

Abstract—Day by day, software testing becomes very crucial,

since the applications are developed in different languages on

different OS and environments. Also, the complexity of the

software is getting increased. Organizations are adapting agile

development to deliver the functionality as quickly as possible.

The difficulty in software testing stems from the complexity of

software. Regardless of complexity, we need to deliver a high

quality on time. Test automation is one of the robust and fastest

solutions for achieving quality in complex environment. This

paper analyzes the various methods of identifying /recognizing

UI controls in GUI Test Automation. It also describes the

advantages and disadvantages over Traditional solutions and

the solutions implemented on GUIRobo. This paper is a follow

up to the “Software Test Automation Using GUIROBO”

published on ICCTD 2011 conference.

Index Terms—Test automation, challenges, GUIRobo.

I. INTRODUCTION

Software Testing is the process of interacting with

software to evaluate its quality. Testing must be performed in

order to ensure that a software program, application or

product sufficiently meets all the envisioned business and

technical requirements Due to the increased pressure, the

testers are forced to release the applications or products more

quickly. Undue stress on the testers and manual errors during

testing can be avoided by automating the GUI testing

process. Automation is the use of strategies, tools and

artifacts that augment or reduce the need of manual or human

involvement or interaction in unskilled, repetitive or

redundant tasks. requirements. The toughest part of

automation is interacting with Device under test especially

with Graphical User Interface (GUI).

Today„s software managers and developers are being

asked to turn around their products within ever-shrinking

schedules and with minimal resources.

Ref. [1] But challenge in delivering quality products is due

to the increased pressure to release applications or products

more quickly. Even if the products have to be delivered

quickly we cannot compromise on the testing methods. Still

testers are committed to deliver the best quality products and

should also provide assurance to users that the product will

perform as promised.

In order to increase the automation, then the Software

should be Testable. A testable product ensures complete

execution of the test scripts. Also good test

Manuscript received September 5, 2013; revised November 15, 2013.

G. Mohan Doss Gandhi is with Microsoft India (R&D) P.Ltd, Microsoft

Campus, Gachibowli, Hyderabad, India (e-mail: mogandhi@

microsoft.com).

Anitha S. Pillai is with Hindustan University, Chennai, Department of

Computer Application, India (e-mail: mca@hindustanuniv.ac.in).

coverage is applied; most of the severe defects will be

uncovered and fixed before the product is released.

II. MANUAL TESTING

Though practice of manual testing is still being used, it has

significant weaknesses. The primary weakness is once a

problem is found; it is difficult or impossible to reproduce the

defect because the tester does not follow a pre-defined

sequence of events.

Some of the weaknesses of manual testing are [2]:

1) Manual techniques cannot provide the kind of intense

simulation of maximum user interaction over time.

Humans cannot keep the rate of interaction up high

enough and long enough.

2) 2. Manual testing does not provide the breadth of test

coverage of the product features/commands that is

needed. People tend to do the same things in the same

way over and over so some configuration transitions do

not get tested.

3) Manual testing generally does not allow for repeatability

of command sequences, so reproducing failures is nearly

impossible.

4) Manual testing does not perform automatic recording of

discrete values with each command sequence for

tracking memory utilization over time – critical for

detecting memory leaks.

III. BENEFITS OF TEST AUTOMATION

Automated testing can provide several benefits when it is

implemented appropriately. Automation is a good way to cut

down time and cost.

The significant benefits of automated tests are [3]:

 Production of a reliable system.

 Improvement of the quality of the test.

 Reduction of the test effort.

 Testing a large test matrix (different languages on

different OS platforms).

 Allows for repeatability of command sequences, so

reproducing failures is nearly impossible.

 Automated Tools run tests significantly faster than

human users.

The further section discuss abut GUIRobo, the Challenges

in Test automation, Traditional solution for overcoming

challenges in GUI Test automation and how GUIRobo

handles all the challenges in GUI Test automation.

IV. CHALLENGES IN TEST AUTOMATION

Due to the growing complexity of the software, it is

impossible to automate GUI applications for 100%. But if we

Challenges in GUI Test Automation

G. Mohan Doss Gandhi and Anitha S. Pillai

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

192DOI: 10.7763/IJCTE.2014.V6.860

overcome some challenges at least we can automate it for

80%. Multiple challenges in GUI test automations are:

 Application window name is dynamically Changing.

 Controls which don‟t have proper and unique text

property. (E.g. Text and Combo box)

 Mixed up of Managed and Unmanaged UI controls.

 Applications developed in multiple languages and

multiple OS.

 Customized controls and Owner draw controls.

 Applications that are using third party controls like

source grid control.

 Class names are dynamically changing.

 Control names are dynamically changing.

 Controls which don‟t have proper Z order.

 More visual controls.

 Support for Win32 Controls.

 Synchronization issue between tool and Device under

Test.

V. APPROACH IN CURRENT AUTOMATION TOOLS

A number of Automated Tools have been developed for

GUI-based applications. However for many of the companies

that purchase these tools, it will not help them to completely

automate their testing. Test scripts are either developed or

captured using record and play approach.

 There indeed are many tools that allow scripts to be

recorded and then played back, using screen captures for

verification.

Especially if controls have any testability challenges or do

not have the unique testability properties, automate the

controls based on the coordinate position. Though it is

recorded, testers need to modify the scripts to handle the

various verification points.

The problem that always crops up is that the layouts are

changed, invalidating the screen captures and then the

interface controls change making playback fail. Now the

scripts must be re-recorded from scratch. Record and

playback tools provide an easy way to create throwaway test

suites. Test creation should be a cumulative process, with

parts of existing tests being recycled to make new tests.

Hence record and play approach is failed in many cases.

Though we spent so much money for automation tool, still

have to do most of their testing manually. It forces the tester

to create their own utility and develop test suites to run their

automation. If you spend most of your early testing time

writing test scripts and creating test harness, you will delay

findings bugs until later, when they are more expensive.

In an ideal world, testers should be able to start test

creation at the same time as the development begins, using

the requirements for the test design. Most of the

commercially available tools are not as good as for tester to

start their test immediately. Most of the stress tool is not

doing what it is supposed to do [4].

In order to start GUI Stress immediately, we require a

routine (test harness or executable) for running test in

repeatable fashion.

Hence the tester has to develop his own logic for running

stress in repeatable mode. Apart from the test scripts, the

resources needed to write and test the code for the tests.

Another major challenges for GUI test automation are

maintainability and reliability. But many testers do not have

strong programming skills to create.

This combined with the repetitive nature of much testing,

leads people to use record and playback techniques. GUI

Stress tests in particular should be flexible because of the

frequency of changes in a developing application‟s interface.

Typically types of errors uncovered by stress testing

include memory leakage, performance problems, lacking

problems, concurrency problems, excess consumption of

system resources and exhaustion of disk space. In order to

find the showstopper defects such as memory leaks, resource

leaks land crash defects, the tool should execute the test

suites in different modes (random and sequential modes) for

long period of time. A good tester will always try to reduce

the repro steps to the minimal steps to reproduce; this is

extremely helpful for the programmer who has to find the

bug.

Since every tool has its own limitation and challenges to

address the testability issues, it is better to use a combination

of multiple technology to take the maximum returns out of

test automation investment.

It can be possible only if tool has to handle all the

testability challenges efficiently.

VI. WHAT IS GUIROBO?

Fig. 1. Image of GUI ROBO.

GUIRobo [5] is an automated stress testing tool, the test

engineer can instruct the tool when to execute a stress test,

which tests to run, and how many users to simulate –all

without user intervention. It provides an easy to use,

consistent and cost- effective way of testing GUI applications

developed in C/C++/VC++,C#/VB.Net and WPF.

Initial version of GUIRobo supports GUI Stress testing.

For running stress, the tester does not have to write test suites.

The tester has to prepare a stress input file for running stress

test. Further it will be enhanced to support GUI functional

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

193

testing, Smoke testing and performance testing.

In order to perform fucntional testing Tester has to write

test scripts but they have a flexible option to write their

scripts in any .Net plat form.

GUIStress (GUIRobo.exe) takes an input file and will send

pseudo-random keystrokes to the (Device Under Test) DUT.

The stress input file is an Excel spreadsheet which contains a

description of the users interface – what menus, buttons and

fields exist. The user has control of how many key strokes (or

commands) are sent, which commands are included and a

variety of other variables.The tool automatically keeps a log

file and on error, it stops. The stress runs can be reproduced

from any given point. The image of the GUIRobo is as Fig. 1

given above:

VII. SALIENT FEATURES OF GUIROBO

GUIRobo makes stress testing easy, yet powerful, through

its automatic machine resource monitoring feature. Unlike

other automated tools, GUIRobo does not require an

expensive license and yearly maintenance fees.

The GUIRobo contains the following salient:

1) Tests wide range of environment and languages.

2) Allows to run in different modes such as Sequential

Random mode and User Option mode.

3) Automatic resource monitoring monitors Memory usage,

Physical memory, Virtual memory USER, GDI for every

mouse actions.

4) Helps tester to analyze and reproduce the problem

quickly.

5) No need to create test suites and utility to run stress.

6) Simplified way of creating and verifying input files.

7) Ability to run only certain branches and narrow down the

defect.

8) Support randomness of field inputs where appropriate.

9) Allows tester to run in command Line mode.

10) Allows tester to provide Delay between the commands

and window wait state.

11) Apart from windows standard controls, GUIRobo

supports all customized controls such as Source grid 2,

Source grid 3 Owner Draw menus, and Owner draw UI

Controls.

12) Generates detailed log files.

VIII. TRADITIONAL SOLUTIONS

Traditionally, we are using the following solutions for

identifying the UI control and it has its own advantages and

disadvantages as described below:

Solution -1 - Control ID

Advantages:

 Locale –Independent solution.

 Unique over 90 of the time.

Disadvantages:

 Applicable only for MFC.

 In window forms, Control ID is mirror image of

HWND.It is different every time we launch the form.

Solution - 2 - Captions and class name

Advantages:

 Best identifier for windows UI.

 Worked well in most cases.

Disadvantages:

 Need to adjust the Caption on all the different locales in

which we are testing.

 Not a complete solution as caption is getting changed and

does not have caption at all.

 Need to get the Nth instance of combination

(Caption+Classname), if captions are not unique.

 Cannot search the UI using class name as trailing portion

of the window class name is dynamic.

E.g.WindowsForms10.BUTTON.app.3a “3a‟may

change each time we launch the form .

Solution - 3 – MSAA- AccName and AccRole

Advantages:

 Similar to Captions+Classname,the AccName was

localized string.

Disadvantages:

 Acc Role was far from unique.

 Searching MSAA is very slow.

 Tedious to convert to call

“windowFromAccessibleObject”to convert HWND.

 Not having enough information to call all windows API.

Solution - 4 – UI automation- automation element and

automation ID

Advantages:

 Identify the controls using Automation Elements and

Automation IDs.

Disadvantages:

 Searching Automation Element& ID is very slow.

 Solution - 5 – Windows Hierarchy Order.

Advantages:

 Uses child ordering to identify the Windows tree

hierarchy.

 Consistent across different versions of OS.

Disadvantages:

 Ordering is not consistent as it keeps changes by adding

new control or new level.

Solution - 5 – Support for Win32 controls

The win32 control are identified using User 32 APIs. The

handle of the UI controls are identified using class name and

caption.

Advantages:

 Identify and automate the controls quickly.

Disadvantages:

 Identify the conrols which have only Unique text or name

property.

IX. GUIROBO SOLUTION

GUI Robo uses various automation solution to overcome

al l the testability issues. It proposes the following

Automation solutions:

 Application Window Name: Some application contains

the inconsistent window name and it keeps changing to

each window it opens.

Hence GUIRobo uses process name to identify the

application window name. First it identifies the process name

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

194

by comparing each process name and then get the appropriate

windows title from the process name.

 Name Property: In windows forms UI controls, Name

property is always unique. Hence

GUIRobo is using Name property for Windows forms UI

controls which do not have unique identifier or text property.

 Control ID: Unmanged UI controls do not have Name

property but it has additional unique property called

Control ID. GUIRobo uses Control ID to identify the UI

controls which do not have proper Text property. (E.g.

Edit box and Combo box).

 Label Name: GUIRobo is using the corresponding Label

Names for the UI controls which do not have Unique text

property. For example unmanaged Combo box and Edit

boxes, the text property is keep changing whenever user

enters the values on edit boxes or changing the combo

item.

Hence GUI Robo first identify the handle of the

corresponding Label name and then find the handle of edit or

combo box by using get next window API .

 Controls which do not have proper Z order: In some

unmanaged controls, ‟Z‟ order won „t be proper. If „Z‟

order is not proer then, idenfying the controls using label

name is not possible.

In that case, GUIRobo searches the reference of the

privious or next windows. Using that reference window,

identifies the required UI controls.

 Third Party Controls and Owner Draw controls [6]:

GUIRobo is using Hooking process(inject a .NET

assembly in another process.) to automate the third party

controls, customized controls and owner draw controls.

Using handle of the control GUIRobo, access the

windows.Forms. Control Property. By Using Control

property perform all the click actions, set or get value for

the edit or combo items,find the tree nodes of the Tree

view control.

 Mixed UI Controls (Managed/Unmanaged): GUIRobo

distinguishes and handles the mixed UI controls using

class name.

For example if class name starts with Window.Forms, then

it will be considered as managed controls and if it contains

only “BUTTON”, then it will be considered as Unmanged

controls .

 Visual Controls : GUIRobo uses bitmap comparison for

verifying visuals and image controls.It compares pixel by

pixel and create a log file if there is any mismatch

between the bitmaps.

 Dynamic Class name Identification: In .Net, class

names are dynamically changing. Especially, the prefix

(WindowsForms10) and suffix (app.3a) of the class name

keeps changing.

Ex: WindowsForms10.BUTTON.app.3a.

Hence GUIRobo identifies the prefix and suffix of the

class name and forms the class name for each controls.

 Synchronization: GUIRobo uses wait sate/delay for

each window to resolve the synchronization issue.

Allows user to configure the Window‟s wait state

according to the time required to open the window.

GUIRobo also supports the delay between each command

execution to resolve the synchronization issues between

DUT and Tool.

 Support for Win32 Controls: GUIRobo uses mixed

approach to identify and automate the win 32 UI controls.

If controls do not have the unique property, then GUI

Robo Identify the bounding rectangle of the controls

using UI automation framework. Then execute the click

event using User 32 APIs. Similarly GUIRobo uses

Keyboard-Event to set the value to edit boxes .

 Support for WPF Controls [7]: Since there are no

handles concept in WPF controls, GUI Robo uses UI

automation framework for identifying the WPF controls.

UI controls are identified using either Automation

Element Name or Automation ID property. Using

UIAutomation framework,

GUI Robo identify theAutomation Element of the specific

WPF controls. It searches the elements from Root element.

Once Element is identified, GUIRobo uses either Mosue

Click event or appropariate supported pattern.

For example, GUI Robo uses Invoke pattern for clicking

particular WPF button. Similarly uses ValuePattern for

entering text value.

The advantage is, this technique can be extented to

automate Web applications as well .

X. CONCLUSION

Using GUIRobo we can overcome all the testablity

challenges in GUI Test automation and automate more GUI

controls. It makes the test process more stable, more efficient

and, ultimately, reduces the cost while increasing the quality

of the delivered product. It makes your testing more

consistent and there is no doubt that GUIRobo adds a great

value to overall quality.

REFERENCES

[1] Achieve Quality through GUI Test Automation in Complex

Environments Mohan Doss Gandhi. [Online]. Available:

http://www.pnsqc.org/past-conferences/2010-conference/poster-paper

-presentations/#10

[2] P. Hegde, P. Hunter, F. Liang, and D. Reynolds. Monkey testing

revisited using automated stress testing. [Online]. Available:

http://www.agileconnection.com/sites/default/files/article/file/2013/X

US2314150file1_0.pdf

[3] Advantages of Automated Testing. [Online]. Available:

http://www.scribd.com/doc/7160453/Advantages-of-Automated

[4] E. Dustin, J. Rashka, and J. Paul, Automated Software Testing:

Introduction, Management, And Performance, Addison-Wesley

Professional, 1999.

[5] G. M. D. Gandhi and A. S. Pillai, “Software test automation using

GUIROBO,” in Proc. International Conference on Computer

Technology and Development, 2011, vol. 1, 3, pp. 641-646.

[6] R. K. Vavilala, A simple Windows Forms Properties Spy.

[7] C. Tatar. WPF UI Automation. [Online]. Available:

http://www.codeproject.com/Articles/33049/WPF-UI-Automation

Mohan Das Gandhi holds a master‟s degree in Applied Electronics from

PSG CAS, Coimbatore, Tamilnadu, India and is currently pursuing a

doctoral program (Ph.D.) in Software Quality engineering at Hindustan

University, Chennai.

He is presently employed in Microsoft India (R&D) P.Ltd, Hyderabad, as

a senior test lead. Overall, he has 15+ years of experience in the IT industry.

He has vast experience in GUI test automation tool development and has

done a lot of research in GUI test automation.

 So far Mr. Gandhi has submitted one Technical Paper in ICCTD2011 and

it has been published on ASME press and three poster papers to PNSQC.

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

195

