
International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

539

Abstract—As security threats change and advance in a

drastic way, most of the organizations implement multiple
Network Intrusion Detection Systems (NIDSs) to optimize
detection and to provide comprehensive view of intrusion
activities. But NIDSs trigger a massive amount of alerts even for
a day and overwhelmed security experts. Thus, automated and
intelligent clustering is important to reveal their structural
correlation by grouping alerts with common attributes. We
propose a new hybrid clustering model based on Improved Unit
Range (IUR), Principal Component Analysis (PCA) and
unsupervised learning algorithm (Expectation Maximization) to
aggregate similar alerts and to reduce the number of alerts. We
tested against other unsupervised learning algorithms to
validate the performance of the proposed model. Our empirical
results show using DARPA 2000 dataset the proposed model
gives better results in terms of the clustering accuracy and
processing time.

Index Terms—alert clustering and filtering, Expectation
Maximization, Principal Component Analysis, unsupervised
learning.

I. INTRODUCTION
Network Intrusion Detection Systems (NIDSs) have been
extensively used by researchers and practitioners to maintain
trustworthiness in systems [1]. However, NIDSs usually
generated thousands of alerts even for a day. Worse, those
alerts are in low quality because they mixed with false
positives, and repeated warnings for the same attack, or alert
notifications from erroneous activity [2]. Therefore,
manually analyze those alerts are tedious, time-consuming
and error-prone [3].

A promising technique to automatically analyze the
intrusion alerts is called correlation. In specific, Alert
Correlation System (ACS) is post-processing modules that
provide high-level insight on the security state of the network
and filter false positives as well as redundant alerts efficiently
from the output of NIDSs. The analyses from ACS actually
become an important guidance for security expert (SE) to
plan and develop the responsive and preventive mechanisms.
Generally, correlation can be of two types: structural

Manuscript received June 1, 2009. This work was supported by the

Ministry of Higher Education (MOHE), Malaysia.
Maheyzah Md Siraj is with the Faculty of Computer Science and

Information System, Universiti Teknologi Malaysia, 81310 Skudai Johor,
Malaysia. (phone: +607 5532245; fax: +607 5593185;).

Mohd Aizaini Maarof and Siti Zaiton Mohd Hashim are also with the
Faculty of Computer Science and Information System, Universiti Teknologi
Malaysia, 81310 Skudai Johor, Malaysia.

correlation and causal correlation. In this paper, we address
the structural correlation (or alert clustering) aspect of NIDSs
data to aggregate alerts with similar attributes.

The main problem in existing ACSs is they require high
levels of human involvement in creating the system and/or
maintaining it, as patterns of attacks change as often as from
month to month [4]. Our goal is to minimize the intervention
(i.e., to ease the burden) of SE as much as possible, but not to
replace them. In this paper we propose new, automated and
intelligent hybrid clustering model called Improved Unit
Range and Principal Component Analysis with Expectation
Maximization (IPCA-EM) to aggregate similar alerts as well
as to filter the low quality alerts.

The following section presents the overview of some
related researches and necessary background information in
the area of intrusion alert correlation. Section 3 describes
each component involved in our proposed approach. Section
4 explains the dataset, experiments conducted followed by
discussions of the results. Lastly, we conclude the paper and
present potential future work.

II. RELATED WORK
Most of the previous works [2], [3], [5], [6], [7] of alert

clustering for finding structural correlation required strong
dependencies on SE in developing and/or maintaining their
correlation system. They either need pre-defined rules or
human expert knowledge to manage and analyze the
intrusion alerts. As a result, rules or knowledge for such
systems need to be updated periodically as patterns of attacks
change drastically.

In [3], Aggregation and Correlation Component (ACC) is
proposed to group alerts into situations based on any
combination of the three attributes: source, target and alert
class. ACC relies on a set of rules to cluster the alerts. Whilst
in CRIM [6] and Rule-Based Temporal ACS [7], they
implemented a knowledge-based database to correlate and
filter false positives alerts. Such database stored predicate
logics to support logical reasoning in finding similarity
between incoming alerts and existing alerts. In both cases,
these approaches were time-consuming since they required a
large number of predefined rules/knowledge in order to
correlate alerts.

There are few works that cluster alerts based on supervised
machine learning. For instance, algorithm introduced by [5]
required a significant amount of alerts to be managed
manually (i.e., hand-clustered) beforehand. Likewise, system
by [2] required manual tuning periodically. Moreover, in
their first system deployment, it needs to encode network

A Hybrid Intelligent Approach for Automated
Alert Clustering and Filtering in Intrusion Alert

Analysis
Maheyzah Md Siraj, Member, IACSIT, Mohd Aizaini Maarof and Siti Zaiton Mohd Hashim

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

 540

properties to assist the clustering algorithm. Again, these
approaches were time-consuming since regular setup and
maintenance are significantly required for their system.
Therefore, those constraints make the development of
supervised learning-based correlation system less practical.

The closest work to ours was by [4] which used
Expectation Maximization (EM) clustering algorithm as well
in their second stage of correlation. A major different is that
we implemented Principal Component Analysis (PCA) to
obtain better performance. Detail justifications on the
implementation of PCA in our work are presented in the next
section.

III. OUR APPROACH
The goal of this work is to find the best integration of PCA

and unsupervised learning algorithm for clustering intrusion
alerts. Our system architecture composed of six main
components as illustrated in Fig. 1 (i.e., alert normalization,
alert preprocessing, dimension reduction, alert clustering,
alert ranking and verification, and alert reduction). In the
first component, alerts that were generated by multiples
NIDSs were collected and stored in database before they
were modeled and converted into a standard format called
Intrusion Detection Message Exchange Format (IDMEF).
The formatted alerts were represented in numerical value and
scaled to produce a balanced dataset. Since the number of
alerts was huge and the alerts information was massive, we
reduced the dimensionality of data using PCA. There were
four unsupervised learning clustering algorithms tested.
Among them, the EM gave better performance. Alerts in each
cluster were ranked based on their severity level in order to
discover the high and low risks of alerts. Based on the
sensor’s signatures file, alerts were verified to determine the
false positives and invalid alerts. In the last component, the
system automatically merged redundant alerts, and discarded
false positives and invalid alerts.

Fig. 1. Our proposed system architecture.

A. Alert Normalization
Recently, organizations use cooperative NIDSs to provide

a better detection and global view of intrusion activities. This
contributes to the diversity of output formats. In order to
correlate alerts such diversified formats have to be converted
into a unified standard representation. We applied IDMEF [8]
to define the common data formats for the alerts. A sample of
an alert in IDMEF is illustrated in Fig. 2.

Referring to Fig. 2, the alert is uniquely identified by the
‘Alert ident’ attribute. The service section describes network
services on targets. In this case, it contains two attributes,
namely protocol (tcp) and port (22). The target node address
is specified by the target element and the alert message is
given by the Classification name attribute. This alert simply

reports a stealth scan on port 22 from 135.013.216.191 to
172.016.112.149. Note that stealth scan attack is a kind of
scan that is designed to go undetected by auditing tools. So
scanning very slowly becomes a stealth technique.

We extracted nine attributes for each alert. Thus, a vector

Fig. 2. IDMEF representation of an alert in an XML document.

for an alert A = {SensorID, AlertID, SourceIPAddress,

DestinationIPAddress, SourcePort, DestinationPort,
ServiceProtocol, DetectTime, AlertType}. To manage all
attributes in more manageable way each attribute is stored in
a field. An example of an alert attributes in a database is
illustrated in Table I and they are extracted from an XML
document as showed in Fig. 2.

B. Alert Preprocessing
Alert attributes are in the form of numerical and

non-numerical values. Attributes that contain numerical
values are AlertID, SensorID, SourcePort, DestinationPort,
and DetectTime. The rest are non-numerical values (i.e.,
SourceIPaddress, DestinationIPaddress, ServiceProtocol
and AlertType) and have to be mapped into numerical values.
For instance to convert a 32-bit IP address (IPaddr) which in
X1.X2.X3.X4 format, mapping as (1) was used.

IPaddr = ((X1 x 256 + X2) x 256 + X3) x 256 + X4. (1)

<IDMEF-Message/>
<?xml version="1.0"?>
<!DOCTYPE IDMEF-Message PUBLIC "-//IETF//DTD RFC
XXXX IDMEF v1.0//EN" "/usr/local/etc/idmef-message.dtd">
<IDMEF-Message version="1.0">

<Alert ident="289">
<Analyzer analyzerid="109" model="snort"

version="2.0.5">
<Node>

<name>tcpdump_dmz</name>
</Node>

</Analyzer>
<CreateTime

ntpstamp="0xc36cc187.0xd3aa9b49">2007-11-24T
17:42:31Z</CreateTime>
<Source>
<Node>

<Address category="ipv4-addr">
<address>135.013.216.191</address>

</Address>
</Node>

<Service>
<port>22</port>

<protocol>tcp</protocol>
</Service>

</Source>
<Target>
<Node>

<Address category="ipv4-addr">
<address>172.016.112.149</address>

</Address>
</Node>

<Service>
<port>22</port>

<protocol>tcp</protocol>
</Service>

</Target>
<Classification origin="vendor-specific">

<name>msg=(spp_stream4) STEALTH ACTIVITY
(NULL scan) detection</name>

<url>none</url>
</Classification>

</Alert>
</IDMEF-Message>

Alert
Normalization

Raw
alerts

Alert
Preprocessing

Alert
Clustering

Dimension
Reduction

Alert Ranking
& Verification

Clustered
and
filtered
alerts

Alert
Reduction

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

541

We scaled all values in the range of [0,1]. We tested

against two scaling methods to find the best result in the alert
clustering component. They were Unit Range (UR) and
Improved Unit Range (IUR) scaling method as in (2) and (3)
respectively, where x’ is the scaled value, x is raw value, xmax
is maximum value and xmin is minimum value.

C. Dimension Reduction Using PCA
PCA has proven to be a useful technique for dimension

reduction and multivariate analysis [9]. An important virtue
of PCA is that the extracted components are statistically
orthogonal to each other. This produces speedup training and
robust convergence as shown in [10]. We expect that the
unsupervised learning algorithm can work much better with
PCA. According to [9], PCA is for a set of observed vectors
{vi}, i∈{1,2,...,N}, the q principle axes {wj}, j∈{1,2,..,q}
are those orthonormal axes onto which the retained variance
under projection is maximal. It can be shown that the vectors
wj are given by the q dominant eigenvectors (i.e. those with
largest associated eigenvalues) of the covariance matrix

()()T

i
ii

N
vvvv

C ∑
−−

= such that jij wCw λ= , where v is

the simple mean. The vector ()vvWu i
T

i −= , where

()qwwwW ,...,, 21= , is thus a q-dimensional reduced

representation of the observed vector { }iv .
For the intrusion alerts in the dataset, the purpose of

performing PCA is to find the principal components of the
alerts, i.e., the attributes vector that can describe the alerts
exactly and sufficiently, but not redundantly. In mathematical
terms, we wish to find the principal components of the
distribution of the alerts, or the eigenvectors of the
covariance matrix of the set of the alerts [9], [11].

D. Alert Clustering Using Unsupervised Learning
Besides EM, we tested against other three unsupervised

learning algorithms namely Self-organizing maps (SOM),
K-means, and Fuzzy c-means (FCM) for performance
comparison. Noted that, in this clustering component, we did
not include the AlertID, SourceIPAddress, and
DestinationIPAddress attributes because as mentioned in [12]
IP address tended to impede correct clustering since they are
easily forged. However these attributes will be used for the
next stage of correlation in our future work.

1) SOM
SOM [13] is a competitive learning algorithm that reduces

the dimensions of data by mapping high dimensional data
onto a set of units set up in a 2-dimensional lattice. An
n-dimensional weight vector is associated with each unit,
having the same dimension of the input space. At each step,
the Euclidean distances between a randomly selected input
vector x and all the units weight vectors wi is calculated. The
unit having the shortest distance to the input vector is

identified to be the best matching unit c for x. As a result, the
winner index c or best matching unit (BMU) for input vector
x(t) is identified. Then, the input is mapped to the location of
the BMU. We updated the weight vectors of the units
neighboring the BMU(c) and of BMU itself according to (4),
for i = c and its neighbours.

 () () () () ()()[]twtxttwtw iii −+=+ δ1 (4)

2) K-means
K-means [14] follows a simple and easy way to cluster a

given data set through a certain number of clusters (assume k
clusters) fixed a priori. The main idea is to define k centroids
(or center), one for each cluster. The centroid is the average
of all the points in the cluster i.e., its coordinates are the
arithmetic mean for each dimension separately over all the
points in the cluster. The better choice is to place them as
much as possible far away from each other. The next step is
to take each point belonging to a given data set and associate
it to the nearest centroid. When no point is pending, the first
step is completed and an early groupage is done. At this point,
k new centroids are re-calculated as barycenters of the
clusters resulting from the previous step. With these k new
centroids, a new binding has to be done between the same
data set points and the nearest new centroid. A loop has been
generated. As a result of this loop, the k centroids change
their location step by step until no more changes are done. In
other words centroids do not move any more. Finally, this
algorithm aims at minimizing an objective function, in this
case a squared error function. The objective function is as (5):

2

1 1

)(∑∑
= =

−=
k

j

n

i
j

j
i cxJ (5)

where 2)(cx j

j
i − is a chosen distance measure between a

data point xi
(j) and the cluster centre cj, is an indicator of the

distance of the n data points from their respective cluster
centres. The algorithm is also significantly sensitive to the
initial randomly selected cluster centres. The k-means
algorithm can be run multiple times to reduce this effect. The
main advantages of this algorithm are its simplicity and speed
which allows it to run on large datasets [14].

3) FCM
Fuzzy c-means (FCM) is a method of clustering which

allows one piece of data to belong to two or more clusters.
This method (developed by [15] and improved by [16]) is
frequently used in pattern recognition. It is based on
minimization of the following objective function as (6):

∑∑
= =

−=
N

i

C

j
ji

m
ijm cxuJ

1 1

2 ∞<≤ m1, (6)

where m is any real number greater than 1, uij is the degree of
membership of xi in the cluster j, xi is the ith of d-dimensional
measured data, cj is the d-dimension center of the cluster, and
||xi - cj|| is any norm expressing the similarity between any
measured data and the center. Fuzzy partitioning is carried
out through an iterative optimization of the objective function
shown above, with the update of membership uij and the
cluster centers cj by (7) and (8) respectively:

x’ = (x – xmin)
(xmax – xmin)

(2)

(3) x’ = 0.8 x (x – xmin) + 0.1
(xmax – xmin)

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

 542

 (7)

 (8)

This iteration will stop when ,
where is a termination criterion between 0 and 1, whereas k
are the iteration steps. This procedure converges to a local
minimum or a saddle point of Jm in (6).

4) EM
 The EM algorithm [17] consists of two repeated steps,

Expectation and Maximization. It uses a statistical model
called Gaussian finite mixtures to achieve the goal of
producing the most likely set of clusters given the number of
clusters, k, and a set of data. The model consists of a set of k
probability distributions, one to represent the data of each
cluster. There are parameters (e.g, number of iteration and
log likelihood difference between two iterations) that define
each of the k distributions. The EM algorithm begins by
making initial guesses for these parameters based on the input
data, then determines the probability that a particular data
instance belongs to a particular cluster for all data using these
parameter guesses. The distribution parameters are revised
again and this process is repeated until the resulting clusters
have some level of overall cluster ‘goodness’ or until a
maximum number of algorithm iterations are reached.

In particular, it attempts to find the parameters θ that
maximize the log probability logP(x;θ) of the observed data.
It reduces the difficult task of optimizing logP(x;θ) into a
sequence of simpler optimization subproblems, whose
objective functions have unique global maxima that can often
be computed in closed form. These subproblems are chosen
in a way that guarantees their corresponding solutions
φ (1) φ (2),... and will converge to a local optimum of
logP(x;θ). More specifically, the Expectation step
(E-step) of the algorithm estimates the clusters of each data
instance given the parameters of the finite mixture. During
the E-step, the algorithm chooses a function gt that lower
bounds logP(x;θ) everywhere, and for which gt(φ (1))=logP(x;
φ (t)).

The Maximization step (M-step) of the algorithm tries to
maximize the likelihood of the distributions that make up the
finite mixture, given the data [12]. During the M-step, the
algorithm moves to a new parameter set φ (t+1), that
maximizes gt. As the value of the lower-bound gt matches the
objective function at φ (t), it follows it follows (9), so the
objective function monotonically increases during each of the
iterations in EM [18].

 logP(x; φ (t)) = gt(φ (t)) ≤ gt(φ (t+1)) = logP(x; φ (t+1)) (9)

Fig. 4. Algorithm for alert reduction.

E. Alert Ranking and Verification
Fig. 4. Algorithm for alert reduction.

Alerts that issued by NIDSs were not all in the same level
of severity and importance. It would be great if the system
can identify which alerts are highly important and which are
not, so that the number of alerts that need to be deal with can
be reduced. The algorithm for alert ranking and verification
component is shown in Fig. 3. As shown in Fig. 3, we
automatically cross-checked each alerts with the sensor’s
signatures file [19] to determine the priority of alerts and to
verify the false positive and invalid alerts. In alert ranking,
we introduced three level of severity: (1) High-risk, (2)
Medium-risk and (3) Low-risk. For each level, we associate a
numerical weight of priority in order to distinguish
significant alarms from the others.

F. Alert Reduction
Given the clustered alerts from previous component,

redundant alerts (i.e., alerts that have equal values in all
attributes) in each cluster were merged into a hyper-alert. In
specific, repeated alerts for each cluster were represented as
one. Moreover, with the reduction of invalid, false positive
and low risk alerts, the total number of alerts left for future
analysis is significantly reduced. The alert reduction
algorithm is shown in Fig. 4.

IV. RESULTS AND DISCUSSIONS

A. Dataset and Experiments
Performing real attacks in real networks to produce NIDS

alerts as datasets are not realistic [20] and our work therefore
shares the weaknesses with other published research works in
the area whom using publicly available benchmark data. The
lack of publicly available and representative datasets hinders
ACS research and makes the comparison of different ACS
and algorithms difficult. Most of the research community of
IDS evaluated their works with DARPA’s datasets. These
datasets are, nonetheless, the only publicly available datasets
in evaluating IDSs.

The experiments were conducted with MIT Lincoln’s
Lab’s DARPA 2000 Scenario Specific Dataset [21]. The

mode: automatic delete for low risk alerts (1) need permission, (2) no need

global reduction (alert) {
 while each alert

ji Cc ∈ , do

 if (all attributes values in
ic is EQUAL to all attributes values in

1+ic)

 delete ic

 merge++
 else :
 if (ci.verify is ‘1’)
 delete

ic

 else :
 ask mode
 if (ci.rank is ‘0’ AND mode is ‘0’)
 delete ic

 else :
 outputs sum of merge, invalid, false, low }

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

543

dataset contain simulated multi-staged attack scenarios in a
protected environment: the intruder probes, breaks-in, installs
the Distributed Denial-of-Service (DDoS) daemon and
launches a DDoS attack against an off-site server. Since we
are dealing with the sensor data, alerts reported by
RealSecure network sensor Version 6.0 [22] which were
provided by [23] were used to evaluate the effectiveness of
our model.

The alerts data represents two kinds of attack scenarios
(i.e., scenario 1.0 and scenario 2.0.2) in two types of
networks (i.e., inside and dmz network). Attacks in scenario
2.0.2 were stealthier than scenario 1.0. For this paper, we
only used alerts data for scenario 2.0.2 in dmz network. For
implementation of the model, we used MATLAB Software
[24]. We have five set of experiments as illustrated in Table II:
(1) clustering with UR only (i.e., labeled as UR), (2)
clustering with IUR only (i.e., labeled as IUR), (3) clustering
with PCA only (i.e., labeled as PCA), (4) clustering with UR
and PCA (i.e., labeled as UPCA), and (5) clustering with IUR
and PCA (i.e., labeled as IPCA).

B. Data Analysis
The number of alerts tested was 430. The results obtained

were compared against the benchmark clusters (i.e., 16
clusters are expected) to determine the performance of the
proposed model. As in Table II, we used four measurements:
(1) Clustering Error (CE) is the number of alerts that are
wrongly clustered. (2) Error rate (ER) is the percentage of
wrongly clustered alerts, ER = (CE ÷ Total number of alerts
observed) x 100, (3) Accuracy Rate (AR) is the percentage of
alerts that are accurately clustered as they should be, AR =
100 – ER, and (4) Time is the algorithm processing time in
seconds.

We varied the number of clusters in FCM, K-means, and
EM to find the optimal results. Similarly, we tested the SOM
by simultaneously varying the epochs and lattice
configuration. Two third of the dataset was used for training
and the rest was for testing. The best result on SOM (i.e.,
73.58% with IPCA) was attained after it was trained for 2500
epochs using hexagonal 4 by 6 lattice type. It produced 12
clusters. It term of time costs, the overall processing time for
training and testing was 7.42 seconds. The processing time
might be longer if the dataset, epochs and/or lattice type are
larger.

Overall, the best performance was with EM (i.e., 90.33%
with IPCA) which was reached at 14 clusters and the
processing time was 4.59 seconds. In each cluster, similar
types of alerts were grouped together to represent an attack
step. Since FCM, K-means, and SOM have a larger value of
CE, it means that they put a large number of alerts that should
belong together in one cluster into another clusters.
Therefore, we summarized that the proposed model (i.e.,

IPCA-EM) is effective and performed better than the rest of
the algorithms tested for this dataset in terms of clustering
accuracy and processing time.

Table III presented the type of alerts with their level of
rank/priority. It shows that the majority of the alerts are most
probably not serious at all. SE might found such alerts
inappropriate to be analyzed and correlated. But, others may
feel they are appropriate. Because of that, our system
provided two kind of mode to automatically delete the low
risk alerts: (1) need permission from SE, or (2) no need. If (2)
was chose, then the total reduction of alerts was significant
(see Table IV). Table IV illustrated the total alerts in each
category (i.e., merged redundant alerts, invalid, false
positives and low risk alerts) which the system considers in
order to reduce the amount of alerts. The original input data
was 430, thus total reduction of unwanted alerts was 87.67%.

V. CONCLUSION AND FUTURE WORK
Automation of alert management and analysis is crucial

because alerts are in low level information and the volume is
very large that make them tedious and hardly to be analyzed
manually. Since alerts are not significant if they are isolated,
thus finding the relationships between them is an important
stage.

Grouping and clustering the alerts based on their feature
similarities actually can reveal the attack steps launched by
the attackers. Moreover, redundant alerts can be detected and
merged easily. Therefore, the novelty of this work is the new
integration of IUR, PCA and EM algorithm (which we called
it IPCA-EM) as a solution to cluster multi sensors’ intrusion
alerts and to filter out the unwanted alerts. To the best of our
knowledge, this is the first attempt for such integration and
produces better results.

Altogether, the results are encouraging in terms of
clustering accuracy rate and processing time compared to
other unsupervised learning algorithms tested in this paper.
Noted that a successful network attack consists of
multi-stages attack, and an attack stage may comprise of
one/more attack steps. Thus, we need a secondary clustering
component to aggregate similar attack types to reveal the
stages of attack. This becomes our main future work besides
testing the proposed model with larger dataset.

In the near future, we would like to develop a collaborative
multi-stages correlation system to determine known and
unknown attack scenarios.

Table II. Clustering performance.

FCM K-means SOM [25] EM
Model

CE ER
(%)

AR
(%)

Time
(sec) CE ER

(%)
AR
(%)

Time
(sec) CE ER

(%)
AR
(%)

Time
(sec) CE ER

(%)
AR
(%)

Time
(sec)

UR 78 18.40 81.60 1.30 62 14.62 85.38 4.23 139 32.78 67.22 4.22 47 11.08 88.92 1.90

IUR 74 17.45 82.55 1.27 57 13.44 86.56 4.40 135 31.84 68.16 4.21 45 10.61 89.39 1.85

PCA 133 31.37 68.63 3.56 141 33.25 66.75 5.20 170 40.09 59.91 6.52 86 20.28 79.72 2.67

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

 544

UPCA 70 16.51 83.49 4.80 52 12.26 87.74 6.12 127 29.95 70.05 7.44 43 10.14 89.86 4.64

IPCA 67 15.80 84.20 4.81 46 10.85 89.15 6.18 112 26.42 73.58 7.42 41 9.67 90.33 4.59

Table III. Total of ranked alerts.
Priority Type of Alerts Total

High-risk
Admind, HTTP_ActiveX,
HTTP_Cisco_Catalysts_Exec,
Sadmind_Amslverify_Overflow

10

Medium-risk Email_Almail_Overflow, FTP_Pass 43

Low-risk

Email_Ehlo, FTP_Put, FTP_Syst,
FTP_User, HTTP_Java, SSH_Detected,
TCP_Urgent_Data, TelnetEnvAll,
TelnetTerminalType, TelnetXdisplay

371

Table IV. Total reduction of alerts.

Merged Invalid FP Low-risk SUM Reduction
(%)

3 2 1 371 377 87.67

REFERENCES
[1] A. Siraj, and R. B. Vaughn, “Multi-level alert clustering for intrusion

detection sensor data,” Proc. of the North American Fuzzy Information
Processing Society, 2005, pp. 748-753.

[2] K. Julisch, and M. Dacier, “Mining intrusion detection alarms for
actionable knowledge,” Proc. of the 8th ACM Int. Conf. on Knowledge
Discovery and Data Mining, 2002, pp. 366–375.

[3] H. Debar, and A. Wespi, “Aggregation and correlation of intrusion
detection alerts,” Proc. of the 4th Int. Symp. on Recent Advances in
Intrusion Detection, 2001, pp. 87–105.

[4] R. Smith, N. Japkowicz, M. Dondo, and P. Mason, “Using
unsupervised learning for network alert correlation,” Springer-Verlag
LNAI 5032, 2008, pp. 308-319.

[5] O.M. Dain, and R. K. Cunningham, “Fusing a heterogeneous alert
stream into scenarios,” ACM Workshop on Data Mining for Security
Applications, 2001, pp. 1-13.

[6] F. Cuppens, and A. Miege, “Alert correlation in a cooperative intrusion
detection framework,” Proc. of the IEEE Symp. on Security and
Privacy, 2002, pp. 202-215.

[7] P. Kabiri, and A. A. Ghorbani, “A rule-based temporal Alert
Correlation System,” Int. J. of Network Security, vol. 5, no. 1, 2007, pp.
66–72.

[8] H. Debar, D. Curry, and B. Feinstein. (2007, March). The Intrusion
Detection Message Exchange Format (IDMEF) [Online]. Available:
ftp://ftp.rfc-editor.org/in-notes/rfc4765.txt

[9] I. T Jolliffe, Principal Component Analysis (3rd ed.). New York:
Springer Verlag, 2002.

[10] E. Oja, “Neural networks, principal components, and subspaces,” Int.
Journal of Neural Systems, vol. 1, no. 1, 1989, pp. 61-68.

[11] J. X. Wang, Z. Y. Wang, and K. Dai, “Intrusion alert analysis based on
PCA and the LVQ neural network,” Proc. of the13th Int. Conf. on
Neural Information Processing, 2006, vol. 4234, pp. 217-224.

[12] N. Japkowicz, and R. Smith, “Autocorrel II: Unsupervised network
event correlation using neural networks,” Contractor Report,
CR2005-155, DRDC Ottawa, Oct. 2005.

[13] T. Kohonen, Self-Organizing Maps: Series in Information Sciences
(3rd ext. ed.). Berlin: Springer, 2001.

[14] J. B. MacQueen, “Some methods for classification and analysis of
multivariate observations,” Proc. of 5th Berkeley Symposium on
Mathematical Statistics and Probability, Berkeley: University of
California Press, vol. 1, 1967, pp. 281-297.

[15] J. C. Dunn, “A fuzzy relative of the ISODATA process and its use in
detecting compact well-separated clusters,” J. of Cybernetics, vol. 3,
1973, pp. 32-57.

[16] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function
Algorithms, New York: Plenum Press, 1981.

[17] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum likelihood
from Incoming data via the EM algorithm,” J. Royal Stat. Soc., Series
B, vol. 39, no. 1, 1977, pp. 1–36.

[18] C. B. Do, and S. Batzoglou, “What is the Expectation Maximization
algorithm?,” Nature Biotechnology, vol. 26, 2008, pp. 897-899.

[19] RealSecure Signatures Reference Guide. Internet Security Systems
[Online]. Available: http://xforce.iss.net

[20] T. Pietraszek, Alert Classification to Reduce False Positives in
Intrusion Detection. PhD Thesis. Germany:
Albert-Ludwigs-Universit¨at Freiburg im Breisgau, 2006.

[21] MIT Lincoln Lab. (2000). DARPA 2000 Intrusion Detection
Evaluation Datasets [Online]. Available:
http://ideval.ll.mit.edu/2000index.html

[22] Internet Security Systems. RealSecure Network 10/100 [Online].
Available:
http://www.iss.net/products_services/enterprise_protection/rsnetwork/
sensor.php

[23] P. Ning. (2002). TIAA: A Toolkit for Intrusion Alert Analysis [Online].
Available: http://discovery.csc.ncsu.edu/software/correlator

[24] The MathWorks. MATLAB: The Languange of Technical Computing
[Online]. Available: http://www.mathworks.com

[25] A. Faour, P. Leray, and B. Eter, “Automated filtering of network
intrusion detection alerts,” Proc. 1st Joint Conf. on Security in Network
Architectures and Security of Information Systems, 2006, pp. 277-291.

Table I. An example of an alert in database.
SensorID AlertID SrcIP DestIP SrcPort DestPort Serv Time AlertType

109 289 135.013.216.191 172.016.112.149 22 22 tcp 2007-11-24
17:42:31

STEALTH
ACTIVITY

Maheyzah Md Siraj received her BEng in Computer
Engineering from Universiti Teknologi Malaysia in
2000, and the MEngSc in Computer and
Communication Engineering from Queensland
University of Technology, Australia in 2002. She is
currently a PhD student in Faculty of Computer
Science and Information System, Universiti Teknologi

Malaysia. Her research interests are in the area of information assurance and
security, evolutionary and hybrid soft computing.

Mohd Aizaini Maarof received his BSc in Computer
Science in 1986 from Western Michigan University,
USA, the MSc in Computer Science in 1988 from
Central Michigan University, USA and the PhD degree
from Aston University, UK in 1999. He is a professor
in the Faculty of Computer Science and Information
System, Universiti Teknologi Malaysia.

He is the author/co-author of more than 200 publications in books, technical
journals and conferences. He served on the program and technical
committees of several national and international conferences. His research
interests are in the areas of computer systems and security, information
assurance and network security.

Siti Zaiton Mohd Hashim obtained her BSc in
Computer Science in 1990, MSc in Computer Science
in 1997 and PhD (Softcomputing in Control) in 2005
from University of Hartford, USA, University of
Bradford, UK, and Sheffield University, UK
consecutively. Her research interests are soft
computing and intelligent systems.

She is currently the head of Office of Postgraduate Studies, Faculty of
Computer Science and Information System, Universiti Teknologi Malaysia.
She is now actively doing research on RFID middleware and soft computing
fundamental research.

ftp://ftp.rfc-editor.org/in-notes/rfc4765.txt
http://xforce.iss.net
http://ideval.ll.mit.edu/2000index.html
http://www.iss.net/products_services/enterprise_protection/rsnetwork/
http://discovery.csc.ncsu.edu/software/correlator
http://www.mathworks.com

International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009
1793-8201

545

Fig. 3. Algorithm for alert ranking and verification.

