
  

 

Abstract—For context-based recommendation systems, it is 

important to determine intentions from indirect speech acts. 

An algorithm of deriving intentions from indirect speech acts 

has been proposed, but the algorithm included unclear portions 

and there were no important experimental results for kinds of 

speech acts. Therefore, this paper proposes an improved 

algorithm and two experimental observations are discussed for 

accuracies and kinds of answers in indirect speech acts. 

Logical formulas are rewritten to if-else statements and the 

number of conditions is reduced from 24 to 8 in the algorithm. 

From experimental results, it is verified that the correct rate of 

the proposed method is 48.2 points higher than the one of the 

traditional method in indirect speech acts. Answers of "what" 

most include indirect speech acts and the accuracy of the 

proposed method is 53.8 points higher than the traditional one 

in them. 

 
Index Terms—Recommendation system, indirect speech acts, 

affirmative intention, negative intention.  

 

I. INTRODUCTION 

Context-based recommendation systems [1]-[9] support 

users to take items such as products, services, and 

information from a large choice of them by dialogues. In 

order to decide recommendation items, affirmative and 

negative intentions in answers are important for these 

systems [6]-[9]. 

In kinds of expressions of these intentions, there are direct 

speech acts and indirect speech acts. The direct speech acts 

represent these intentions by the following two approaches 

for a recommendation “How about having a cake today?”: 

the first is fixed phrases such as “Yes, I have.” and ”No, 

thank you.” without “cakes”. The second is sentences 

representing acceptance and rejection intentions such as “I 

like cakes.” and “I don’t want to have cakes.” with “cakes”, 

respectively. 

In the indirect speech acts, there are two patterns for the 

recommendation: the first is the affirmative answers that 

select other cakes excluding chocolate cakes such as “I don’t 

want to have chocolate cakes.”. The second is the negative 

answers that select other foods excluding cakes such as “I 

want to have Japanese noodles”.  

In order to determine intentions from sentences, there are 

two methods: the first uses machine learning [10]-[16] the 
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second uses meaning of words and grammars [17]-[19]. 

Methods using machine learning have the advantage that 

classification models are constructed automatically, but they 

expend considerable efforts to collect a large learning data. 

Methods using meaning of words and grammars have the 

merit that their rules have broad utilities for sentences of 

many domains, but they can not classify answers of indirect 

speech acts. 

Previously, we defined a recommendation tree and 

proposed an algorithm of deriving intentions for indirect 

speech acts [20]. From experimental results, it was verified 

that the algorithm is superior to the traditional one. 

However, the algorithm is very complex and there are no 

important experimental results for kinds of speech acts. 

Therefore, this paper proposes an improved algorithm and 

two experimental observations are discussed for accuracies 

and kinds of answers in each speech act. 

 

II. A RECOMMENDATION TREE AND AN ALGORITHM 

First of all, this paper defines recommendation conditions 

(RC) and recommendations. In RCs, there are three kinds; 

R_RC, S_RC, and NS_RC. R_RC is the required RC. In a 

recommendation, “How about having a cake today?”, there 

are R_RCs, “you”, “have”, “cake”, and “today”. S_RC is the 

selectable RC. In the recommendation, there are S_RCs of 

kinds of cakes such as “chocolate cake”, “short cake”, and 

“Mont Blanc”. NS_RC is the non-selectable RC such as 

“tomorrow”, “Japanese noodle” for the recommendation. 

Recommendations are constructed by four necessary 

concepts of RC: “WHO”, “WHEN”, “WHAT”, and 

“VERB”. These concepts have RCs related to persons such as 

“you” and “he”, schedules such as “today” and “tomorrow”, 

objects such as “cake” and “curry”, and actions such as “go” 

and “have”, respectively. 

A recommendation tree has root node “REC” which 

indicates the recommendation. The root node has four child 

nodes corresponding to concepts (concept nodes): “WHO”, 

“WHEN”, “WHAT”, and “VERB”. These nodes have child 

nodes of RCs (RC nodes). For example, concept node 

“WHO” has RC nodes “you” and “he”. There are three kinds 

of edges (R_edges, S_edges, and NS_edges) for R_RC, 

S_RC, and NS_RC, respectively. The root node and concept 

nodes are connected by R_edges. Concept nodes and RC 

nodes are connected by S_edges. These kinds of edges are 

changed by each recommendation. For the recommendation 

“How about having a cake today?”, edges of nodes “you”, 

“today”, “cake”, and “have” are modified to R_edges and 

other edges of nodes  are set to NS_edges as shown in Fig. 1. 

In Fig. 1, the node labeled by x corresponding to string x. 
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Fig. 1. A part of the recommendation tree of “How about having a cake today?” 

 

The recommendation tree can be extended by expanding 

terminal nodes. Considering an example in Fig. 1, RC node 

“cake” constructs the subtree as the root node. RC node 

“cake” has RC nodes “taste” and “kind” with R_edges as 

child nodes. RC node “taste” has RC node “sweet” with a 

R_edge as a child node. RC node “kind” has RC nodes “Mont 

Blanc”, “short cake”, and “chocolate cake” with S_edges as 

child nodes. 

An algorithm determines intentions of answers to derive 

the recommendation tree [20].  

The algorithm is modified more compact and logical 

formulas are rewritten to if-else statements in this study. 

Before proposing the algorithm, the following definitions are 

prepared. 

Definition 

Suppose that NODE[x] is a node for string x. 

PARENT(NODE[x]) represents the parent node of 

NODE[x]. AS_SIBLING(NODE[x]) returns the set of 

sibling nodes of NODE[x] with S_edges. Let 

EDGE[NODE[x],NODE[y]] be the kind of edges (R-edge, 

S_edge, and NS_edge) between NODE[x] and NODE[y]. Let 

P_EDGE[NODE[x]] be 

EDGE[NODE[x],PARENT(NODE[x])]. Let 

INTENTION[NODE[x]] be the intention of NODE[x] which 

has one of three kinds intentions: acceptance, rejection, and 

no_information in this algorithm. No_information means that 

a node doesn’t have any intentions. All intentions of nodes 

are initialized to no_information. 

An algorithm of deriving intentions 

Input: ANSWER_NODE[] and 

ANSWER_INTENTION[]  

ANSWER_NODE[] is a list of strings for nodes accepted 

or rejected by answers. ANSWER_INTENTION[] is a list of 

intentions for elements in ANSWER_NODE[]. Indexes of 

ANSWER_INTENTION[] are elements in 

ANSWER_NODE[]. For the answer “I like curries”, 

ANSWER_NODE[] is {“curry”} and 

ANSWER_INTENTION[“curry”] is {“acceptance”}, 

respectively. 

 

Output: INTENTION[NODE[“REC”]]  

Method: 

for i=1 to n do/*n is the number of elements in 

ANSWER_NODE[] */ 

INTENTION[NODE[ANSWER_NODE[i]]= 

ANSWER_INTENTION[ANSWER_NODE[i]]  

target_node = NODE[ANSWER_NODE[i]] 

while target_node NODE[“REC”] do 

if P_EDGE[NODE[target_node]] is R_edge then 

INTENTION[PARENT(NODE[target_node])] = 

INTENTION[NODE[target_node]] 

else if P_EDGE[NODE[target_node]] is S_edge then 

if INTENTION[AS_SIBLING[NODE(target_node)]] = 

rejection then 

INTENTION[PARENT(NODE[target_node]) = rejection 

else  

INTENTION[PARENT(NODE[target_node]) = 

acceptance 

end 

else if P_EDGE[NODE[target_node]] is NS_edge then 

if INTENTION[NODE[x]] = acceptance then  

INTENTION[PARENT(NODE[x])] = rejection 

end 

end 

endwhile 

if INTENTION[ NODE[“REC”]] is rejection then 

INTENTION[ NODE[“REC”]] = negative 

break 

else if INTENTION[ NODE[“REC”]] is acceptance then 

INTENTION[ NODE[“REC”]] = affirmative 

endif 

endfor 

End of Algorithm 

To compare with the previous algorithm, the total number 

of conditions in logical functions and the algorithm are 

reduced from 24 to 8. 

In case of a recommendation “How about having a cake 

today?”, examples of derivations from answers “I like 

something sweet.” and “I dislike chocolate cakes” are as 

follows: 

Example 3.1  

For an answer “I like something sweet.”, 

INTENTION[NODE[“sweet”]] is acceptance. From Fig. 1., 

P_EDGE[NODE[“sweet”]] is R_edge. Therefore, 

INTENTION[NODE[“taste”]] is acceptance. Similarly, 

intentions of NODE[“cake”], NODE[“WHAT”], 

NODE[“REC”] are acceptance. 

From these results, the intention of the answer is 

affirmative. 

Example 3.2 

For an answer “I dislike chocolate cakes”, 

INTENTION[NODE[“chocolate cake”]] is rejection. From 

Fig. 1., P_EDGE[NODE[“chocolate cake”]] is S_edge. AS_ 

SIBLING(NODE[“chocolate cake”]) isn’t rejection. 

Therefore, INTENTION[NODE[“kind”]] is acceptance. 
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INTENTION[NODE[“kind”]] is acceptance because 

P_EDGE[NODE[“kind”]] is R_edge. Similarly, 

NODE[“cake”], NODE[“WHAT”], NODE[“REC”] are 

acceptance. 

From these results, the intention of the answer is 

affirmative. 

 

III. EXPERIMENTS AND DISSCUSSIONS 

A. Knowledge for Experiments 

It is general to recommend foods including cakes and 

Japanese noodles, and movies on a daily basis. In this 

experiment, the following three recommendations are 

assumed, where “Resident Evil” is a title of a movie: 

Recommendation “cake”: “How about having a cake 

today?”  

Recommendation “Japanese noodle”: “How about having 

a Japanese noodle today?”  

Recommendation “Resident Evil”: “How about going to 

the movie, Resident Evil?”  

In order to determine intentions from answers to them, a 

recommendation tree is constructed from closed corpora 

which have 500 answers for each recommendation. Answers 

are collected by four undergraduate students. From corpora, 

RC nodes and the recommendation tree are defined by 

discussions with these students. Total numbers of nodes are 

311. Examples of RC nodes with concept nodes are presented 

in Table I.  

For RC nodes “cake”, “Japanese noodle”, and “Resident 

Evil”, more detailed descendant nodes are constructed. 

Examples of descendant nodes for each RC node are 

presented in Table II. In Table II, R_edge and S_edge 

between a node and a parent node show R and S, 

respectively. 

 
TABLE I: EXAMPLES OF RC NODES WITH CONCEPT NODES 

Concept nodes RC nodes 

WHO Father, Mother, You, She  

WHEN Morning, Today, this week 

WHAT Cake, Japanese noodle, Resident Evil 

VERB Eat, need, watch 

 

TABLE II: EXAMPLES OF DESCENDANT NODES OF NODES“CAKE”, 

“JAPANESE NOODLE”, AND “RESIDENT EVIL”   

Parent Child Grandchild 

Cake Genre[R] Sweets[R],Dessert[R] 

Taste[R] Sweet[R] 

Kind[R] Short cake[S], chocolate cake[S] 

Ingredient[R] Flour[R], Sugar[R] 

Butter[S], Apple[S] 

Japanese 

noodle 

Genre[R] Noodles[R], Food[R] 

Taste[R] Spicy[S], Salty[S] 

Ingredient[R] 
Flour[R] 

Garlic[S], Bean sprouts[S]  

Resident 

Evil 

Screen type[R] Caption[S], Dub[S], 3D[S] 

Genre of films[R] Horror[R], Action[R] 

(R and S means required and selectable) 

B. Experimental Results 

1) Experimental results for each recommendation  

In order to evaluate the accuracy of the proposed method, 

open tests are carried out. Open tests uses corpora with 120 

answers for each recommendation. These corpora are 

collected by eleven students who don’t accumulate closed 

corpora, and they make answers to each recommendation 

without restriction of responses. The traditional method 

proposed by Yoshie et al. [19] is used as a comparative 

method. Fig. 2 shows correct rates for each recommendation 

of the proposed method and the comparative method, 

respectively. Correct rates mean percentages of correctly 

classified sentences in total sentences. 

In Fig. 2., all accuracies of the proposed method are about 

40 points higher than the comparative method in open tests of 

all recommendations.  

From these results, it is verified that the proposed method 

is much better than the traditional method to determine 

intentions. 

 

 
Fig. 2. Correct rates for each recommendation. 

 
TABLE III: CORRECT RATES OF EACH SPEECH ACT  

  Proposed method (%) Traditional method (%) 

Direct speech acts 85.8 54.4 

Indirect speech 

acts 
68.2 20 

 

2) Correct rates of each speech act 

From experimental results, accuracies of methods in direct 

speech acts and indirect speech acts are found out. Table III 

shows correct rates of each speech act. 

From Table III, accuracies of the proposed method in 

speech acts are higher than the traditional method. Especially 

the difference in correct rates of indirect speech acts is 48.2 

points.  

This result shows that the proposed method is more 

effective than the traditional method to determine intentions 

from indirect speech acts. 

3) Rates of indirect speech acts  

In order to bring out kinds of answers which often include 

indirect speech acts, 360 answers of open tests are classified 

into kinds of their targets of intentions, recommendation, 

who, when, what, and V. Table IV shows that rates of 

indirect speech acts per targets of answers. 
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Table IV shows that indirect speech acts are often included 

in answers of “when” and “what”. In these answers, correct 

rates of the proposed method and the traditional method are 

compared. Table V shows correct rates of methods in these 

answers. 

From Table V, correct rates of the proposed method are 

37.7 points and 53.8 points higher than the traditional method 

in answers “when” and “what”, respectively. To compare 

kinds of answers, the correct rate of “what” is 39.2 points 

higher than the one of “when” in the proposed method. The 

reason of this result is that concept node “what” has more 

detailed child nodes than node “when”.  

From these results, it is verified that the proposed method 

with the detailed recommendation tree is more effective to 

determine intentions from indirect speech acts than the 

traditional one. 

 
TABLE IV: RATES OF INDIRECT SPEECH ACTS PER TARGETS OF ANSWERS  

 
Rates of indirect speech acts (%) 

Recommendation 0.83   

Who 1.94   

When 25.0   

What 36.7   

V 0.83 

 

TABLE V: CORRECT RATES OF METHODS IN ANSWERS OF “WHEN” AND 

“WHAT”  

 

Proposed method 

(%) 

Traditional method 

(%) 

When 43.3 5.6 

What 82.5 28.7 

 

IV. CONCLUSIONS 

This paper has proposed an improved algorithm, and two 

experimental observations have been discussed for 

accuracies and kinds of answers in each speech act. 

Logical formulas are rewritten to if-else statements and the 

number of conditions is reduced from 24 to 8 in the 

algorithm. From experimental results, it is verified that the 

correct rate of the proposed method is 48.2 points higher than 

the one of the traditional method in indirect speech acts. 

Answers of "what" most include indirect speech acts and the 

accuracy of the proposed method is 53.8 points higher than 

the traditional one in them. 
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