
  

 

Abstract—Identification of material properties involves 

physical experimentation followed by modeling, simulation and 

manual optimization. However, the last step tends to be 

computational expensive. This paper investigates an artificial 

neural network (ANN) surrogate model for identifying material 

parameters. The proposed approach is illustrated with a case 

study based on a nano-indentation test.  

 
Index Terms—Surrogate models, optimization, 

metal-mechanic properties, infill sampling, inverse analysis.  

 

I. INTRODUCTION 

In material science and engineering, the estimation of 

material properties is associated to several applications 

including the detection of material failures, and the design of 

new materials. Identification of the “strongly-affecting 

materials characteristics” is certainly a key for improving the 

material design process [1]. 

Typically, the identification of material properties involves 

physical experimentation followed by modeling, simulation 

and manual optimization. In the manual optimization step, 

different sets of parameter values are proposed and 

simulations are performed. The optimization consists in 

determining which parameter combination matches best the 

physical experimentation data.  

This paper focuses on the estimation of material 

parameters so that a further identification can be done quicker 

and cheaper than with conventional methods. 

One conventional technique for estimating mechanical 

properties is to approximate a physical responseby means of a 

finite element analysis (FEA) model. Firstly, an experiment 

is carried out to obtain the physical response. Subsequently, 

the FEA model is executed several times in an attempt to 

reproduce the physical response. For each model execution, 

trial values are assigned to the model input variables (or 

parameters), then the model response is compared against the 

physical response (see Fig. 1). This method has been reported 

for the nanoindentation test [2], in which the problem 

consists on finding a FEA prediction that best fits the original 

experimental load-depth curve (see Fig. 2). 

Although this methodology has proven to be effective in 

many cases, its success is highly influenced by the 
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availability of design experience. Furthermore, it is 

impractical when the number of parameters increases, since a 

larger number of simulations become necessary.  

 

 
Fig. 1. Inputs and outputs for an experiment-simulation approach method. 

𝑥𝑒𝑥𝑝  and 𝑥𝑠𝑖𝑚  are inputs, 𝑦𝑒𝑥𝑝  and 𝑦 𝑖  are outputs and 𝒑 𝑖  is a trial vector of 

parameters. 

 

 
Fig. 2. Load-depth curve of a nano-indentation experiment and simulations 

of trial parameters (. FEA 01, FEA 04). 

 

The proposed approach aims at carrying out as less 

simulation runs as possible which are used to generate a 

surrogate model that can be utilized “in lieu of the original 

computer model” to generate a response with less 

computation time. Thus, the surrogate model response can be 

compared against the experimental data and optimization 

techniques can be employed to find the desired values of the 

parameters. Surrogate models are constructed using data 

drawn from high-fidelity models, and provide fast 

approximations of the objectives and constraints at new 

design points, thereby making optimization studies feasible 

[3].Common surrogate modeling techniques include splines, 

polynomial approximation, Kriging models, radial basis 

functions, and artificial neural networks (ANNs). 

Simpson et al. (2008) explain the growing usage of 

surrogate models [4]. Their review includes many 

developments in design and analysis of computer 

experiments (DACE) and new surrogate-modeling 

techniques proposed during recent decades. On the other 

hand, robust methodologies have been developed for 

calculating metal-mechanical properties [2]. However, very 

few attempts, such in [5], focused on computationally 
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efficient methods. Furthermore, most of the existing 

literature concentrates in the physical interpretation of the 

results, and little has been done on approaches based on 

DACE. 

Consequently, the objective of this research is to develop a 

systematic, general and robust methodology for determining 

material parameters within a minimum number of computer 

simulations, thus to lower the computational cost of 

conventional identification processes.  

The rest of this paper is organized as follows. Section II 

describes the problem statement. The methodology is 

presented in Section III. Section IV illustrates the proposed 

approach with a case study for ananoindentation problem. 

Finally, the last section draws conclusions and areas of 

further research. 

 

II. PROBLEM STATEMENT 

The general problem can be stated as follows: 

 

Min   𝑭 𝑥, 𝒑 𝑑𝑥 −
𝑥𝑓𝑖𝑛𝑎𝑙

𝑥0

 𝑭  𝑥, 𝒑   𝑑𝑥
𝑥𝑓𝑖𝑛𝑎𝑙

𝑥0

  

(1) 

subject to 𝑔 𝑥, 𝒑 = 0 
 

where 𝑭 𝑥, 𝒑  is the experiment response, and 𝑭  𝑥, 𝒑    is a 

prediction obtained by a surrogate model. 

𝑥 is aknown independent variable, 𝒑  is a vector of 

parameters which are intrinsically present in the material but 

whose range and values are unknown. In contrast, 𝒑  is a 

vector of parameters whose values are known a priori. 𝑥0 is 

the initial value of  𝑥 , and 𝑥𝑓𝑖𝑛𝑎𝑙  is its last value. The 

restriction 𝑔 𝑥, 𝒑 guarantees that the experimental and 

predicted responses overlap. 

 

III. METHODOLOGY 

 

 
Fig. 3. Flowchart of a surrogate-based approach methodology with 

embedded ISC. 

 

The methodology follows the super EGO algorithm 

proposed by Sasena et al. [6] which guarantees the creation of 

an accurate surrogate model. The algorithm works by first 

obtaining a set of sample points. Subsequently, rigorous 

simulations are performed for each sample point, and a 

surrogate model is fitted to those simulation results. The next 

step is to optimize the objective function of interest. If a 

termination criterion based on infill sampling criterion (ISC) 

is not satisfied, then the surrogate model is updated with the 

new sample points. Later the ISC is maximized to select the 

next sample points to be added. Lastly, the procedure is 

repeated until the termination criterion is reached. A 

flowchart of this methodology is shown in Fig. 3. 

A. Initial Data Sampling Strategy 

A finite number of sample points are needed to create a 

surrogate model. These points must be well-distributed in the 

design space.  

In order to ensure the accuracy of the surrogate model in 

every region of the design space, various sampling 

techniques have been proposed. In this paper, we use the 

Latin hypercube sampling (LHS).  

A variation of LHS is the optimum Latin hypercube (OLH) 

sampling. OLH employs the column pair wise (CP) algorithm 

[7] and generates an optimal design with respect to the 

S-optimality criterion. S-optimality seeks to maximize the 

mean distance from each design point to all the other points in 

the design, so the points are as spread out as possible along 

the design space. 

B. Creation of the Surrogate Model 

This step consists of performing simulations at the 

designed sampling points. Then the simulation responses are 

used for creating the surrogate model. A subsequent 

validation process based on a Bayesian metric can be used in 

order to decrease the natural uncertainty in surrogate models 

with limited number of design points [8]. 

In this paper we use ANNs as a surrogate method. Some of 

the advantages of ANNs are their versatility and simplicity. 

ANNs also provide better recognition of patterns in data and 

can result in better predictions of the response variables than 

conventional methods [9]. 

ANNs are computational models inspired by animal 

central nervous systems (in particular the brain) that are 

capable of machine learning and pattern recognition. They 

are usually presented as systems of interconnected "neurons" 

that can compute values from inputs by feeding information 

through the network. Three typical ANNs are back 

propagation, conjugate gradient, and Levemberg-Marquardt 

methods. 

An ANN is trained by repeatedly presenting a series of 

input and output pattern sets to the network. The neural 

network gradually “learns” the relationship of interest by 

modifying the weights between its neurons to minimize the 

error between the actual and predicted output patterns of the 

training set. Then, a separate set of data called the test set is 

used to monitor network‟s performance. During training, the 

learning rule is used to iteratively adjust the weights and 

biases of the network in order to move the network outputs 

closer to the target values by minimizing the network 

performance indicator. 

If many ANNs are trained, it becomes necessary to choose 

the best one by measuring their individual performance. The 

ability of surrogate models to reproduce the original model is 

commonly quantified by means of metrics such as the 

root-mean squared deviation (RMSD).The work in [8] and 

[9] shows that aBayesian metric can also be successfully 

applied to quantify the probability of data uncertainty in the 

prediction done by a set of surrogate models. Shi [8] 

employed the RMSD with lnQ Bayesian metric, and Noble 
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[9] employed the Corrected Akaike‟s Information Criterion 

(AICc) and the Schwarz‟s Bayesian Criterion (SBC). A 

surrogate model is selected in terms of the smallest 

uncertainty (in the case of lnQ-metric), or the lowest score (in 

the case of AICc and SBC). 

C. Optimization with Infill Sampling Criterion 

In order to improve the accuracy of the surrogate model 

and to facilitate the search of the global optimum, an 

approach using Infill Sampling Criterion (ISC) is proposed.  

The purpose of ISC is to find the set of parameter values𝒑 𝑖 , 

also called design variable, which maximizes the estimated 

error of the surrogate model predictor. Consequently, ISC 

searches for areas in the DS with high estimated error. To do 

this, ISC uses information of the current model in order to 

assess the utility of evaluating a design variable on the actual 

problem. The scope of infill criteria ranges from increasing 

the global accuracy of the surrogate model to facilitating the 

final optimization process. 

An example of an ISC-based algorithm for Kriging 

surrogate models is the superEGO algorithm introduced by 

Sasena et al. [6]. Similar to superEGO, a proposed ISC 

approach is done for ANN. 

The proposed ISC is based on the offset (error) value 

𝐼𝐹  𝒑  , which is a quality index built upon the root mean 

squared deviation (RMSD) between the actual response and 

simulation data. It can be formulated as 

         𝐼𝐹  𝒑  =  1

𝑚
  𝑭  𝑥𝑖, 𝒑   − 𝑭 𝑥𝑖, 𝒑  

2
𝑚
𝑖=1 , 

(2) 

where 𝑭 𝑥𝑖, 𝒑 is the ith actual experiment response at points 

𝑥𝑖 , and 𝑭  𝑥𝑖 , 𝒑    is the surrogated prediction at this point, 𝑚 is 

the total number of experiment points. 

We try to select a parameter design with the biggest 

contribution to the current error. In order to estimate the 

representativeness of a selected set 𝒑 𝒊 , we introduce a 

weighted function  

 

𝑤𝑖 ,𝑗 = 𝑑 𝒑 𝑖 , 𝒑 𝑗  ,             (3) 

 

where 𝒑 𝑗 is the original OLH sampled data and 

𝑑 𝒑 𝑖 , 𝒑 𝑗  = 1 − exp  − 𝒑 𝑖 − 𝒑 𝑗  
2
 .    (4) 

This weight function gives the similarity of the design 

variables. When the two design variables are near each other, 

the value of this function is small, and vice versa, the two 

design variables are far away, the value is big. 

Since this criterion aims to maximize the difference of the 

experiment response and those infill variable designs that 

significantly deviate from the original OLH sampled data, the 

expression of the ISC becomes 

𝒑 𝑖 = argmax𝒑 𝑖∈𝐷𝑆  𝑤𝑗  I 𝒑 𝑖 − I 𝒑 𝑗   
𝑛
𝑗 =1 .          (5) 

 

IV. CASE STUDY 

The experiment data is given by a nonlinear stress-strain 

relationship (hardening curve) in an aluminum-alloy material, 

which is obtained by means of a nanoindentation tester.  

The nanoindentation experiment is carried out based on 

ISO14577-1 (2002) [10]. The experimental response is 

shown in Fig.4. The objective is to estimate the values of the 

elements of the vector of parameters 

 

𝒑 =  𝐸, 𝐶, 𝑛, 𝛼 .        (6) 

 

where 𝐸 is the Young‟s modulus, 𝐶is the the strain-hardening 

coefficient, 𝑛 is the strain-hardening exponent and 𝛼  is a 

strain constant. The determination of these parameters are 

often used to assess the mechanical reliability of materials 

(e.g. fatigue, fracture, corrosion and wear) [5], [11], [12]. 

 

 
Fig. 4. Load-depth diagram for the case study indentation problem.𝑥𝑓 : the 

final depth of the contact impression after unloading; 𝑦𝑚𝑎𝑥 : the peak 

indentation load; 𝑥𝑚𝑎𝑥 : the indenter ideal displacement at peak load; and 𝑘: 

the post-experimental calibration. 

 

The nanoindentation test is an extremely small-scale test 

carried out with nanometer order displacements, so the 

indenter tip is difficult to position exactly over the material 

surface at the beginning of the experiment. Hence, the 

indenter starts to move downward from above the material 

with some gap between the indenter tip and the surface. 

When the load cell senses the reaction force from the material 

surface, the displacement is set to zero and the force and 

displacement start to be recorded. However, the load signal 

includes some noise and the digital resolution of load is 

restricted, so it is difficult to sense exactly the touching force, 

and a delay may also occur. Moreover, the shape of the 

indenter tip is not guaranteed to be sharp enough, because the 

tip may become rounded by repeated experiments. The 

imperfection of the tip shape also affects the error and delay 

at the initial contact. Consequently, the indentation 

displacement is likely to be underestimated. As a result, the 

indentation displacement requires a calibration process that 

can correct the initial contact errors. 

Here, a calibration factor 𝑘 is introduced as an unknown 

constant that represents the difference between an ideal 

maximum displacement 𝑥𝑚𝑎𝑥  and the maximum measured 

displacement (see Fig. 4).  

Since the peak of the indentation load-depth curve is noisy, 

the original response is regressed. Then the maximum real 

displacement becomes the convergence of a regression of 

both the load and the unload curves. 

A classic procedure is to adopt a regression using the 

power law as suggested by Oliver and Pharr [5], [11]. The 

equation of the experimental response, including the 

calibration, is restated as 
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      𝑭 𝑥, 𝒑 =  
𝐴1 𝑥 + 𝐶1 + 𝑘 𝑛1 , 𝑥 ∈ [𝑥0, 𝑥𝑚𝑎𝑥 ]

𝐴2 𝑥 + 𝐶2 + 𝑘 𝑛2 , 𝑥 ∈ [𝑥𝑓 , 𝑥𝑚𝑎𝑥 ]
   

(7) 

where 𝐴𝑖 , 𝐶𝑖  and 𝑛𝑖  are the coefficients of the 𝑖𝑡  curve 

regression, 𝑥 is the depth and 𝑘is the calibration constant of 

the whole experimental response. 

Since the maximum real displacement is considered to be 

the intersection of the loading with the unloading regressed 

curves, the value of 𝑘 can be calculated with the least squares 

method (LS) using a general purpose optimizer. This 

intermediate problem consists in solving 

 

𝑘 = 𝑥𝑚𝑎𝑥 − min𝑥  𝐴1 𝑥 − 𝐶1 
𝑛1 − 𝐴2 𝑥 − 𝐶2 

𝑛2 ,  (8) 

 

where the subscript 1 refers to the coefficients that belongs to 

the loading regression and 2 refers to the unloading 

regression. 

A. Sampling Strategy  

Because OHS is intended for box-like domains, a 

minimum and a maximum limits for each of the sought 

parameters must be specified. These upper and lower limits 

constitute fixed region in the design space. The parameter 

limits are shown in Table I. 

 
TABLE I: DESIGN SPACE OF INPUT VARIABLES 

Parameters 𝐸(GPa) 𝐶(MPa) 𝑛 𝑎 
Lower Limit 50 500 0.1 0 

Upper Limit 150 1500 0.3 0.002 

 

In order to simplify the problem, in this case study we 

assume that the set of sample points satisfies the infill 

sampling criterion described in Section III.  

 
TABLE II: LHS OF 8 PARTITIONS, 4 VARIABLES 

Parameters 𝐸(GPa) 𝐶(MPa) 𝑛 𝑎 

1 55.31471 611.9684 0.218075 5.24E-04 

2 132.059 549.7711 0.163307 7.85E-04 

3 75.79828 715.9358 0.143577 1.94E-03 

4 89.83298 848.659 0.108379 4.97E-04 

5 119.3931 656.3377 0.265272 1.52E-03 

6 144.2803 923.2771 0.198678 1.21E-03 

7 108.1492 769.9889 0.291477 1.00E-07 

8 69.99183 947.56 0.225471 1.35E-03 

 

 
Fig. 5. Indenter (yellow), and Aluminum material (blue) in the FEM in 2D 

through interface in MARC MENTAT®. Colors represent the scalar 

deformation in the contour of the mesh. 

 

The design of experiments was performed using optimum 

LHS included in the „LHS‟ package of „R‟ statistical 

programming environment. The generated set of sampling 

points is shown in Table II.  

Subsequently, simulations were carried out on those points 

using MARC® simulation software [13]. The numerical data 

from the FEA is used for training and verification of the ANN 

(see Fig. 5). 

B. Creation of the Surrogate Model 

In this research, six parameters are considered as input 

variables. Four of them represent the material properties, one 

is the independent variable (displacement) of the experiment 

and one more variable 𝑏  is a binary artifice that helps to 

separate the prediction into two sections(load and 

unload).For computational purposes, the surrogate model 

restated function is 

 

𝑭  𝑥, 𝒑   ≡  𝑭  𝑥, 𝑏, 𝒑   .          (9) 

 

In (9), 𝑏 = 0 represents the loading section of the curve 

and 𝑏 = 1 is for the unload section of the curve of Fig. 3. 

ANNs were created using the Neuroet toolbox [9]. The 

optimum number of neurons in the hidden layer is obtained 

via a built-in function in Neuroet. 

Additionally, in order to select an adequate surrogate 

model, a statistical analysis based on the SBC score was 

carried out. The criterion consisted in selecting the ANN 

features which have the highest probability of being included 

in the top 5% among 3 × 15 × 18 × 12 ANNs‟ SBC scores1.  

The analysis showed that for the nano-indentation 

response (the load-depth curve), an ANN trained with 8 

hidden layers using the standard back-propagation method 

produced the smallest SBC. Furthermore, the transfer 

function between the input layer and the hidden layer was set 

to log-sigmoid, while the transfer function between the 

hidden layer and the output layer was pure-linear. 

C. Restatement of the Objective Function 

In the objective function, it is important to consider that the 

experiment is noisy and also could miss certain information 

or cluster information in determined sections of the curve. 

The first term in (1) that refers to the integration of the 

experimental curve is approximated through the integration 

of (7) as follows 

 

 𝑭 𝑥, 𝑏, 𝒑 𝑑𝑥
𝑢𝑓𝑖𝑛𝑎𝑙

𝑢0

≈   𝐴1 𝑥 + 𝐶1 𝑛1𝑑𝑥
𝑥  𝑚𝑎𝑥

𝑥0

 

 +  𝐴2 𝑥 + 𝐶2 𝑛2𝑑𝑥
𝑥  𝑓

𝑥  𝑚𝑎𝑥

 

 (10) 

where the coefficients 𝐴1,𝐶1and 𝑛1 belong to a regression of 

the load curve and coefficients 𝐴2 ,𝐶2and 𝑛2  belong to the 

unload curve.𝑥𝑚𝑎𝑥  is the maximum depth (Fig. 1).  

The second term of (1) is approximated as 

 

 𝑭  𝑥, 𝒑    𝑑𝑥
𝑥𝑓𝑖𝑛𝑎𝑙

𝑥0

≈  
 𝑥𝑖 − 𝑥𝑖−1 ∗  𝑦 𝑖 + 𝑦 1−1 

2

𝑛

𝑖=0
 

(11) 

 
1  In the analysis we compared 3 training methods (Standard 

Backpropagation, Conjugate Gradient, and LevembergMarqardt), a best 

selection among 15 trainings for each of the 18 candidates for number of 

hidden layers (1 to 18), and a final of 12 runs of the whole process selection. 
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where 𝑦 𝑖  is the surrogate model prediction in 𝑥𝑖 . 

Finally, the restriction 𝑔 𝑥  is implemented as a composed 

penalty function: 

 

𝑔 𝑢 = 𝜔1 ∗  𝐴1 𝑥𝑚𝑎𝑥 + 𝐶1 
𝑛1 − 𝑭  𝑥𝑚𝑎𝑥 , 0, 𝒑     (12) 

 

where 𝜔1is a weight which can be adjusted manually, the 

term 𝐴1 𝑥𝑚𝑎𝑥 + 𝐶1 𝑛1 is the peak of the regressed loading 

curve, and the term 𝑭  𝑥𝑚𝑎𝑥 , 0, 𝒑   stands for the peak of the 

surrogate model loading curve. 

The constraint represents a weighted difference between 

both the experimental curve and predicted curve peaks. The 

value of 𝜔1 is likely to vary depending on the scale of the 

prediction, or number of parameters (other features, such as 

the dispersion of the original response, could influence it 

too). The weight𝜔1 gave satisfactory results for this case 

study (4 parameters with a maximum depth of 𝑥𝑚𝑎𝑥 =
250[nm]) for the range 0.1 ≤ 𝜔2 ≤ 0.3.  

D. Optimization 

In the proposed methodology, the purpose is to 

strategically find a combination of inputs which solves (1). 

Several stochastic optimization algorithms can be used. Since 

(1) is a non-linear function, a global optimizer can address 

this problem. We used differential evolution algorithm (DE), 

[14] to find the optimum material parameters.  

E. Results 

The calculations were carried out with R, on a Core 2 Duo 

computer, running Windows 7 32bits. The optimization was 

run 10 times and it took almost 4 minto complete each one. 

The results are shown in Table III. Additionally, in order to 

validate these results, we compared them to a manually 

adjusted FEA procedure based on [2]. 

 
TABLE III: RESULTS OBTAINED WITH ANN VS A MANUAL FITTING  

Parameters 𝐸(GPa) 𝐶(MPa) 𝑛 𝛼 
Optimized  

(mean) values 
82.95 820.9 0.1308 2.680 E-4 

Standard deviation  0.07 3.0 0.001 0.296 E-4 

Manually fitted 

values 
80 800 0.1 0.099 E-4 

 

 
Fig. 6. Load-depth curve of the physical experiment versus a prediction 

generated through ANN method. 

 

The conventional manual fitting required from 

material-science experts to perform between 10 to 20 

simulations, each one taking approximately 30 minutes in 

MARC® on a HP Intel Xeon workstation. 

Fig. 6 shows two curves: a) the physical experiment and b) 

the optimized surrogated prediction. In the ANN, the 

optimum had an RMSD = 0.03551 (mN). 

Finally, we made two FEM simulations using both the 

optimized mean values, and the manually fitted values from 

Table III. Fig. 7 shows the FEM simulation using the 

proposed methodology prediction. Table IV contains the 

actual RMSD of both curves, each one versus the physical 

experiment response. 
 

 
Fig. 7. Load-depth curve of the physical experiment versus a simulation 

using the surrogate-based optimum parameters. 

 

TABLE IV: ACCURACY OF ANN VS MANUAL FITTING  

Simulated curves RMSD (mN)   

Optimized values 0.0535 

Manually fitted values 0.1349 

 

V. CONCLUSION 

A method was proposed for the identification of 

mechanical properties of materials. The results point out that 

surrogate models can be used together with an optimization 

algorithm to identify material parameters. A case study was 

presented for the estimation of material parameters obtained 

from a nanoindentation load-depth curve and a small number 

of computer simulations. The proposed systematic 

methodology improves the computational and time costs, and 

also the accuracy of the existing methods.  

Further work includes exploring other surrogate-modeling 

techniques such as Kriging or Support Vector Machine, and 

comparing. Also a changeable design space is worth 

considering. Finally, we plan to investigate more complex 

problems involving a larger number of material parameters. 
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