge and the aerts information was massive, we
reduced the dimensionality of data using PCA. There were
four unsupervised learning clustering algorithms tested.
Among them, the EM gave better performance. Alertsin each
cluster were ranked based on their severity level in order to
discover the high and low risks of aerts. Based on the
sensor’s signatures file, aerts were verified to determine the
false positives and invalid aerts. In the last component, the
system automatically merged redundant alerts, and discarded
false positives and invalid aerts.

Fig. 1. Our proposed system architecture.

reports a stealth scan on port 22 from 135.013.216.191 to
172.016.112.149. Note that stealth scan attack is a kind of
scan that is designed to go undetected by auditing tools. So
scanning very slowly becomes a stealth technique.

We extracted nine attributes for each dert. Thus, a vector

Fig. 2. IDMEF representation of an alert in an XML document.

<IDMEF-M essage/>
<?ml version="1.0"?>
<IDOCTYPE IDMEF-Message PUBLIC "-//IETF//DTD RFC
XXXX IDMEF v1.0//EN" "/usr/local /etc/i dmef-message. dtd">
<IDMEF-M essage version="1.0">
<Alert ident="289">
<Analyzer analyzerid="109" model="snort"
verson="2.0.5">
<Node>
<name>tcpdump_dmz</name>
</Node>
</Analyzer>
<CreateTime
ntpstamp="0xc36cc187.0xd3aa9b49">2007-11-24T
17:42:31Z</CreateTime>
<Source>
<Node>
<Address category="i pv4-addr">
<address>135.013.216.191</address>
</Address>
</Node>
<Service>
<port>22</port>
<protocol >tcp</protocol >
</Service>
</Source>
<Target>
<Node>
<Address category="i pv4-addr">
<address>172.016.112.149</address>
</Address>
</Node>
<Service>
<port>22</port>
<protocol >tcp</protocol >
</Service>
</Target>
<Classification origin="vendor-specific">
<name>msg=(spp_streamd) STEALTH ACTIVITY
(NULL scan) detection</name>
<url>none</url>
</Classification>

Raw Alert I Alert » Dimension </Alert>

derts E> Normali zation Preprocessing Reduction </IDMEF-Message>

Clugered ¢

and Alert Alert Ranking Alert or an aert A = {SensorID, AlertiD, Sourcel PAddress,
filtered Reduction  [¢ & Verification | ¢ Clustering  ptinationl PAddress, SourcePort, DestinationPort,
derts

A. Alert Normalization

Recently, organizations use cooperative NIDSs to provide
abetter detection and globd view of intrusion activities. This
contributes to the diversity of output formats. In order to
correlate alerts such diversified formats have to be converted
into aunified standard representation. We applied IDMEF [8]
to define the common dataformats for the alerts. A sample of
an aert in IDMEF isillustrated in Fig. 2.

Referring to Fig. 2, the aert is uniquely identified by the
‘Alert ident’ attribute. The service section describes network
services on targets. In this case, it contains two attributes,
namely protocol (tcp) and port (22). The target node address
is specified by the target element and the aert message is
given by the Classification name attribute. This alert smply

—rviceProtocol, DetectTime, AlertType}. To manage all
attributes in more manageable way each attribute is stored in
a field. An example of an dert attributes in a database is
illugrated in Table | and they are extracted from an XML
document as showed in Fig. 2.

B. Alert Preprocessing

Alert attributes are in the form of numerical and
non-numerical values. Attributes that contain numerical
vaues are AlertlD, SensorlD, SourcePort, DestinationPort,
and DetectTime. The rest are non-numerical values (i.e,
Sourcel Paddress, DestinationlPaddress, ServiceProtocol
and AlertType) and have to be mapped into numerical values.
For instance to convert a 32-bit IP address (IPaqg;) Which in
X1.X2.X3.X4 format, mapping as (1) was used.

[Pagar = (X1 x 256 + X2) X 256 + X3) x 256 + X4. (@)
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We scded al values in the range of [0,1]. We tested
against two scaling methodsto find the best result in the a ert
clustering component. They were Unit Range (UR) and
Improved Unit Range (IUR) scaling method asin (2) and (3)
respectively, where x’ isthe scaled value, X is raw vaue, Xmax
is maximum vaue and Xqin 1S Minimum vaue.

X" = (X= Xrin) @

(Xmax — Xmi n)

X = 0.8 X ( X— Xmin) +0.1

Xrmax — Xmin

©)

C. Dimension Reduction Using PCA

PCA has proven to be a useful technique for dimension
reduction and multivariate analysis [9]. An important virtue
of PCA is that the extracted components are statisticaly
orthogonal to each other. This produces speedup training and
robust convergence as shown in [10]. We expect that the
unsupervised learning algorithm can work much better with
PCA. According to [9], PCA is for a set of observed vectors
{v}, il {1,2....N}, the g principle axes {w}, jI {1,2....0}
are those orthonorma axes onto which the retained variance
under projection ismaximal. It can be shown that the vectors
w; are given by the g dominant eigenvectors (i.e. those with
largest associated eigenvalues) of the covariance matrix

- -\t _
c=4 M such that Cw; =1 ,w; , whereVis
N

the simple mean. The vector u :WT(vi-Q) , Where

W:(wl,wz,,_,wq), is thus a g-dimensiona reduced

representation of the observed vector {vi} :

For the intruson alerts in the dataset, the purpose of
performing PCA is to find the principal components of the
derts, i.e, the attributes vector that can describe the derts
exactly and sufficiently, but not redundantly. In mathematical
terms, we wish to find the principa components of the
distribution of the aerts, or the egenvectors of the
covariance matrix of the set of the alerts[9], [11].

D. Alert Clustering Using Unsupervised Learning

Besides EM, we tested against other three unsupervised
learning algorithms namely Sdf-organizing maps (SOM),
K-means, and Fuzzy c-means (FCM) for performance
comparison. Noted that, in this clustering component, we did
not include the AlertlD, SourcelPAddress, and
Destinationl PAddress attributes because as mentioned in [12]
IP address tended to impede correct clustering since they are
easily forged. However these attributes will be used for the
next stage of correlation in our future work.

1) SOM

SOM [13] isacompetitive learning algorithm that reduces
the dimensions of data by mapping high dimensiona data
onto a set of units set up in a 2-dimensional lattice. An
n-dimensional weight vector is associated with each unit,
having the same dimension of the input space. At each step,
the Euclidean distances between a randomly selected input
vector x and al the units weight vectors wiis calculated. The
unit having the shortest distance to the input vector is
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identified to be the best matching unit ¢ for x. As aresult, the
winner index ¢ or best matching unit (BMU) for input vector
X(t) isidentified. Then, theinput is mapped to the location of
the BMU. We updated the weight vectors of the units
neighboring the BMU(c) and of BMU itself according to (4),
for i = cand its neighbours.

w (t+1)=w (t)+d EN(x()- wt))]

2) K-means

K-means [14] follows a simple and easy way to cluster a
given data set through a certain number of clusters (assume k
clusters) fixed apriori. The main ideaisto define k centroids
(or center), one for each cluster. The centroid is the average
of al the points in the cluster i.e., its coordinates are the
arithmetic mean for each dimension separately over al the
points in the cluster. The better choice is to place them as
much as possible far away from each other. The next step is
to take each point belonging to a given data set and associate
it to the nearest centroid. When no point is pending, the first
step is completed and an early groupageis done. At this point,
k new centroids are re-caculated as barycenters of the
clusters resulting from the previous step. With these k new
centroids, a new hinding has to be done between the same
data set points and the nearest new centroid. A loop has been
generated. As a result of this loop, the k centroids change
their location step by step until no more changes are done. In
other words centroids do not move any more. Finally, this
algorithm aims a minimizing an objective function, in this
case asquared error function. The objective functionisas(5):

4

k n
J=aa

=1 =1

(1)

X - Cj ©)

H2

where me_ %is a chosen distance measure between a
i

C
data point x? and the duster centre g, isan indicator of the
distance of the n data points from their respective cluster
centres. The algorithm is also significantly sensitive to the
initial randomly selected cluster centres. The k-means
algorithm can be run multiple timesto reduce this effect. The
main advantages of thisalgorithm areits simplicity and speed
which dlowsit to run on large datasets [14].

3) FCM

Fuzzy c-means (FCM) is a method of clustering which
allows one piece of data to belong to two or more clusters.
This method (developed by [15] and improved by [16]) is
frequently used in pattern recognition. It is based on
minimization of the foll owing objective function as (6):

2 1£m<¥ (6)

d & m

szti'i=1 §1Uij HX4 - Cj‘
where misany real number greater than 1, u;; isthe degree of
membership of x; inthe cluster j, x istheith of d-dimensional
measured data, ¢ isthe d-dimension center of the cluster, and
[Ix - ¢l is any norm expressing the similarity between any
measured data and the center. Fuzzy partitioning is carried
out through an iterative optimization of the objective function
shown above, with the update of membership u; and the
cluster centers ¢ by (7) and (8) respectively:
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= ————— )

®)

e ; ; f+1 B
This iteration will stop when n:a).'i-_;-{ Ui =g g
where & isatermination criterion between 0 and 1, whereas k
are the iteration steps. This procedure converges to a local

minimum or a saddle point of J;, in (6).

= 5,

4) EM

The EM agorithm [17] consists of two repeated steps,
Expectation and Maximization. It uses a statistical model
caled Gaussian finite mixtures to achieve the goa of
producing the most likely set of clusters given the number of
clusters, k, and aset of data. The model consists of aset of k
probability distributions, one to represent the data of each
cluster. There are parameters (e.g, humber of iteration and
log likelihood difference between two iterations) that define
each of the k distributions. The EM agorithm begins by
making initial guesses for these parameters based on theinput
data, then determines the probability that a particular data
instance belongs to a particular cluster for all datausing these
parameter guesses. The distribution parameters are revised
again and this process is repeated until the resulting clusters
have some level of overall cluster ‘goodness’ or until a
maximum number of algorithm iterations are reached.

In particular, it attempts to find the parameters 6 that
maximize the log probability logP(x;0) of the observed data.
It reduces the difficult task of optimizing logP(x;0) into a
sequence of simpler optimization subproblems, whose
obj ective functions have unique global maximathat can often
be computed in closed form. These subproblems are chosen
in a way that guarantees their corresponding solutions
f @f @ . and will converge to a local optimum of
logP(x;0). More specifically, the Expectation step
(E-step) of the algorithm estimates the clusters of each data
instance given the parameters of the finite mixture. During
the E-step, the agorithm chooses a function g; that lower
bounds logP(x;0) everywhere, and for which g(f ®)=logP(x;
f o).

The Maximization step (M-step) of the dgorithm tries to
maximize the likelihood of the di stributions that make up the
finite mixture, given the data [12]. During the M-step, the
algorithm moves to a new parameter set f ™%, that

maximizes g.. Asthe value of the lower-bound g matches the
objective function at f ©, it follows it follows (9), so the

objective function monotonically increases during each of the
iterationsin EM [18].

logP(x; f ©) =a(f O E a(f V) =logP(f “Y)  (9)

mode: automatic delete for low risk alerts (1) need permission, (2) no need

global reduction (alert) {
while each alert ¢, 1 C, ,do

if (dl attributesvaluesin o iSEQUAL toal attributes valuesin

)
delete C
merge++
else:
if (c.verifyis‘1’)
delete C
else:
ask mode
if (ci.rank is‘0’ AND mode is ‘0’)
delete C
ese:

outputs sumof merge, invalid, fase, low }

Fig. 4. Algorithm for alert reduction.

E. Alert Ranking and Verification

Fig. 4. Algorithm for aert reduction.

Alertsthat issued by NIDSs were not all in the same level
of severity and importance. It would be great if the system
can identify which aerts are highly important and which are
not, so that the number of aerts that need to be deal with can
be reduced. The algorithm for aert ranking and verification
component is shown in Fig. 3. As shown in Fig. 3, we
automaticaly cross-checked each alerts with the sensor’s
signatures file [19] to determine the priority of alerts and to
verify the fase positive and invalid alerts. In alert ranking,
we introduced three level of severity: (1) High-risk, (2)
Medium-risk and (3) Low-risk. For each level, we associate a
numerical weight of priority in order to diginguish
significant alarms from the others.

F. Alert Reduction

Given the clustered aerts from previous component,
redundant alerts (i.e., aderts that have equa vaues in al
attributes) in each cluster were merged into a hyper-aert. In
specific, repeated alerts for each cluster were represented as
one. Moreover, with the reduction of invalid, false positive
and low risk alerts, the total number of derts |eft for future
analysis is significantly reduced. The alert reduction
algorithmis shown in Fig. 4.

IV. RESULTS AND DISCUSSIONS

A. Dataset and Experiments

Performing real attacks in real networks to produce NIDS
alerts as datasets are not realistic [20] and our work therefore
shares the weaknesses with other published research worksin
the area whom using publicly available benchmark data. The
lack of publicly available and representative datasets hinders
ACS research and makes the comparison of different ACS
and algorithms difficult. Most of the research community of
IDS evauated their works with DARPA’s datasets. These
datasets are, nonetheless, the only publicly available datasets
in evaluating IDSs.

The experiments were conducted with MIT Lincoln’s
Lab’s DARPA 2000 Scenario Specific Dataset [21]. The
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dataset contain simulated multi-staged attack scenariosin a
protected environment: the intruder probes, breaks-in, installs
the Distributed Denid-of-Service (DDoS) daemon and
launches a DDoS attack against an off-site server. Since we
are deding with the sensor data, aerts reported by
RealSecure network sensor Version 6.0 [22] which were
provided by [23] were used to evaluate the effectiveness of
our model.

The derts data represents two kinds of attack scenarios
(i.e, scenario 1.0 and scenario 2.0.2) in two types of
networks (i.e., indde and dmz network). Attacks in scenario
2.0.2 were stealthier than scenario 1.0. For this paper, we
only used derts data for scenario 2.0.2 in dmz network. For
implementation of the model, we used MATLAB Software

[24]. We have five set of experimentsasillustrated in Table I1:

(1) clugering with UR only (i.e, labeled as UR), (2)
clustering with IUR only (i.e, labeled as IUR), (3) clugtering
with PCA only (i.e., labeled as PCA), (4) clugtering with UR
and PCA (i.e, labeled as UPCA), and (5) clusteringwith IlUR
and PCA (i.e, labeled as IPCA).

B. DataAnalysis

The number of alerts tested was 430. The results obtai ned
were compared against the benchmark clusters (i.e., 16
clusters are expected) to determine the performance of the
proposed model. Asin Table I, we used four measurements:
(1) Clustering Error (CE) is the number of aerts that are
wrongly clustered. (2) Error rate (ER) is the percentage of
wrongly clustered aerts, ER = (CE + Total number of aerts
observed) x 100, (3) Accuracy Rate (AR) isthe percentage of
alerts tha are accurately clustered as they should be, AR =
100 - ER, and (4) Time is the algorithm processing time in
seconds.

We varied the number of clusters in FCM, K-means, and
EM to find the optimal results. Similarly, wetested the SOM
by smultaneoudy varying the epochs and lattice
configuration. Two third of the dataset was used for training
and the rest was for testing. The best result on SOM (i.e,,
73.58% with IPCA) was attai ned after it was trained for 2500
epochs using hexagona 4 by 6 lattice type. It produced 12
clusters. It term of time costs, the overall processing time for
training and testing was 7.42 seconds. The processing time
might be longer if the dataset, epochs and/or lattice type are
larger.

Overdl, the best performance was with EM (i.e., 90.33%
with IPCA) which was reached a 14 clusters and the
processing time was 4.59 seconds. In each cluster, similar
types of aerts were grouped together to represent an attack
step. Since FCM, K-means, and SOM have a larger value of
CE, it meansthat they put alarge number of alertsthat should
belong together in one cluster into another clusters.
Therefore, we summarized that the proposed modd (i.e.,

IPCA-EM) is effective and performed better than the rest of
the algorithms tested for this dataset in terms of clustering
accuracy and processing time.

Table 111 presented the type of aderts with their level of
rank/priority. It shows that the mgority of the alerts are most
probably not serious at al. SE might found such alerts
inappropriate to be analyzed and correlated. But, others may
feel they are appropriate. Because of that, our system
provided two kind of mode to automatically delete the low
risk aerts: (1) need permission from SE, or (2) no need. If (2)
was chose, then the total reduction of alerts was significant
(see Table IV). Table IV illustrated the total aertsin each
category (i.e, merged redundant derts, invaid, fase
positives and low risk alerts) which the system considersin
order to reduce the amount of alerts. The origina input data
was 430, thustota reduction of unwanted alerts was 87.67%.

V. CONCLUSION AND FUTURE WORK

Automation of alert management and analysis is crucial
because alerts arein low level information and the volumeis
very large tha make them tedious and hardly to be analyzed
manually. Since alerts are not significant if they are isolated,
thus finding the rel ationships between them is an important
stage.

Grouping and clustering the aerts based on their feature
similarities actually can reveal the attack steps launched by
the attackers. Moreover, redundant alerts can be detected and
merged easily. Therefore, the novelty of thiswork isthe new
integration of IUR, PCA and EM algorithm (which we called
it IPCA-EM) as a solution to cluster multi sensors’ intrusion
alerts and to filter out the unwanted alerts. To the best of our
knowledge, this is the first attempt for such integration and
produces better results.

Altogether, the results are encouraging in terms of
clustering accuracy rate and processing time compared to
other unsupervised learning algorithms tested in this paper.
Noted that a successful network attack consists of
multi-stages attack, and an attack stage may comprise of
one/more attack steps. Thus, we need a secondary clustering
component to aggregate similar attack types to reved the
stages of attack. This becomes our main future work besides
testing the proposed model with larger dataset.

In the near future, we would like to develop a collaborative
multi-stages correlation system to determine known and
unknown attack scenarios.

Table Il. Clustering performance.

FCM K -means SOM [25] EM
M odel CE ER AR Time CE ER AR Time CE ER AR Time CE ER AR Time
(%) | (%) (sec) (%) | (%) (sec) (%) | (%) (sec) (%) | (%) (se0)
UR 78 | 18.40 | 8160 1.30 62 | 1462 | 85.38 4.23 139 | 32.78 | 67.22 4.22 47 | 11.08 | 88.92 1.90
IUR 74 | 1745 | 8255 127 57 | 13.44 | 8656 4.40 135 | 31.84 | 68.16 421 45 | 10.61 | 89.39 1.85
PCA 133 | 31.37 | 6863 356 141 | 33.25 | 66.75 5.20 170 | 40.09 | 59.91 6.52 86 | 20.28 | 79.72 2.67
543
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UPCA 70 | 1651 | 8349 4.80 52 | 12.26 | 87.74 6.12 127 | 29.95 | 70.05 7.44 43 | 10.14 | 89.86 464
IPCA 67 | 15.80 | 84.20 481 46 | 10.85 | 89.15 6.18 112 | 2642 | 7358 7.42 41 | 967 | 90.33 459
Tablelll. Total of ranked alerts. [17] A.P. Dempgter, N.M. Laird, and D.B. Rubin, “Maximum likelihood
Priority Type of Alerts Total from Incomi ng data viathe EM agorithm,” J. Royal Sat. Soc., Series
- - B, vol. 39, no. 1, 1977, pp. 1-36.
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Fig. 3. Algorithm for alert ranking and verification.
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