



Abstract—Retrieving keywords requires speed and

compactness. A trie is one of the data structure to retrieve

keywords, and the double array is one of the implementation

methods for the trie. The retrieval algorithm for the double

array is fast, and its data structure has compactness. An edge of

the trie is represented by a character in previous researches

related to the double array, but there are no researches

discussing if the edge is represented n-gram. Therefore, this

paper proposes the data structure and the retrieval algorithm

for the double array which represents an edge by n-byte. This

paper also proposes a method to compress CODE array. From

the experimental results comparing with the original double

array by using single-byte and multi-byte character sets, the

size and the retrieval speed of the proposed method became

62-64% and 1.18-1.3 times, respectively. When the CODE is

compressed, the sizes of the proposed method became 41-59%.

Index Terms—Compression, double array, n-gram, trie.

I. INTRODUCTION

In ubiquitous environments such as smart phones and

PDAs, the storage capacity is often limited. Retrieving

keywords used in many applications requires speed and

compactness. A trie is one of data structures to retrieve

keywords. In the trie, common prefixes of stored keys are

merged and each edge is labeled with a character consisting

of keys. Because the trie can retrieve common prefix

keywords and predictive keywords, it is used in information

retrieval systems [1], natural language processing [2], IP

address routing tables [3], and packet filtering [4]. Moreover,

the trie is often used as an associative array [5] like a map

class in C++ in order to improve the array by hash tables.

 A double array is one of the retrieval methods by using the

trie. This method uses two arrays called BASE and CHECK,

and it has speed and compactness [6], [7]. An edge of the trie

is represented by a character in previous researches related to

the double array. As for the compression of the double array,

there are methods dividing the trie [8], [9], a method

removing BASE array [10], but there are no researches

discussing if the edge is represented n-gram. Therefore, this

paper proposes the double array method which represents an

edge by n-byte. This paper also proposes a method to

compress CODE array by using the double array, because

CODE array becomes big with n‟s increasing.

Section II describes the trie and the double array. Section

Manuscript received September 23, 2013; revised November 25, 2013.

This work was supported by JSPS KAKENHI Grant Number 24500118.

The authors are with the Department of Information Science and

Intelligent, University of Tokushima, Tokushima, Japan (e-mail:

fuketa@is.tokushima-u.ac.jp, kam@is.tokushima-u.ac.jp,

aoe@is.tokushima-u.ac.jp).

III describes the proposed data structures and retrieval

algorithms. Experimental evaluations are given in Section

IV. Finally, Section V concludes the proposed algorithm and

describes further works.

II. DOUBLE ARRAY

A trie is a tree structure to store some keys. The

pronunciation of "trie" comes from "retrieve" to distinguish

from "tree. In the trie, common prefixes of stored keys are

merged and each edge is labeled with a character consisting

of keys. Therefore, the trie has the property to retrieve all

prefix words. Key retrieval always starts from the root of the

trie and traverses nodes by one-by-one character in the key,

and does not depend on the number of keys in the trie. From

above these features, the trie is used in various fields such as

natural language processing, network routing, and so on.

Recently, the trie is often used as an associative array like a

map class in C++ in order to improve the array by hash tables.

The hash approach has some collisions of keys, and the

worst-case retrieval time depends on the number of stored

keys.

Fig. 1 shows a sample of the trie for key set K={"aaac#",

"aab#", "ab#", "abb#", "abba#"} . „#‟ is added at the end of all

keys. The end-mark is used to avoid confusion between keys

"ab" and "abba". When “abba” is retrieved, “ab” as the prefix

word of “abba” can be retrieved.

Fig. 1. An example of a trie.

A double array is one of data structures to implement tries.

There are some other data structures to implement tries,

which are a two-dimensional array, a linked list, and a

LOUDS (Level-Order Unary Degree Sequence) [11]. In

these three data structures, the two-dimensional array is the

fastest and the LOUDS is the slowest in the retrieval speed.

In the space, the LOUDS is the smallest and the

A Retrieval Method for Double Array Structures by Using

Byte N-Gram

Masao Fuketa, Kazuhiro Morita, and Jun-Ichi Aoe

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

155DOI: 10.7763/IJCTE.2014.V6.855

two-dimensional array is the biggest. There are trade-offs in

the time and the space. The double array can keep the high

speed of the two-dimensional array and compresses it. That is

to say, traversing one character for the double array is O(1).

The double array uses two one-dimensional arrays named

BASE and CHECK. In the double array, when an arc labeled

by character c traverses from parent node s to child node t, the

following equations are satisfied;

t = BASE[s] + CODE[c], CHECK[t] = s, where CODE[c]

represents a numerical code of character c. The edge traversal

takes O(1) constantly. When the traversal reaches the leaf

node s, BASE[s] is set to a negative number which represents

a pointer toward records associated with the key. Fig. 2

shows the double array for Fig. 1. This data structure is called

an original double array.

Fig. 2. Double array for Fig. 1.

III. PROPOSAL METHOD

A. Outline

An edge of the trie is represented by a character in previous

researches for the double array in order to retrieve prefixes of

a given key. Since characters are represented by 1 byte in the

ASCII character set, an edge is represented by 1 byte. When

an edge is 1 byte, the maximum of the index of CODE array

is 256(=28). The size is very small.

Fig. 3 shows the trie represented edges as 2 characters for

key set K. The edge starting the end-mark is represented by 1

byte. Other end-marks joins a previous character, and the

edge is represented by 2 bytes. For example, “b#” is traversed

from node 4 to node 7.

Fig. 3. An example of 2-bytes trie.

In Fig. 1, since the end-mark is traversed from node

numbers 5 and 10, “ab” and “abb” can be retrieved during

retrieving “abba”. In Fig. 3, the end-mark is traversed from

node number 4. In this case, when “abba” is retrieved, only

“ab” is retrieved and “abb” can‟t be retrieved. In the same

manner, if edges of the trie are represented by n-bytes(n>=2),

all prefixes of a given key can‟t be retrieved. But, when trie is

used to retrieve whole keys such as associative array, it is not

necessary to retrieve prefixes. Therefore, in this paper, we

consider to retrieve whole keys and a method to represent

edges as n-byte is proposed. This method is named n-gram

double array. When edges are represented n-byte, the size of

CODE array becomes big. In the double array, CODE array is

used to return values corresponding to characters of edges.

But, in the n-gram double array, when the number of

characters of edges increases, the size of CODE array

becomes big. Moreover, a data structure which compresses

CODE array by the double array is proposed.

B. N-Gram Double Array

Fig. 4 shows the 2-gram double array for Fig. 3. CODE

array is prepared for characters of all edges. The edges

including the end-mark are represented by 1 byte or 2 bytes

for 2-byte trie such as Fig. 4. In 3-byte trie, the edges

including the end-mark are represented by 1 byte, 2 bytes, or

3 bytes. BASE and CHECK arrays are constructed in the

same manner of the original double array.

Fig. 4. 2-gram double array for key set K.

An input of retrieval algorithm is a1a2..akak+1, and ai

represents 1-byte character. k is the length of the input string,

and ak+1 is „#‟. ai..aj in this algorithm is represented as

characters from i-th character to j-th character for the input

string a. CODE function returns the value corresponding to

n-byte characters. An output is TRUE if the input string is

found, and is FAILURE if the input string is not found.

[Retrieval algorithm]

(nr-1) s =1;

(nr-2) for(i = 1 ; i <= k+1-n ; i +=n){

(nr-3) t = BASE[s]+CODE(ai..ai+n-1);

(nr-4) if(CHECK[t] != s)return FAILURE;

(nr-5) s = t;

(nr-6)}

(nr-7) t = BASE[s]+CODE(ai..a k+1);

(nr-8) if(CHECK[t] != s or BASE[t]>=0)

return FAILURE;

(nr-9) return TRUE;

In the loop from (nr-2) to (nr-6), edges without the

end-mark are traversed by each n-byte characters. CODE

returns the value for n-byte characters in (nr-3). Edges with

the end-mark are traversed, and the traversal is checked the

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

156

traversal in (nr-7) and (nr-8). In (nr-7), CODE returns the

value for the remaining characters of the input key. The

length of the characters is from 1-byte to n-byte. When the

traversal of the end-mark is succeeded, this algorithm returns

TRUE in (nr-9).

For example, key “aab#” with k=3 is retrieved. First of all,

s is set to 1 in (nr-1). Next, t is set to

3(=BASE[1]+CODE(“aa”)=1+2) in (nr-3) and

CHECK[3]=1 is satisfied. s is set to 3 in (nr-5). Because next

2-byte of the input key is “b#” that contains the end-mark, the

for loop is finished. In (nr-7), t is set to 10

(=BASE[3]+CODE(“b#”)), and CHECK[10]=3 is satisfied.

Because the last traversal is succeeded, this algorithm returns

TRUE in (nr-9).

In this method, although CODE array stored the value for

n-byte, other parts such as BASE and CHECK arrays are the

same as the original double array. Therefore, this structure

can be updated dynamically.

C. The Compression of the CODE Array

CODE array is used to return values corresponding to

characters of edges. But, in the n-gram double array, when

the number of characters of edges increases, the size of

CODE array becomes big. Therefore, CODE array is

compressed by the trie and the double array. Fig. 5 shows the

trie representation for the CODE array of Fig. 4.

Fig. 5. The trie representation of CODE.

The maximum of the depth for this trie is n for n-gram

double array. Therefore, the depth of the leaf node for this trie

is n, or the edges to the leaf nodes are the end-mark. This trie

is constructed by the double array. Fig. 6 shows the double

array for CODE.

Fig. 6. The double array for CODE.

C_BASE and C_CHECK are BASE array and CHECK

array for the double array of CODE, respectively. In this

CODE double array, the CODE array that differs from the

CODE array of the n-gram double array is needed. The array

is called C_CODE array. A value for each character is stored

to the array.

A CODE retrieval algorithm by using the double array

returns the value corresponding to n-byte characters c1..cn.

Returned value for the leaf node s is stored to C_BASE[s].

For example, CODE value for “aa” is 2 in Fig. 4, and “aa” is

reached to node 5 in Fig. 5. Therefore, 2 is stored to

C_BASE[5]. This algorithm returns 2 for string “aa”.

 [Retrieval algorithm for CODE double array]

(cr-1) s =1;

(cr-2) for(i =1 ; i <=n ; i++){

(cr-3) t = C_BASE[s]+C_CODE[ci];

(cr-4) if(C_CHECK[t] != s)return 0;

(cr-5) if(ci is end-mark)break;

(cr-6) s = t;

(cr-7) }

(cr-8) return C_BASE[t];

In the same manner of the double array, retrieval starts

from node 1 in (cr-1). Because the maximum of the depth for

trie is n, the loop from (cr-1) to (cr-7) repeats n times. In

(cr-3) and (cr-4), it is checked to traverse from node s to node

t by character ci. When the traversal is failed, this algorithm

returns 0. When the end-mark is traversed, this loop is

terminated in (cr-5). Finally, this algorithm returns the

CODE value in (cr-8).

IV. EVALUATIONS

Programs of the proposed method were written in C

language. These programs were implemented on the

following PC: Intel Xeon 2.4GHz (L2 cache:256K-Byte).

The programs compared in terms of the space usage and

retrieval speed. 147,478 words of WordNet3.0 and 87,995

words of Japanese WordNet as the key sets were used in

experiments. The character set of Japanese WordNet was

UTF8.

The double array is represented the original double array.

The BASE value and CHECK value are represented as 4

bytes. The value for the CODE array is represented as 4

bytes. Table I and Table II show the space usage and retrieval

speed about the n-gram double array with the CODE array

for 2 key sets.

TABLE I: THE RESULT OF WORDNET FOR N-GRAM DOUBLE ARRAY.

 1-gram 2-gram 3-gram

The number of CODE

values
256 65,536 16,777,216

The size of CODE

array (byte)
1,024 262,144 67,108,864

The number of nodes

for the double array
880,273 513,948 391,254

The size of BASE

array (byte)
3,521,092 2,055,792 1,565,016

The size of CHECK

array (byte)
3,521,092 2,055,792 1,565,016

Total size (byte) 7,043,208 4,373,278 70,238,896

The rate of the size 1 0.62 9.9

The retrieval time (ms) 27.64 23.40 24.02

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

157

TABLE II: THE RESULT OF JAPANESE WORDNET FOR N-GRAM DOUBLE

ARRAY.

 1-gram 2-gram 3-gram

The number of CODE

values
256 65,536 16,777,216

The size of CODE

array (byte)
1,024 262,144 67,108,864

The number of nodes

for the double array
532,330 309,460 263,905

The size of BASE

array (byte)
2,129,320 1,237,840 1,055,620

The size of CHECK

array (byte)
2,129,320 1,237,840 1,055,620

Total size (byte) 4,259,664 2,737,824 69,220,104

The rate of the size 1 0.64 16.25

The retrieval time (ms) 19.45 14.34 12.21

In these Tables, the 1-gram double array is the original

double array. The retrieval time is the time that all the

registered keys are retrieved. The original double array is a

baseline method. The number of CODE values is the

maximum of the number represented by n-byte. The number

of nodes for the double array is reduced with n‟s increasing.

But the size of the CODE array is increased. At the 2-gram

double array, the size becomes 62-64% and the retrieval

speed is 1.18-1.3 times faster than the original double array.

Table III and Table IV show the results for CODE

represented by the double array. The rates of the size are

compared with the original double array for Table I and

Table II. The CODE represented by the double array is

smaller than the CODE array of Table I and Table II. The

retrieval speed is slower, because the retrieval of CODE takes

much time. But, the sizes become 41-59% compared with the

original double array.

TABLE III: THE RESULT OF WORDNET FOR N-GRAM DOUBLE ARRAY WITH CODE REPRESENTED BY THE DOUBLE ARRAY.

 1-gram 2-gram 3-gram 4-gram

The number of the nodes

for the CODE double array
43 1,284 12,490 52,421

The size of CODE (byte)
215 6,420 62,450 262,105

The number of nodes for the double array
880,273 513,948 391,254 329,309

The size of BASE array (byte) 3,521,092 2,055,792 1,565,016 1,317,236

The size of CHECK array (byte) 3,521,092 2,055,792 1,565,016 1,317,236

Total size (byte) 7,042,399 4,118,004 3,192,482 2,896,577

The rate of the size 0.99 0.58 0.45 0.41

The retrieval time (ms) 48.35 38.16 35.72 35.65

TABLE IV: THE RESULT OF JAPANESE WORDNET FOR N-GRAM DOUBLE ARRAY WITH CODE REPRESENTED BY THE DOUBLE ARRAY.

 1-gram 2-gram 3-gram 4-gram

The number of the nodes

for the CODE double array 146 5,713 7,831 61,956

The size of CODE (byte)
730 28,565 39,155 309,780

The number of nodes for the double array 532,330 309,460 263,905 198,053

The size of BASE array (byte) 2,129,320 1,237,840 1,055,620 792,212

The size of CHECK array (byte) 2,129,320 1,237,840 1,055,620 792,212

Total size (byte) 4,259,370 2,504,245 2,150,395 1,894,204

The rate of the size 0.99 0.59 0.50 0.44

The retrieval time (ms) 32.19 24.05 21.23 22.66

V. CONCLUSION

A new double array has been proposed by representing

edges as byte n-gram. From experimental observations by

using single-byte and multi-byte character sets, at the 2-gram

double array, the size and the retrieval speed of the proposed

method became 62-64% and 1.18-1.3 times, respectively.

When the CODE is represented by the double array, the sizes

of the proposed method became 41 -59%.

The future works are to apply a compact double array

proposed by Yata [12] and to conduct experiments by using

large key sets.

REFERENCES

[1] M. D. Brain and A. L. Tharp, “Using tries to eliminate pattern

collisions in perfect hashing,” IEEE Transactions on Knowledge and

Data Engineering, vol. 6, no. 2, pp. 239–247, 1994.

[2] R. Baeza-Yates and G. Gonnet, “Fast text searching for regular

expressions or automaton searching on tries,” Journal of the ACM, vol.

43, no. 6, pp. 915–936, 1996.

[3] J. Fu, O. Hagsand, and G. Karlsson, “Improving and analyzing LC-Trie

performance for IP-address lookup,” Journal of Networks, vol. 2, pp.

18–27, 2007.

[4] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and

scalable layer four switching,” in Proc. the ACM SIGCOMM,

Vancouver, British Colombia, Canada, 1998, pp. 191-202.

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

158

[5] D. Gusfield, Algorithms on Strings, Trees, and Sequences - Computer

Science and Computational Biology, Cambridge University Press,

1998.

[6] J. Aoe, “An efficient digital search algorithm by using a double-array

structure,” IEEE Transactions on Software Engineering, SE-15(9), pp.

1066–1077, 1989.

[7] J. Aoe, K. Morimoto, and T. Sato, “An efficient implementation of trie

structures,” Software Practice and Experience, vol. 22, no. 9, pp.

695–721, 1992.

[8] K. Morimoto, H. Iriguchi, and J. Aoe, “A method for compressing trie

structures,” Software Practice and Experience, vol. 24, no. 3, pp.

265–288, 1994.

[9] M. Fuketa, K. Morita, Y. Sumitomo, S. Kashiji, E.-S. Atlam, and J.

Aoe, “A new compression method of double array for compact

dictionaries,” International Journal of Computer Mathematics, vol. 81,

no. 8, pp. 943-953, 2004.

[10] M. Fuketa, H. Kitagawa, T. Ogawa, K. Morita, and J. Aoe,

“Compression of Double array Structures for Fixed Length

Keywords,” in Proc. 2nd International Conference on Networking and

Information Technology, Hong Kong, 2011, pp. 158-165.

[11] G. Jacobson, “Space-efficient static trees and graphs,” in Proc. 30th

FOCS, 1989, pp. 549-554.

[12] S. Yata, M. Oono, K. Morita, M. Fuketa, T. Sumitomo, and J. Aoe, “A

compact static double-array keeping character codes Source,”

Information Processing and Management, vol. 43, no. 1, pp. 237–247,

2007.

Masao Fuketa received B.Sc., M.Sc. and Ph.D. Degrees

in information science and Intelligent systems from

University of Tokushima, Japan in 1993, 1995 and 1998.

He has been a research assistant from 1998 to 2000 in

information science and Intelligent Systems from

University of Tokushima, Japan. He is currently a

research associate in the department of Information

Science & Intelligent Systems, Tokushima University,

Japan. He is a member in the Information processing Society in Japan and

The Association for Natural language processing of Japan. His research

interests are in Sentence retrieval from huge text data bases and

morphological analysis.

Kazuhiro Morita received B.Sc., M.Sc. and Ph.D.

Degrees in information science and Intelligent systems

from University of Tokushima, Japan in 1995, 1997 and

2000. Since 2000, he has been a research assistant of the

Department of the Department of Information Science &

Intelligent Systems, Tokushima University, Japan. His

research interests are in Sentence retrieval from huge

text data bases, double-array structure and Binary search

tree.

Jun-Ichi Aoe received B.Sc. and M.Sc. Degrees in

electronic engineering from the University of

Tokushima, Japan, in 1974 and 1976, respectively, and

the Ph.D. degree in communication engineering from the

University of Osaka, Japan. Since 1976, he has been

with the University of Tokushima. He is currently a

professor in the department of Information Science &

Intelligent Systems, Tokushima University, Japan. His

research interests are in natural language processing, a shift-search strategy

for interleaved LR parsing, robust method for understanding NL interface

commands in an intelligent command interpreter, and trie compaction

algorithms for large key sets. He was the editor of the computer Algorithm

Series of the IEEE computer Society Press. He is a member in the association

for computing machinery, the association for the natural language processing

of Japan.

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

159

