
  

 

Abstract—Object oriented design and software engineering 

are two major areas in software development. Object oriented 

design is very useful for solving electromagnetic problems, as 

classes can be utilized and reused for solving different kinds of 

problems by just integrating the classes which are already 

developed for solving other problems. Further, developing a 

suitable user interface will make it easy to the users depending 

on the nature of the problems and the level of the users. 

Software engineering is used to utilize, improve and adopt the 

legacy finite element codes. Software engineering principles 

were not properly implemented when the legacy finite element 

codes were developed. In early days, those legacy codes were 

developed in an ad-hoc basis. Much of those codes were written 

in FORTRAN programming language and modern software 

developers are facing difficulties in understanding and 

modifying those codes according to the present needs. This 

paper proposes and analyses a method to utilize and adopt 

legacy finite element codes and proposes a design which is ever 

useful for software engineers in the future. 

 
Index Terms—Component, finite element software, 

FORTRAN, object oriented design.  

 

I. OBJECT ORIENTED PROGRAMMING 

Object oriented program design and development is now a 

standard in software engineering practice. Object oriented 

design attempts to make programs more closely model the 

way people think about and deal with the real world. In the 

older styles of programming, a programmer who is faced 

with some problems must identify a computing task that 

needs to be performed in order to solve the problem. 

Programming then consists of finding a sequence of 

instructions that will accomplish that task. But at the heart of 

object-oriented programming, instead of tasks, we find 

objects–entities that have behaviours that hold information, 

and that can interact with one another. Programming consists 

of designing a set of objects that model the problem at hand. 

Software objects in the program can represent real or abstract 

entities in the problem domain. This is supposed to make the 

design of the program more natural and hence easier to get 

right and to understand [1].  

The principal advantage of object oriented design is 

reusability. It is ideal for describing autonomous agents so 

that values inside a method are private unless otherwise so 

provided–that is encapsulation makes programming neat and 

 
Manuscript received September 22, 2013; revised November 15, 2013.  

T. Arudchelvam Wayamba is with University of Sri Lanka, Kuliyapitiya 

(e-mail: tarudchelvam@gmail.com). 

S. R. H. Hoole is with Michigan State University, Michigan, USA (e-mail: 

SRHHoole@gmail.com). 

J. Wijayakulasooriya. is with University of Peradeniya, Sri Lanka (e-mail: 

jan@ee.pdn.ac). 

less error-prone in unexpected situations. Further, each 

subclass inherits the variables and methods of its super-class 

and that is called inheritance. Another notable point in object 

oriented design is polymorphism which facilitates the 

assignment of different meanings or usages to something in 

different contexts – specifically, to allow an entity such as a 

variable, a function, or an object to have more than one form. 

For example, there may be many functions of the same name 

and only the number of parameters, type of parameters or the 

order in which they appear will be different. When the 

function which has several forms is activated, the most 

suitable function is automatically chosen, i.e. selected, by the 

program depending on the number of parameters, type of 

parameters or the order of parameters.  

Moreover, modern software practice encourages 

component-based design, giving users the freedom and 

choice to put together, i.e. glue together, different methods to 

custom-make the program. This is closely tied up to object 

oriented programming because of the concept of 

encapsulation and the user need to be bothered only with the 

functionality and not what is going on inside a method. In 

component-based design, each component is constructed as a 

class or a collection of classes. Therefore, object oriented 

design should be used in order to develop component based 

software packages. Depending on the needs of the user, 

suitable components are chosen and put together for the 

program. 

Most of the programs we have for field computation using 

the finite element method, our legacy codes, were developed 

in an era preceding object oriented concepts. Much of this is 

often used with shells in the modern environments calling the 

old FORTRAN programs such as NASTRAN [2]. Even 

though some recent efforts have used object oriented 

concepts to develop finite element programs from scratch, 

their products remain in the private, licensed domain where 

we have no access. Component-based design was not even 

attempted. Reverse and forward engineering transformations 

are very useful in the process of adapting and improving 

finite element legacy code.  

 

II. COMPONENT-BASED SOFTWARE  

Component-based software engineering provides an 

opportunity for efficient software with better quality and 

increased productivity in software [3], [4]. 

Component-based software development facilitates 

software reuse and promotes quality and productivity. Such a 

building-block approach has been increasingly adopted for 

software development, especially for large-scale software 

systems. Much work has been devoted to developing 

Component-Based Design from Finite Element Software 

Written in the FORTRAN Language  

T. Arudchelvam, S. Ratnajeevan H. Hoole, and Janaka Wijayakulasooriya  

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

124DOI: 10.7763/IJCTE.2014.V6.849



  

infrastructure for the construction of component-based 

software [5]. The aims of component-based software 

development are to achieve multiple quality objectives, such 

as interoperability, reusability, evolvability, buildability, 

implementation transparency and extensibility, to facilitate 

fast-paced delivery of scalable evolving software systems. A 

Component-based software system often consists of a set of 

self-contained and loosely coupled components allowing 

plug-and-play [5]-[7].  

A component is developed independently of other 

components. Therefore, it is easy for a programmer to test 

and maintain the program. When an error in a component is 

reported, correcting the error of that particular component is 

enough and correcting the whole application is not required. 

Further, a particular component can be connected to any 

number of applications. In component-based software 

development, a collection of software components or library 

of components is integrated together in the system. When a 

problem is given to a programmer, first suitable components 

have to be decided by the programmer. If a component for a 

particular task is not available, then a new component should 

be developed and integrated with the existing collection of 

components. If all components are available, then a program 

is built by connecting all those components chosen and then a 

suitable user interface is developed by the programmer to 

simplify the task of the end user (Fig. 1). 

 

 
Fig. 1. Construction of finite element field computation software package 

using software components. 

 

III. COMPONENT-BASED FINITE ELEMENT METHOD 

SOFTWARE  

Finite element method (FEM) software in 

electromagnetics and many other fields has grown out of 

huge engineering corporations like NASA and individual 

research laboratories. Early finite element programs were 

developed using FORTRAN programming language and 

focused on the solution of problems – something that needed 

to be computed in our context – and engineers from both 

corporate R&D and universities came up with the necessary 

software. The software failed to be put through the now 

mandatory lifecycle with planning, user requirements, object 

design, analysis, development and testing [8]. Such software 

is not always of the best design. Worse, because this legacy 

software is extensive and all but practically impossible to 

rewrite in the newer languages, it is continued to be in use 

with shells calling the old codes. A shell program is a 

program written to execute a specific task as the interpreter of 

user commands. In other words, shell programs are activated 

as user commands one at a time. Extensive scientific and 

numerical calculations are covered by these legacy codes. 

Because of not having been put through the software 

engineering design principles, these legacy codes cannot be 

discarded or rewritten as new modules as a result of the 

length of the codes. And to write new codes in another 

programming language, it is necessary to understand the 

existing legacy code. That is practically a tedious task, both 

complex and lengthy. Therefore, it is necessary to find a new 

method to avoid these kinds of practical problems. Further, it 

is necessary to find ways of using legacy codes in a suitable 

way in conformity with modern software standards. Previous 

works carried out by pioneers are in [9]-[29].  

 

IV. SOFTWARE ENGINEERING APPROACH FOR DESIGNING 

FINITE ELEMENT METHOD SOFTWARE 

Software engineering is the application of a systematic, 

disciplined, quantifiable approach to the development, 

operation, and maintenance of software, and the study of 

these approaches; that is, the application of engineering to 

software [30]. In other words, software engineering is a study 

of the application of engineering concepts for developing 

software systems or projects. In software development, 

normally software engineering principles are applied to get a 

good outcome. 

In this work, component-based finite element software is 

developed from legacy codes written in the FORTRAN 

programing language using software engineering principles. 

Component-based finite element software is suggested for 

better software design with the following features: 

1) Software is composed of components and components 

are represented by classes/objects. 

2) A particular component is allocated for a particular task. 

3) After requirements elicitation, the developer should be 

able to pick up suitable available components and glue 

them together during the development process. 

4) For a particular task, if a component is not available then 

that component is developed and integrated with the 

existing system of components so that it is available for 

future use. 

5) A suitable user interface is properly designed so that all 

kinds of users may interact with the system and users 

should be able to pick up suitable components to suit an 

instance of a problem; i.e. the user is given an option to 

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

125



  

Object-oriented program in 

one object-oriented 

language 

Reverse engineering 

Class diagram 

Forward engineering 

Program in desired 

object-oriented 

language 

Fig. 2. Conversion process of an object oriented program from one 

object oriented language into another object oriented language. 

choose components to suit a given problem at a 

particular instance. 

Software engineering principles are applied during the 

development process of the suggested component-based 

finite element software so that the outcome of the process 

may widely be used, extendable and user friendly. Further, 

forward engineering and reverse engineering are used to 

convert a program written in one object oriented 

programming language into another desired object oriented 

programming language as shown in Fig. 2.  

 

V. FORTRAN TO OBJECT ORIENTED DESIGN  

The conversion process of finite element programs written 

in C and FORTRAN programming languages into an object 

oriented language is given in Fig. 3. The purpose here is to 

convert finite element programs written in FORTRAN and C 

programming languages into programs in an object oriented 

language. First, finite element programs written in 

FORTRAN are converted into programs in C. The details of 

this conversion and those issues related to the conversion are 

discussed in [31]. Then the C programs are converted into 

Java programs. Those Java codes are used to develop UML 

diagrams - especially class diagrams using reverse 

engineering. Again those class diagrams are used to create 

codes in any possible object oriented language such as C++, 

Java, etc. Therefore, this procedure gives a general idea to 

convert legacy finite element codes into an object oriented 

language. Further, suppose a new object oriented language is 

introduced, it would be easy for software engineers to 

develop codes using the available class diagrams. In this 

study, those finite element codes are converted into Java and 

C++ using reverse engineering and forward engineering [31], 

[32]. Further, performances of those finite element programs 

written in FORTRAN language, the relevant programs 

converted into C and the relevant programs converted into 

Java are compared and reported [33]. 

Once the UML diagrams for the design are ready, the 

whole systems can even be modified and new designs can be 

suggested. The codes for the new design in a suitable object 

oriented language can be derived using forward engineering. 

Keeping the UML diagrams of the design would help the 

software engineers to understand the system easily. Once the 

FORTRAN programs are converted into an object oriented 

design, it would be easy for the software engineers to 

redesign, modify and/or utilize those designs. Further, UML 

diagrams can be used to develop codes in a desirable object 

oriented language. 

 

 

VI. RESULTS AND ANALYSIS 

 

 
Fig. 4. Graph of execution times of FORTRAN, C and Java programs vs. 

number of mesh points of Program 1. 

Fig. 3. Conversion of finite element programs into an object 

oriented programming language from legacy codes written in 

FORTRAN or C. 

Finite element programs 

Programs in C 

Programs in FORTRAN 

Apply auto conversion process 

Programs in C 

Apply auto conversion process 

Programs in Java 

Develop object-oriented Java code 

based on Converted Java program 

Apply reverse/reengineering 

principle to develop UML diagrams 

 

Develop an object oriented program in any object 

oriented language using forward engineering 

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

126



  

Three different FORTRAN programs which use the finite 

element method were converted into C and Java. The 

performances of those three programs are compared based on 

the execution time. Mesh points are changed in the programs 

and checked the execution times. Graphs of execution times 

of FORTRAN, C and Java programs Vs. number of mesh 

points of 3 different programs are shown in Fig. 4, Fig. 5 and 

Fig. 6. 

 

 
Fig. 5. Graph of execution times of FORTRAN, C and Java programs vs. 

number of mesh points of Program 2. 

 

 
Fig. 6. Graph of execution times of FORTRAN, C and Java programs vs. 

number of mesh points of Program 3. 

 

VII. CONCLUSION 

In this work,  

1) Finite element programs are converted into C and Java 

programs. 

2) Converted C programs are also converted into Java 

programs 

3) Issues in the conversion process are reported [32]. 

4) UML class diagrams are created using converted Java 

programs. 

5) From class diagrams, codes are again developed in C++ 

and Java and their validity is checked. 

6) The class diagrams are modified and checked. 

7) When there is a new problem to be solved using the finite 

element method, the classes are used in different ways. 

Only the user interface is changed according to the need 

of the user. 

8) Using statistical analysis, the performances of codes 

written in FORTRAN, codes converted into C and codes 

converted into Java are compared and reported [33].  

9) The components-based finite element methods software 

development method is discussed [34].  

ACKNOWLEDGMENT 

Thiruchelvam Arudchelvam thanks University of Bath 

(UK) and RPI (US) for providing facilities to carry out the 

research work related to this paper. He also thanks the 

University of Peradeniya for their support to carry out this 

research work. Further, he thanks Wayamba University of Sri 

Lanka for the study leave and other moral support rendered. 

REFERENCES 

[1] A. Pillay. (November 01, 2009). Object-Oriented Programming. 

[Online]. Available: 

http://math.hws.edu/eck/cs124/downloads/OOP2_from_Univ_KwaZu

lu-Natal.pdf 

[2] H. G. Schaeffer, “MSC/NASTRAN primer: Static and normal modes 

analysis,” Schaeffer Analysis, 1982. 

[3] X. Wu and M. Woodside, “Performance modeling from software 

components,” in Proc. the Fourth International Workshop on Software 

and Performance, 2004, pp. 290-301. 

[4] K. S. Jasmine and R. Vasantha, “Design based performance prediction 

of component based software products,” World Academy of Science, 

Engineering and Technology, vol. 30, pp. 266-269, June 2007. 

[5] Y. Wu, D. Pan, and M. Chen, “Techniques of maintaining evolving 

component-based software,” in Proc. International Conference on 

Software Maintenance, 11-14 Oct. 2000, pp. 236-246. 

[6] C. Szyperski, “Component technology - what, where, and how?” in 

Proc. 25th International Conference on Software Engineering, May 

3-10, 2003, pp.684- 693. 

[7] V. L. Narasimhan and B. Hendradjaya, “Some theoretical 

considerations for a suite of metrics for the integration of software 

components,” Information Sciences, vol. 177, issue 3, pp. 844-864, 1 

February 2007. 

[8] S. R. H. Hoole and T. Arudchelvam, “A formal uml reliant software 

engineering approach to finite element software development for 

electromagnetic field problems,” in Proc. 6th Japanese-Mediterranean 

Workshop on Applied Electromagnetic Engineering (JAPMED06), 

July 2009. 

[9] NASTRAN. [Online]. Available: http://en.wikipedia.org/wiki/Nastran 

[10] SALOME: The Open Source Integration Platform for Numerical 

Simulation. [Online]. Available: 

http://www.salome-platform.org/home/presentation/overview/  

[11] A. Ribes and C. Caremoli, “Salome platform component model for 

numerical simulation,” in Proc. 31st Annual International Computer 

Software and Applications Conference (COMPSAC 2007), vol. 2, July 

2007, pp. 553-564. 

[12] S. Ma, Y. Maréchal, and J. L. Coulomb, “Methodology for an 

implementation of the STEP standard: a Java prototype,” IEEE Trans. 

Magn., vol. 36, no. 4, pp. 1664-1668, July 2000. 

[13] S. Ma, Y. Maréchal, and J. L. Coulomb, “Methodology for an 

implementation of the STEP standard: a Java prototype,” Advances in 

Engineering Software, vol. 32, issue 1, pp. 15-19, January 2001. 

[14] S. Ma, Y. Marechal, and J. L. Coulomb, “A finite-element 3-D 

magnetostatic solver using STEP data,” IEEE Transactions on 

Magnetics, vol. 38, No. 2, part I, pp. 1097-1100, March 2002. 

[15] S. Ma, Y. Maréchal, and J. L. Coulomb, “Methodology for an 

implementation of the STEP Standard: A Java prototype,” in Proc. Int. 

Conf. Compumag, Sapporo, Japan, 1999. 

[16] R. Ait-Sadi, B. F. Colyer, C. R. I. Emson, J. Simkin, and J. V. Maanen, 

“A 2-D and axisymmetric finite-element environment based upon 

STEP type database,” IEEE Trans. Magn., vol. 30, pp. 3622-3624, 

1994. 

[17] D. Rodger, P. J. Leonard, and H. C. Lai, “Surface elements for 

modelling 3D fields around thin iron sheets,” IEEE Transactions on 

Magnetics, vol. 29, no. 2, pp. 1483-1486, March 1993. 

[18]  S. H. L. G. Bisson, P. J. Leonard, D. Rodger, and C. Leyden, “Finite 

element analysis of transient electromagnetic heating effects in three 

dimensions,” IEEE Transactions on Magnetics, vol. 29, no. 1, pp. 

1102-1106, Jan. 1993. 

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

127



  

[19] P. J. Leonard, H. C. Lai, R. J. Hill-Cottingham, and D Rodger, 

“Automatic implementation of cuts in multiply connected magnetic 

scalar regions for 3D eddy current models,” IEEE Transactions on 

Magnetics, vol. 29, no. 2, pp. 1368-1371, March 1993. 

[20] K. R. C. Wijesinghe, M. R. Udawalpola, and S. R. H. Hoole, “Towards 

object oriented finite element preprocessors exploiting modern 

computer technology,” Journal of Materials Processing Technology 

(Elsevier), vol. 161, pp. 247-252, 2005. 

[21] M. Dolenc, “Developing extendible component-oriented finite element 

software,” Advances in Engineering Software, vol. 35, issues 10-11, 

pp. 703-714, October-November 2004. 

[22] J. Peng and K. H. Law, “Building finite element analysis programs in 

distributed services environment,” Computers & Structures, vol. 82, 

issue 22, pp. 1813-1833, September 2004. 

[23] O. V. Estorff, “Coupling of BEM and FEM in the time domain: Some 

remarks on its applicability and efficiency,” Computers & Structures, 

Elsevier, vol. 44, issues 1-2, pp. 325-337, 3 July 1992. 

[24] K. L. Leung, P. B. Zavareh, and D. E. Beskos, “2-D elastostatic 

analysis by a symmetric BEM/FEM scheme,” Engineering Analysis 

with Boundary Elements, vol. 15, issue 1, pp. 67-78, 1995. 

[25] D. C. Rizos and Z. Wang, “Coupled BEM–FEM solutions for direct 

time domain soil–structure interaction analysis,” Engineering Analysis 

with Boundary Elements, vol. 26, issue 10, pp. 877-888, December 

2002. 

[26] X. Zhang, “Coupling FEM and discontinuous BEM for elastostatics 

and fluid–structure interaction,” Engineering Analysis with Boundary 

Elements, vol. 26, issue 8, pp. 719-725, 1 September 2002. 

[27] S. P. V. Broeh, H. Zhou, and M. J. Peters, “Computation of 

neuromagnetic fields using finite-element method and Biot-Savart 

law,” Journal of Medical and Biological Engineering and Computing, 

vol.34, no. 1, pp. 21-26, January 1996. 

[28] A. R. M. Rao, “MPI-based parallel finite element approaches for 

implicit nonlinear dynamic analysis employing sparse PCG solvers,” 

Advances in Engineering Software, vol. 36, issue 3, pp. 181-198, 

March 2005.   

[29] K. Mori, Y. Otomo, and H. Yoshimura, “Parallel processing of 3D 

rigid-plastic finite element method using diagonal matrix,” Journal of 

Materials Processing Technology, vol. 177, issues 1-3, pp. 63-67, July 

2006.   

[30] B. Bruegge and A. H. Dutiot, Object-Oriented Software Engineering 

Using UML, Patterns, and Java, Pearson Prentice Hall, New Jersey, 

2004. 

[31] S. R. H. Hoole and T. Arudchelvam, “Reverse engineering as a means 

of improving and adapting legacy finite element code,” in Proc. IEEE 

ICIIS-2009, Sri Lanka, 2009, pp. 227-232. 

[32] S. R. H. Hoole, T. Arudchelvam, and J. Wijayakulasooriya, “Reverse 

engineering legacy finite element code,” Journal of Material Science 

Forum, vol. 721, pp. 307-312, 2012 

[33] T. Arudchelvam, J. Wijekulasooriya, and S. R. H. Hoole, “Comparison 

of performance of finite element codes in different programming 

languages converted from legacy finite element codes,” in Proc. 3rd 

International Conference on Electrical, Computer, Electronics & 

Biomedical Engineering (ICECEBE'2013), Singapore, April 29-30, 

2013, pp. 147-151.

 

 

T. Arudchelvam got the B.Sc. (Hons) in Jaffna and 

M.Sc. in Peradeniya. He is a lecturer at Wayamba 

University of Sri Lanka. He has been doing research for 

M.Phil. He has been doing one part of this research at the 

University of Bath, UK and another part of the research 

was carried out at the Rensselaer Polytechnic Institute 

(RPI), USA. 

 

 

 

S. Ratnajeevan H. Hoole got the B.Sc. Eng. Hons Cey. 

and M.Sc. at Mark of Distinction London. Besides, he got 

the Ph.D. in Carnegie Mellon. He is a professor of 

Electrical and Computer Engineering at Michigan State 

University in the US. For his accomplishments in 

electromagnetic product synthesis the University of 

London awarded him its higher doctorate, the D.Sc. 

(Eng.) degree in 1993, and the IEEE elevated him to the 

grade of Fellow in 1995. Prof. Hoole has been the vice chancellor of 

University of Jaffna in Sri Lanka, and as a member of the University Grants 

Commission there, was responsible with six others for the regulation of the 

administration of all 15 Sri Lankan universities and their admissions and 

funding. He has contributed widely to the learned literature on Tamil studies 

and been a regular columnist in newspapers. Prof. Hoole has been trained in 

Human Rights Research and Teaching at The René Cassin International 

Institute of Human Rights, Strasbourg, France, and has pioneered teaching 

human rights in the engineering curriculum. 

 

 

 

Janaka Wijayakulasooriya got the B.Sc.Eng. and the 

first class honours in Peradeniya, he got the Ph.D. at 

Northumbria. He is a senior lecturer at University of 

Peradeniya. He was awarded the prof. E.O.E. Perera 

Gold Medal in 1994 for the most outstanding graduate of 

the Faculty of Engineering. He was the founder deputy 

chair of IEEE Sri Lanka central region subsection in 

2007 and the chair of the IEEE Sri Lanka Central Region 

subsection in 2010. 

 

 

 

[34] S. R. H. Hoole and T. Arudchelvam, “A formal UML reliant software 

engineering approach to finite element software development for 

electromagnetic field problems,” Revue Roumaine Des Sciences 

Techniques Serie Electrotechnique Et Energetique; vol. 56, no. 1, pp. 

5-14, 2011. 
 

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

128


