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Abstract—Most surface in computer graphics are 

represented as triangle meshes. Techniques for interactive 

deformation of triangle meshes are a fundamental important 

part in a host of applications. Most traditional approaches to 

the deformation have emphasized precise control over the 

models by a man made selection of a set of control point. 

However, they are often cumbersome and non-intuitive for the 

non-expert users. In this paper, we present a system for 

deforming triangle meshes which is easy to use and need less 

interaction. Our method computes the high order curvature 

derivatives describing the salient features of meshes, such as the 

ridge lines. By interacting with the ridge lines as the handle to 

control the deformation, the user can implicitly and intuitively 

control the deformation of all meshes. We demonstrate that our 

system can make the surface manipulated and modified by 

preserving the geometric details. 

 
Index Terms—Ridge line, laplacian deformations, differential 

representations. 

 

I. INTRODUCTION 

A few lines suffice to sketch the main feature of a shape. 

This is why many designers still prefer using the pen and 

paper to communicate, and explains the great success of 

sketch-based model editing, such as Teddy [1] and 

FiberMesh [2]. Laying out the coarsest level silhouette and 

then modify control points to generate details is often a 

confusing task for non-expert users, so we propose an 

intuitive interface for mesh deformation by automatically 

finding ridge lines which describe the salient features of 

meshes. Combined, these lines can act as the control points 

during the deformation. 

In our system, a 3D model is automatically generated by a 

Boolean operation among the silhouettes from front, side, 

and top views. After the mesh subdivision, we usually get a 

model with some noises. It's a tedious work for non-expert 

users to select the precise control points to make sure the 

deformation has got a desired result. Our system provides a 
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great deal of flexibility to the user. We successfully avoid the 

tedious work and the unintuitive work by automatically 

finding the ridges. Thus, much interaction between users and 

computers can be omitted, and the ridges successfully sketch 

a reference curve for the users. 

 

II. RELATED WORK 

A great deal of work has been done in the past on 

developing techniques for the modeling and deforming in 

Computer Graphics. Here we just survey some most relevant 

work with an emphasis technique for interactive deformation. 

Lattice-based deformation as Free-From Deformations (or 

rename as lattice-deformation) are one of the most important 

techniques for deformation [3]-[5]. While their complex 

control lattice provide precise control over the resulting 

deformation, editing such lattices can be an unintuitive 

process, and can not guarantee a well detail- preserved work. 

Curve-based deformation approaches such as sketch mesh 

deformation [6]. Their system uses a curve-based approach 

with an emphasis on specifying a free-from control curves to 

capture the structure of surfaces. Another approach for 3D 

modeling and deformation is the use of freeform strokes for 

2D applications [1]. Their system uses some single 2D 

strokes as the tools to create the 3D shape and the tools to 

control the 3D deformation. There is also some interaction 

between user and system while editing those curves or 

skeleton for some complex models. In order to reduce the 

interactive work, our system brings the ridge lines as the 

free-form control curves during the deformation. 

 

III. LAPLACIAN COORDINATE AND RIDGES EXTRACTION ON 

MESHES 

A. Laplacian Coordinate 

For a mesh model, we usually let M=(V, E, F) to present its' 

structure. V denotes the set of vertexes, E denotes the set of 

edges, and F denotes the set of faces. Each vertex VVi   is 

represented by Cartesian coordinates, denotes 

by ),,( iiii zyxV  . Compute the center of mass of the 

neighbors of iV , then the Laplacian coordinate of iV  will be 

easily got: 
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where N(i)={j|(I, j) E} and means the number of neighbors of 

vertex (the degree of ). The detailed definitions is also 
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introduced in [7]. 

 

 
Fig. 1. The vector of the differential coordinates at the red vertex 

approximates the local shape characteristics of the surface: the normal 

direction and the mean curvature. 

 

From a differential geometry perspective, the Laplacian 

coordinates can also write as follows if we assume that our 

mesh M is a piecewise-linear approximation of a mesh 

surface. 
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where r is a closed simple surface curve around, and |r| means 

the length of r. It is known from differential geometry that 
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where )( ivH  is the mean curvature at iV , and in  is the 

surface normal. Therefore, the Laplacian coordinate 

encapsulate the local surface shape to some extent. 

B. Ridge Extraction on Meshes 

Given a smooth surface, a ridge is a curve along which one 

of the principal curvatures has an extremum along its 

curvature line [8]. Ridges are curves of extremal curvature, so 

they describe the salient features of meshes to some extent. 

For a detailed introduction to ridges and related topics, the 

reader can consult [9], as well as the following article [10]. 

Consider a smooth surface, we denote K1 and K2 the 

principal curvatures, with K1  K2. And we denote the 

corresponding principal directions d1 and d2. In local 

coordinates, we denote <,> the inner product induced in 

Euclidean space, and dK1, dK2 the gradients of the principal 

curvatures. Then a ridge point is defined by: 

 A ridge point if the extremality coefficient 

0 1 1, b dK d<  ( 3 2 2, b dK d< ) vanished, i.e. 

0 0b  ( 3 0b ) 

 

 
Fig. 2. Mechanical part (37k pts): all lines(left),lines filtered with the 

strength(middle)and lines filtered with the sharpness(right). Notice that any 

point on a flat or cylindrical part lies on two ridges, so that the noise observed 

on the left two Figs. is unavoidable. It is however easily filtered out with the 

sharpness on the right figure. 

For a real word applications dealing with coarse meshes, or 

meshes conveying some noise, or meshes featuring sharp 

features, the ridge lines we had found cannot be met the real 

feature of models. In that case, we must found a threshold to 

filter the ridges. Such algorithm for filtering can also be 

founded in [10], [11]. 

 

IV. DEFORMATION TECHNIQUES 

The primary deformation we use is operated on the 

Laplacian coordinate. The main idea of Laplacian deforming 

algorithm is to keep the vertexes' Laplacian coordinate as 

possible as we can, thus can make sure that the feature of 

shape has been preserved. 

In the following, we will introduce a matrix L to present 

the transformation of the vector of absolute Cartesian 

coordinate to the vector of Laplacian coordinate. 

 

LV=W 
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Laplacian coordinate.  

Before we construct the matrix L, we bring two matrix A 

and D. Matrix A is the adjacency matrix of the mesh 
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And matrix D is a diagonal matrix where iii dD  . Then 

Laplacian matrix L can computes as follows: 

 

ADIL 1  

 

 
Fig. 3. A small example of a triangular mesh and its associated Laplacian 

matrix. 

 

As we can see, the sum of every row of L is zero, which 

implies that we can not use this following formula to compute 

the new Cartesian coordinate of vertexes after the 

deformation. 
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In order to make the Laplacian coordinates can uniquely 

restore the global Cartesian coordinates, we usually will add 

some control point into the equation LV=W. Therefore the 

equation will be changed as: 

 



















C

W
V

I

L  

 

The same as
~~

WVL  , where C means the vector of 

control point's Cartesian coordinate, and I means such 

control points' unit vector (the j-th element is 1, the others is 0) 

(ex. )0,...,0,1,0,0(3 I ). 

The additional control point make the above linear system 

over-determined (more equation than unknowns) and always 

have no exact solution existed. However, the equation is 

full-rank and thus has a unique solution in the least-squares 

sense: 
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The least-squares solution can also expressed in terms of 

matrix form: 
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V. RESULT AND APPLICATIONS 

In this section, we consider several examples of using our 

system to edit the triangle meshes. All the results were on a 

standard consumer-level Windows PC, and the algorithm is 

implemented in the environment of VC. 

An example-step in our system is shown as follows: 

Step1: import a 3D model and display it on the user 

interface; 

Step2: rotate or scale the model to an appropriate position 

and a suitable size. 

Step3: click the ridge-found button to find some ridge lines 

automatically for the user's interaction reference. 

Step4: by editing the reference ridge lines to control the 

model procession operations. 

In the experiment, we use some models in our system as 

examples. The results of finding ridges are shown in Table I. 

 
TABLE I: THE RIDGES ON DIFFERENT MODELS 

 
 

  

 

  

 

For the rough model, especially which have some distinct 

edges and corners, the smooth operation becomes necessary. 

Usually we use the shrinkage by normal or the Laplacian 

smoothing. During the experiment, we found that shrinkage 

by normal cannot keep the model’s sketch well, the same as 

we do it by adding some control. So during the experiment, 

we add the ridge lines as the con-trolling point in Laplacian 

Smoothing. By giving different weight factor for ridge points 

and the others to control the result of smooth, we have got the 

satisfactory result. That means we can use the following 

formula to do the Laplacian smoothing. An example of the 

result for experiments has shown in Table II. 

 
TABLE II: AN EXAMPLE OF THE EXPERIMENT 
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In the experiment, we set the weight factor ω=0.9 to 

regulate the strength of restriction, that means the ridge line 

vertices will smooth fluently. And we set the weight factor 

λ=0, that means the other vertices will be close to the centroid 

of their adjacent vertices as much as possible. 

 
Fig. 4. By using different weight factor λ to control the result of smoothing, 

we can get a satisfactory model. 

 

As shown in Table II, the first column was the original 

model; If we shrink all the vertexes by their normal vector, 

then we can not hold the profile well, the result can be seen in 

the second column; If we keep some feature vertexes 

immobile, and shrink the others by the normal vector, the 

feature vertexes will stick out and become the noise point, as 

shown in the third column; The fourth column show the 

model after smoothing by using our method. Not only do it 

become smooth, but also do it keep the profile well. 

In the experiment, we can also give different weight factor 

λ to different ridges so as to control the result of smoothing. 
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Fig. 4 demonstrates a smoothing deformation by using 

different weight factor λ. We can clearly see that the original 

tiger’s back is too rough and flat. After finding the ridge lines, 

we can add some additional lines on the tiger’s back to 

control the smoothing. Also, the same operate can be easily 

done to pick out some ridges lines, such as the green lines in 

the third picture, to make it to be shrunk more. Thus we can 

get a more satisfactory model.  

 

VI. CONCLUSION 

We have proposed a new and intuitive approach to 

interactive deformation of triangle meshes. Users of our 

system can make significant edits to 3D models by simply 

controlling the ridge-lines on models. The reference ridges 

found by system automatically, serve as a handle for the 

model procession operations, such as the Laplacian 

deformation and the normal shrink. 

The ridge-lines-based interface is a very effective tool, but 

there are also numerous ways in which it could be improved. 

Considering the ridges of a smooth surface are point with 

prescribed differential properties, our system must guarantee 

that differential quantities are available for each vertex of the 

mesh. So we can only deal with the mesh which is dense 

enough and meet the conditions of the acute rule [10]. 

Although our system is suitable for interactive editing of 

fairly large models, there is some cases that our system would 

be very desirable, such as the case on a plane or a cylinder, 

because all points are ridge point in such case, and we have 

filter these point by setting the threshold. While we are 

satisfied with the simplicity of current ridge-based interface, 

the extended model operations are need more accurate 

controlling handle, and careful interface design will be 

required. 
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