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Abstract—As security threats change and advance in a 

drastic way, most of the organizations implement multiple 
Network Intrusion Detection Systems (NIDSs) to optimize 
detection and to provide comprehensive view of intrusion 
activities. But NIDSs trigger a massive amount of alerts even for 
a day and overwhelmed security experts. Thus, automated and 
intelligent clustering is important to reveal their structural 
correlation by grouping alerts with common attributes. We 
propose a new hybrid clustering model based on Improved Unit 
Range (IUR), Principal Component Analysis (PCA) and 
unsupervised learning algorithm (Expectation Maximization) to 
aggregate similar alerts and to reduce the number of alerts. We 
tested against other unsupervised learning algorithms to 
validate the performance of the proposed model. Our empirical 
results show using DARPA 2000 dataset the proposed model 
gives better results in terms of the clustering accuracy and 
processing time. 
 

Index Terms—alert clustering and filtering, Expectation 
Maximization, Principal Component Analysis, unsupervised 
learning. 
 

I. INTRODUCTION 
Network Intrusion Detection Systems (NIDSs) have been 
extensively used by researchers and practitioners to maintain 
trustworthiness in systems [1]. However, NIDSs usually 
generated thousands of alerts even for a day. Worse, those 
alerts are in low quality because they mixed with false 
positives, and repeated warnings for the same attack, or alert 
notifications from erroneous activity [2]. Therefore, 
manually analyze those alerts are tedious, time-consuming 
and error-prone [3]. 

A promising technique to automatically analyze the 
intrusion alerts is called correlation. In specific, Alert 
Correlation System (ACS) is post-processing modules that 
provide high-level insight on the security state of the network 
and filter false positives as well as redundant alerts efficiently 
from the output of NIDSs. The analyses from ACS actually 
become an important guidance for security expert (SE) to 
plan and develop the responsive and preventive mechanisms. 
Generally, correlation can be of two types: structural 
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correlation and causal correlation. In this paper, we address 
the structural correlation (or alert clustering) aspect of NIDSs 
data to aggregate alerts with similar attributes. 

The main problem in existing ACSs is they require high 
levels of human involvement in creating the system and/or 
maintaining it, as patterns of attacks change as often as from 
month to month [4]. Our goal is to minimize the intervention 
(i.e., to ease the burden) of SE as much as possible, but not to 
replace them. In this paper we propose new, automated and 
intelligent hybrid clustering model called Improved Unit 
Range and Principal Component Analysis with Expectation 
Maximization (IPCA-EM) to aggregate similar alerts as well 
as to filter the low quality alerts. 

The following section presents the overview of some 
related researches and necessary background information in 
the area of intrusion alert correlation. Section 3 describes 
each component involved in our proposed approach. Section 
4 explains the dataset, experiments conducted followed by 
discussions of the results. Lastly, we conclude the paper and 
present potential future work. 

II. RELATED WORK 
Most of the previous works [2], [3], [5], [6], [7] of alert 

clustering for finding structural correlation required strong 
dependencies on SE in developing and/or maintaining their 
correlation system. They either need pre-defined rules or 
human expert knowledge to manage and analyze the 
intrusion alerts. As a result, rules or knowledge for such 
systems need to be updated periodically as patterns of attacks 
change drastically.  

In [3], Aggregation and Correlation Component (ACC) is 
proposed to group alerts into situations based on any 
combination of the three attributes: source, target and alert 
class. ACC relies on a set of rules to cluster the alerts. Whilst 
in CRIM [6] and Rule-Based Temporal ACS [7], they 
implemented a knowledge-based database to correlate and 
filter false positives alerts. Such database stored predicate 
logics to support logical reasoning in finding similarity 
between incoming alerts and existing alerts. In both cases, 
these approaches were time-consuming since they required a 
large number of predefined rules/knowledge in order to 
correlate alerts. 

There are few works that cluster alerts based on supervised 
machine learning. For instance, algorithm introduced by [5] 
required a significant amount of alerts to be managed 
manually (i.e., hand-clustered) beforehand. Likewise, system 
by [2] required manual tuning periodically. Moreover, in 
their first system deployment, it needs to encode network 
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properties to assist the clustering algorithm. Again, these 
approaches were time-consuming since regular setup and 
maintenance are significantly required for their system. 
Therefore, those constraints make the development of 
supervised learning-based correlation system less practical. 

The closest work to ours was by [4] which used 
Expectation Maximization (EM) clustering algorithm as well 
in their second stage of correlation. A major different is that 
we implemented Principal Component Analysis (PCA) to 
obtain better performance. Detail justifications on the 
implementation of PCA in our work are presented in the next 
section. 

III. OUR APPROACH 
The goal of this work is to find the best integration of PCA 

and unsupervised learning algorithm for clustering intrusion 
alerts.  Our system architecture composed of six main 
components as illustrated in Fig. 1 (i.e., alert normalization, 
alert preprocessing, dimension reduction, alert clustering, 
alert ranking and verification, and alert reduction). In the 
first component, alerts that were generated by multiples 
NIDSs were collected and stored in database before they 
were modeled and converted into a standard format called 
Intrusion Detection Message Exchange Format (IDMEF). 
The formatted alerts were represented in numerical value and 
scaled to produce a balanced dataset. Since the number of 
alerts was huge and the alerts information was massive, we 
reduced the dimensionality of data using PCA. There were 
four unsupervised learning clustering algorithms tested. 
Among them, the EM gave better performance. Alerts in each 
cluster were ranked based on their severity level in order to 
discover the high and low risks of alerts. Based on the 
sensor’s signatures file, alerts were verified to determine the 
false positives and invalid alerts. In the last component, the 
system automatically merged redundant alerts, and discarded 
false positives and invalid alerts.  

 
Fig. 1. Our proposed system architecture. 

 

 
A. Alert Normalization 
Recently, organizations use cooperative NIDSs to provide 

a better detection and global view of intrusion activities. This 
contributes to the diversity of output formats. In order to 
correlate alerts such diversified formats have to be converted 
into a unified standard representation. We applied IDMEF [8] 
to define the common data formats for the alerts. A sample of 
an alert in IDMEF is illustrated in Fig. 2. 

Referring to Fig. 2, the alert is uniquely identified by the 
‘Alert ident’ attribute. The service section describes network 
services on targets. In this case, it contains two attributes, 
namely protocol (tcp) and port (22). The target node address 
is specified by the target element and the alert message is 
given by the Classification name attribute. This alert simply 

reports a stealth scan on port 22 from 135.013.216.191 to 
172.016.112.149. Note that stealth scan attack is a kind of 
scan that is designed to go undetected by auditing tools. So 
scanning very slowly becomes a stealth technique. 

We extracted nine attributes for each alert. Thus, a vector  
 

Fig. 2. IDMEF representation of an alert in an XML document. 

 
for an alert A = {SensorID, AlertID, SourceIPAddress,  

DestinationIPAddress, SourcePort, DestinationPort, 
ServiceProtocol,  DetectTime, AlertType}. To manage all 
attributes in more manageable way each attribute is stored in 
a field. An example of an alert attributes in a database is 
illustrated in Table I and they are extracted from an XML 
document as showed in Fig. 2. 

B. Alert Preprocessing 
Alert attributes are in the form of numerical and 

non-numerical values. Attributes that contain numerical 
values are AlertID, SensorID, SourcePort, DestinationPort, 
and DetectTime. The rest are non-numerical values (i.e., 
SourceIPaddress, DestinationIPaddress, ServiceProtocol 
and AlertType) and have to be mapped into numerical values. 
For instance to convert a 32-bit IP address (IPaddr) which in 
X1.X2.X3.X4 format, mapping as (1) was used. 

 
IPaddr = ((X1 x 256 + X2) x 256 + X3) x 256 + X4.     (1) 

<IDMEF-Message/> 
<?xml version="1.0"?> 
<!DOCTYPE IDMEF-Message PUBLIC "-//IETF//DTD RFC 
XXXX IDMEF v1.0//EN" "/usr/local/etc/idmef-message.dtd"> 
<IDMEF-Message version="1.0">  

<Alert ident="289">  
<Analyzer analyzerid="109" model="snort" 

version="2.0.5">  
<Node>  

<name>tcpdump_dmz</name>  
</Node>  

</Analyzer>  
<CreateTime 

ntpstamp="0xc36cc187.0xd3aa9b49">2007-11-24T
17:42:31Z</CreateTime>  
<Source>  
<Node>  

<Address category="ipv4-addr">  
<address>135.013.216.191</address>  

</Address>  
</Node>  

<Service>  
<port>22</port>  

<protocol>tcp</protocol>  
</Service>  

</Source>  
<Target>  
<Node>  

<Address category="ipv4-addr">  
<address>172.016.112.149</address>  

</Address>  
</Node>  

<Service>  
<port>22</port>  

<protocol>tcp</protocol>  
</Service>  

</Target>  
<Classification origin="vendor-specific">  

<name>msg=(spp_stream4) STEALTH ACTIVITY 
(NULL scan) detection</name>  

<url>none</url>  
</Classification>  

</Alert> 
</IDMEF-Message> 
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We scaled all values in the range of [0,1]. We tested 

against two scaling methods to find the best result in the alert 
clustering component. They were Unit Range (UR) and 
Improved Unit Range (IUR) scaling method as in (2) and (3) 
respectively, where x’ is the scaled value, x is raw value, xmax 
is maximum value and  xmin is minimum value. 

 
 
 
 
 
 

C. Dimension Reduction Using PCA 
PCA has proven to be a useful technique for dimension 

reduction and multivariate analysis [9]. An important virtue 
of PCA is that the extracted components are statistically 
orthogonal to each other. This produces speedup training and 
robust convergence as shown in [10]. We expect that the 
unsupervised learning algorithm can work much better with 
PCA. According to [9], PCA is for a set of observed vectors 
{vi}, i∈{1,2,...,N}, the q principle axes {wj}, j∈{1,2,..,q} 
are those orthonormal axes onto which the retained variance 
under projection is maximal. It can be shown that the vectors 
wj are given by the q dominant eigenvectors (i.e. those with 
largest associated eigenvalues) of the covariance matrix 

( )( )T

i
ii

N
vvvv

C ∑
−−

= such that jij wCw λ= , where v is 

the simple mean. The vector ( )vvWu i
T

i −= , where 

( )qwwwW ,...,, 21= , is thus a q-dimensional reduced 

representation of the observed vector { }iv .  
For the intrusion alerts in the dataset, the purpose of 

performing PCA is to find the principal components of the 
alerts, i.e., the attributes vector that can describe the alerts 
exactly and sufficiently, but not redundantly. In mathematical 
terms, we wish to find the principal components of the 
distribution of the alerts, or the eigenvectors of the 
covariance matrix of the set of the alerts [9], [11]. 

D. Alert Clustering Using Unsupervised Learning 
Besides EM, we tested against other three unsupervised 

learning algorithms namely Self-organizing maps (SOM), 
K-means, and Fuzzy c-means (FCM) for performance 
comparison. Noted that, in this clustering component, we did 
not include the AlertID, SourceIPAddress, and 
DestinationIPAddress attributes because as mentioned in [12] 
IP address tended to impede correct clustering since they are 
easily forged. However these attributes will be used for the 
next stage of correlation in our future work. 

1) SOM 
SOM [13] is a competitive learning algorithm that reduces 

the dimensions of data by mapping high dimensional data 
onto a set of units set up in a 2-dimensional lattice. An 
n-dimensional weight vector is associated with each unit, 
having the same dimension of the input space. At each step, 
the Euclidean distances between a randomly selected input 
vector x and all the units weight vectors wi is calculated. The 
unit having the shortest distance to the input vector is 

identified to be the best matching unit c for x. As a result, the 
winner index c or best matching unit (BMU) for input vector 
x(t) is identified. Then, the input is mapped to the location of 
the BMU. We updated the weight vectors of the units 
neighboring the BMU(c) and of BMU itself according to (4), 
for i = c and its neighbours.  

 
 ( ) ( ) ( ) ( ) ( )( )[ ]twtxttwtw iii −+=+ δ1  (4) 

2) K-means 
K-means [14] follows a simple and easy way to cluster a 

given data set through a certain number of clusters (assume k 
clusters) fixed a priori. The main idea is to define k centroids 
(or center), one for each cluster. The centroid is the average 
of all the points in the cluster i.e., its coordinates are the 
arithmetic mean for each dimension separately over all the 
points in the cluster. The better choice is to place them as 
much as possible far away from each other. The next step is 
to take each point belonging to a given data set and associate 
it to the nearest centroid. When no point is pending, the first 
step is completed and an early groupage is done. At this point, 
k new centroids are re-calculated as barycenters of the 
clusters resulting from the previous step. With these k new 
centroids, a new binding has to be done between the same 
data set points and the nearest new centroid. A loop has been 
generated. As a result of this loop, the k centroids change 
their location step by step until no more changes are done. In 
other words centroids do not move any more. Finally, this 
algorithm aims at minimizing an objective function, in this 
case a squared error function. The objective function is as (5): 
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where 2)( cx j

j
i − is a chosen distance measure between a 

data point xi
(j) and the cluster centre cj, is an indicator of the 

distance of the n data points from their respective cluster 
centres. The algorithm is also significantly sensitive to the 
initial randomly selected cluster centres. The k-means 
algorithm can be run multiple times to reduce this effect. The 
main advantages of this algorithm are its simplicity and speed 
which allows it to run on large datasets [14]. 

3) FCM 
Fuzzy c-means (FCM) is a method of clustering which 

allows one piece of data to belong to two or more clusters. 
This method (developed by [15] and improved by [16]) is 
frequently used in pattern recognition. It is based on 
minimization of the following objective function as (6): 

 

∑∑
= =

−=
N

i

C

j
ji

m
ijm cxuJ

1 1

2 ∞<≤ m1,  (6) 

where m is any real number greater than 1, uij is the degree of 
membership of xi in the cluster j, xi is the ith of d-dimensional 
measured data, cj is the d-dimension center of the cluster, and 
||xi - cj|| is any norm expressing the similarity between any 
measured data and the center. Fuzzy partitioning is carried 
out through an iterative optimization of the objective function 
shown above, with the update of membership uij and the 
cluster centers cj by (7) and (8) respectively: 
 

x’ =  (x – xmin)  
(xmax – xmin) 

(2) 

(3) x’ = 0.8 x ( x – xmin) + 0.1 
(xmax – xmin) 
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 (7) 

 

  (8) 

 
This iteration will stop when , 
where  is a termination criterion between 0 and 1, whereas k 
are the iteration steps. This procedure converges to a local 
minimum or a saddle point of Jm in (6). 
 

4) EM 
 The EM algorithm [17] consists of two repeated steps, 

Expectation and Maximization. It uses a statistical model 
called Gaussian finite mixtures to achieve the goal of 
producing the most likely set of clusters given the number of 
clusters, k, and a set of data. The model consists of a set of k 
probability distributions, one to represent the data of each 
cluster. There are parameters (e.g, number of iteration and 
log likelihood difference between two iterations) that define 
each of the k distributions. The EM algorithm begins by 
making initial guesses for these parameters based on the input 
data, then determines the probability that a particular data 
instance belongs to a particular cluster for all data using these 
parameter guesses. The distribution parameters are revised 
again and this process is repeated until the resulting clusters 
have some level of overall cluster ‘goodness’ or until a 
maximum number of algorithm iterations are reached. 

In particular, it attempts to find the parameters θ that 
maximize the log probability logP(x;θ) of the observed data. 
It reduces the difficult task of optimizing logP(x;θ) into a 
sequence of simpler optimization subproblems, whose 
objective functions have unique global maxima that can often 
be computed in closed form. These subproblems are chosen 
in a way that guarantees their corresponding solutions  
φ (1) φ (2),... and will converge to a local optimum of 
logP(x;θ).        More specifically, the Expectation step 
(E-step) of the algorithm estimates the clusters of each data 
instance given the parameters of the finite mixture. During 
the E-step, the algorithm chooses a function gt that lower 
bounds logP(x;θ) everywhere, and for which gt(φ (1))=logP(x; 
φ (t)). 

The Maximization step (M-step) of the algorithm tries to 
maximize the likelihood of the distributions that make up the 
finite mixture, given the data [12]. During the M-step, the 
algorithm moves to a new parameter set φ (t+1), that 
maximizes gt. As the value of the lower-bound gt matches the 
objective function at φ (t), it follows it follows (9), so the 
objective function monotonically increases during each of the 
iterations in EM [18].  

 
 logP(x; φ (t)) = gt(φ (t)) ≤  gt(φ (t+1)) = logP(x; φ (t+1))  (9) 

 

 
Fig. 4. Algorithm for alert reduction. 

E. Alert Ranking and Verification 
Fig. 4. Algorithm for alert reduction. 

Alerts that issued by NIDSs were not all in the same level 
of severity and importance. It would be great if the system 
can identify which alerts are highly important and which are 
not, so that the number of alerts that need to be deal with can 
be reduced. The algorithm for alert ranking and verification 
component is shown in Fig. 3. As shown in Fig. 3, we 
automatically cross-checked each alerts with the sensor’s 
signatures file [19] to determine the priority of alerts and to 
verify the false positive and invalid alerts. In alert ranking, 
we introduced three level of severity: (1) High-risk, (2) 
Medium-risk and (3) Low-risk. For each level, we associate a 
numerical weight of priority in order to distinguish 
significant alarms from the others. 

F. Alert Reduction 
Given the clustered alerts from previous component, 

redundant alerts (i.e., alerts that have equal values in all 
attributes) in each cluster were merged into a hyper-alert. In 
specific, repeated alerts for each cluster were represented as 
one. Moreover, with the reduction of invalid, false positive 
and low risk alerts, the total number of alerts left for future 
analysis is significantly reduced. The alert reduction 
algorithm is shown in Fig. 4. 

IV. RESULTS AND DISCUSSIONS 

A. Dataset and Experiments 
Performing real attacks in real networks to produce NIDS 

alerts as datasets are not realistic [20] and our work therefore 
shares the weaknesses with other published research works in 
the area whom using publicly available benchmark data. The 
lack of publicly available and representative datasets hinders 
ACS research and makes the comparison of different ACS 
and algorithms difficult. Most of the research community of 
IDS evaluated their works with DARPA’s datasets. These 
datasets are, nonetheless, the only publicly available datasets 
in evaluating IDSs. 

The experiments were conducted with MIT Lincoln’s 
Lab’s DARPA 2000 Scenario Specific Dataset [21]. The 

mode: automatic delete for low risk alerts (1) need permission, (2) no need 
 
global reduction (alert) { 
 while each alert 

ji Cc ∈ , do  

  if  (all attributes values in 
ic  is EQUAL to all attributes values in 

1+ic  ) 

   delete ic  

   merge++ 
  else :   
  if  (ci.verify is ‘1’)  
  delete 

ic  

  else :  
  ask mode 
   if (ci.rank is ‘0’ AND mode is ‘0’) 
  delete ic  

   else : 
 outputs sum of  merge, invalid, false, low  } 
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dataset contain simulated multi-staged attack scenarios in a 
protected environment: the intruder probes, breaks-in, installs 
the Distributed Denial-of-Service (DDoS) daemon and 
launches a DDoS attack against an off-site server. Since we 
are dealing with the sensor data, alerts reported by 
RealSecure network sensor Version 6.0 [22] which were 
provided by [23] were used to evaluate the effectiveness of 
our model. 

The alerts data represents two kinds of attack scenarios 
(i.e., scenario 1.0 and scenario 2.0.2) in two types of 
networks (i.e., inside and dmz network). Attacks in scenario 
2.0.2 were stealthier than scenario 1.0.  For this paper, we 
only used alerts data for scenario 2.0.2 in dmz network. For 
implementation of the model, we used MATLAB Software 
[24]. We have five set of experiments as illustrated in Table II: 
(1) clustering with UR only (i.e., labeled as UR), (2) 
clustering with IUR only (i.e., labeled as IUR), (3) clustering 
with PCA only (i.e., labeled as PCA), (4) clustering with UR 
and PCA (i.e., labeled as UPCA), and (5) clustering with IUR 
and PCA (i.e., labeled as IPCA). 

B. Data Analysis 
The number of alerts tested was 430. The results obtained 

were compared against the benchmark clusters (i.e., 16 
clusters are expected) to determine the performance of the 
proposed model. As in Table II, we used four measurements: 
(1) Clustering Error (CE) is the number of alerts that are 
wrongly clustered.  (2) Error rate (ER) is the percentage of 
wrongly clustered alerts, ER = (CE ÷ Total number of alerts 
observed) x 100, (3) Accuracy Rate (AR) is the percentage of 
alerts that are accurately clustered as they should be, AR = 
100 – ER, and (4) Time is the algorithm processing time in 
seconds. 

We varied the number of clusters in FCM, K-means, and 
EM to find the optimal results.  Similarly, we tested the SOM 
by simultaneously varying the epochs and lattice 
configuration. Two third of the dataset was used for training 
and the rest was for testing. The best result on SOM (i.e., 
73.58% with IPCA) was attained after it was trained for 2500 
epochs using hexagonal 4 by 6 lattice type. It produced 12 
clusters. It term of time costs, the overall processing time for 
training and testing was 7.42 seconds. The processing time 
might be longer if the dataset, epochs and/or lattice type are 
larger. 

Overall, the best performance was with EM (i.e., 90.33% 
with IPCA) which was reached at 14 clusters and the 
processing time was 4.59 seconds. In each cluster, similar 
types of alerts were grouped together to represent an attack 
step. Since FCM, K-means, and SOM have a larger value of 
CE, it means that they put a large number of alerts that should 
belong together in one cluster into another clusters.  
Therefore, we summarized that the proposed model (i.e., 

IPCA-EM) is effective and performed better than the rest of 
the algorithms tested for this dataset in terms of clustering 
accuracy and processing time. 

Table III presented the type of alerts with their level of 
rank/priority. It shows that the majority of the alerts are most 
probably not serious at all. SE might found such alerts 
inappropriate to be analyzed and correlated. But, others may 
feel they are appropriate. Because of that, our system 
provided two kind of mode to automatically delete the low 
risk alerts: (1) need permission from SE, or (2) no need. If (2) 
was chose, then the total reduction of alerts was significant 
(see Table IV). Table IV illustrated the total alerts in each 
category (i.e., merged redundant alerts, invalid, false 
positives and low risk alerts) which the system considers in 
order to reduce the amount of alerts. The original input data 
was 430, thus total reduction of unwanted alerts was 87.67%. 

V. CONCLUSION AND FUTURE WORK 
Automation of alert management and analysis is crucial 

because alerts are in low level information and the volume is 
very large that make them tedious and hardly to be analyzed 
manually. Since alerts are not significant if they are isolated, 
thus finding the relationships between them is an important 
stage.  

Grouping and clustering the alerts based on their feature 
similarities actually can reveal the attack steps launched by 
the attackers. Moreover, redundant alerts can be detected and 
merged easily. Therefore, the novelty of this work is the new 
integration of IUR, PCA and EM algorithm (which we called 
it IPCA-EM) as a solution to cluster multi sensors’ intrusion 
alerts and to filter out the unwanted alerts. To the best of our 
knowledge, this is the first attempt for such integration and 
produces better results. 

Altogether, the results are encouraging in terms of 
clustering accuracy rate and processing time compared to 
other unsupervised learning algorithms tested in this paper. 
Noted that a successful network attack consists of 
multi-stages attack, and an attack stage may comprise of 
one/more attack steps.  Thus, we need a secondary clustering 
component to aggregate similar attack types to reveal the 
stages of attack. This becomes our main future work besides 
testing the proposed model with larger dataset.  

In the near future, we would like to develop a collaborative 
multi-stages correlation system to determine known and 
unknown attack scenarios. 

 
Table II. Clustering performance. 

FCM K-means SOM [25] EM 
Model 

CE ER 
(%) 

AR 
(%) 

Time 
(sec) CE ER 

(%) 
AR 
(%) 

Time 
(sec) CE ER 

(%) 
AR 
(%) 

Time 
(sec) CE ER 

(%) 
AR 
(%) 

Time 
(sec) 

UR 78 18.40 81.60 1.30 62 14.62 85.38 4.23 139 32.78 67.22 4.22 47 11.08 88.92 1.90 

IUR 74 17.45 82.55 1.27 57 13.44 86.56 4.40 135 31.84 68.16 4.21 45 10.61 89.39 1.85 

PCA 133 31.37 68.63 3.56 141 33.25 66.75 5.20 170 40.09 59.91 6.52 86 20.28 79.72 2.67 
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UPCA 70 16.51 83.49 4.80 52 12.26 87.74 6.12 127 29.95 70.05 7.44 43 10.14 89.86 4.64 

IPCA 67 15.80 84.20 4.81 46 10.85 89.15 6.18 112 26.42 73.58 7.42 41 9.67 90.33 4.59 

 
 

Table III. Total of ranked alerts. 
Priority Type of Alerts Total 

High-risk 
Admind, HTTP_ActiveX, 
HTTP_Cisco_Catalysts_Exec, 
Sadmind_Amslverify_Overflow 

10 

Medium-risk Email_Almail_Overflow, FTP_Pass 43 

Low-risk 

Email_Ehlo, FTP_Put, FTP_Syst, 
FTP_User, HTTP_Java, SSH_Detected, 
TCP_Urgent_Data, TelnetEnvAll, 
TelnetTerminalType, TelnetXdisplay 

371 

 
Table IV. Total reduction of alerts. 

Merged Invalid FP Low-risk SUM Reduction 
(%) 

3 2 1 371 377 87.67 
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Table I. An example of an alert in database.
SensorID AlertID SrcIP DestIP SrcPort DestPort Serv Time AlertType 

109 289 135.013.216.191 172.016.112.149 22 22 tcp 2007-11-24 
17:42:31 
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Fig. 3. Algorithm for alert ranking and verification. 
 


