
  

 

Abstract—This paper proposes a new method to find 

plagiarisms with evidence among a set of student programs that 

are submitted for programming assignments in elementary 

Java programming courses. In such an assignment, each 

student program tends to be similar to others because it is small 

and structurally simple. Existing plagiarism detection methods 

are not useful and yield many false-positive errors. The 

proposed method detects plagiarisms with evidence based on 

the nature of students who are not accustomed to Java 

programming. The evaluation results using real assignments 

showed that analyzing white spaces and peculiar patterns in 

source codes are very powerful to find plagiarisms with reliable 

evidence. 

 
Index Terms—Plagiarism detection, java programming, 

n-gram similarity, longest common subsequence. 

 

I. INTRODUCTION 

In programming courses of universities and colleges, 

students are often given assignments to write programs based 

on some specifications by the instructor. Such assignments 

are very helpful to learn programming languages and to 

acquire coding skills for the students. However, the 

evaluation of these student programs is very troublesome for 

the instructor if many students study at the same time. 

There may be plagiarisms that are unfair copies of 

programs written by other students. To find such plagiarisms 

is a very painful task of the instructor, because it is not a 

productive effort. The cost of finding plagiarisms is basically 

proportional to the square number of submitted programs. 

The task becomes more difficult if camouflage is done by 

modifying the code. 

Many research activities have been done to develop 

automatic plagiarism detection methods and tools, and some 

of them are freely available on the Internet. Surveys and 

comparisons of these activities have been done [1], [2]. 

However, existing methods and tools are very likely to yield 

many false positive errors among student programs in 

elementary courses. The reason is that each program tends to 

be similar because it is small and structurally simple. 

The author proposed a method that automatically finds 

plagiarisms in elementary courses [3]. The method uses three 

types of similarities: code, comment, and inconsistency 

similarities. The code similarity reflects the common 

expressions and statements in source codes. The comment 

similarity reflects the common words and phrases in 

 
Manuscript received August 21, 2013; revised October 10, 2013.  

Ushio Inoue is with the Department of Information and Communication 

Engineering, the School of Engineering, Tokyo Denki University, Tokyo, 

120-8551 Japan (e-mail: inoue@c.dendai.ac.jp).  

explanatory comments. The inconsistency similarity reflects 

strange expressions, which are syntactically correct but rarely 

used by experienced programmers. This method showed 

higher precision and recall ratio than that of other methods. 

This paper proposes a new method, which is an extension 

of the previous work to find the evidence of plagiarisms. 

Finding reliable evidence is important when giving a warning 

or penalty to plagiarists, because they can easily defend 

themselves by saying that they wrote their programs 

independently and the resemblance was caused by accident. 

The rest of the paper is organized as follows; Section II 

describes related work. Section III defines the target and goal 

of the research. Section IV explains the proposed method in 

detail. Section V presents evaluation results by using actual 

student programs. Section VI concludes the discussion. 

 

II. RELATED WORK 

Plagiarism detection methods can be classified into two 

categories: static and dynamic. Static methods compare a pair 

of source files by means of text, tokens, or logical structures. 

Moss [4], [5] normalizes text in source files, composes 

fingerprints by using an n-gram technique, and finds the 

longest common sequence on the fingerprints. In the text 

normalization, white spaces are removed and identifier 

names are replaced. JPlag [6], [7] converts text into strings of 

canonical tokens and compares the token strings by using the 

Greedy String Tiling algorithm. White spaces and identifier 

names are not included in the token strings. Koschke, et al. [8] 

proposed a method based on an abstract syntax tree that is a 

representation of the logical structure of the program. The 

trees are created by a language-specific parser. 

On the other hand, dynamic methods compare the behavior 

of object files (i.e. class files in Java). Schuler, et al. [9] 

proposed a method that observes how a program uses objects 

provided by the Java Standard API. Lu, et al. [10] proposed a 

birthmark based on opcodes, which are executable 

instructions in the program. The similarity of birthmarks is 

evaluated by employing the theory of the probability and 

statistic. Fukuda and Tamada [11] proposed a new dynamic 

birthmark based on the runtime behavior of Java VM. 

Our method belongs to the very first category: static and 

text based. The reason is the size of our target files. Since 

they are relatively small, every single character in the files 

should be used for accurate plagiarism detection. Another 

reason is that the evidence of plagiarisms should be given 

clearly to the plagiarists by using actual text in the source 

files. The other reason is that some of student programs may 

cause errors in compiling or execution time. Plagiarisms 

should be detected against such buggy programs. 

Finding Plagiarisms with Evidence in Java Programming 

Courses 

Ushio Inoue 

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

91DOI: 10.7763/IJCTE.2014.V6.843



  

III. DEFINITION 

A. Target 

The goal of the research is to develop a method that detects 

plagiarisms with evidence among student programs in 

elementary programming courses. Since most of the students 

in these courses are beginners, programming assignments are 

very simple, such as “Write a program that finds the least 

common multiple (LCM) number of three natural numbers.” 

Consequently, student programs are small and tend to be 

similar to others. Therefore, it is difficult to judge a program 

as a plagiarism or not. Plagiarists may also camouflage their 

copies in order to make the detection more difficult. 

Although there are many levels of the camouflage, they do 

not use complicated techniques, because they are immature in 

programming skills and do not want to spend much time for 

their programs. Typical camouflages are limited to easy 

tricks such as changing the indentation style and replacing 

identifier names. 

B. Template File 

The instructor distributes a template to students for his/her 

easy manipulation of student programs. The basic structure 

of the template is shown in Fig. 1. 

 

 
Fig. 1. The template file for an assignment. 

 

The template consists of three parts: instructor comment, 

student comment, and student code. The instructor comment 

defines the specifications and requirements to the program. A 

typical size of the instructor comment is 5 lines. The student 

comment explains the algorithm or solution in their natural 

language. The size of student comments may vary much but 

typically 3 to 10 lines. The student code consists of a 

sequence of source code, which follows an identification 

statement that prints the student ID and name on the standard 

output device (console). This is used to identify the student in 

the source code and the execution results. 

 

IV. PROPOSED METHOD 

A. Basic Consideration 

Plagiarisms can be classified into several levels according 

to the techniques of camouflage that change the code of the 

original program. Table I shows seven levels of plagiarisms, 

which are based on the definition by Faidhi, et al. [12]. 

TABLE I: CLASSIFICATION OF PLAGIARISMS 

Level Definition 

0 No changes (exact copy) 

1 Changes in comments and indentation 

2 Changes of level 1 and in identifiers 

3 Changes of level 2 and in declarations (e.g., sequence) 

4 Changes of level 3 and in modules (e.g., new methods) 

5 Changes of level 4 and in statements (e.g., “for”/“while”) 

6 Changes of level 5 and in decision logic (e.g., expression) 

 

In elementary programming courses, most of plagiarisms 

are between the level 0 and 2. To find the level 1 plagiarism, 

deleting all comments and white spaces from the source file 

is very effective. For the level 2, replacing identifiers 

(user-defined variable names) to fixed ones brings good 

results. For the level 3 and over, using a comparison 

technique that is not sensitive to the positions of statements is 

necessary. Multidimensional n-gram vectors have a desirable 

feature. Table II shows the difference of two trigram vectors, 

which are generated from two code fragments that are 

semantically same but differ in the order of appearance. 

 
TABLE II: DIFFERENCE OF N-GRAM VECTOR ELEMENTS 

Source code fragment Trigram vector elements 

int x = 1; int y = 2; 
“int” “ntx” “tx=” “x=1” “=1;” “1;i” “;in” “int” 

“nty” “ty=” “y=2” “=2;” 

int y = 2; int x = 1; 
“int” “nty” “ty=” “y=2” “=2;” “2;i” “;in” “int” 

“ntx” “tx=” “x=1” “=1;” 

 

A plagiarist usually copies a source file of another student 

in a digital manner. This means that styles of writing a 

program and peculiar patterns of the code are exactly 

reproduced on the copy. Fig. 2 shows the main part of an 

actual student program (In order to improve the readability, 

the indentation and string values are modified). The red 

circles in Fig. 2 denote peculiar patterns: “x =stdIn” should be 

“x = stdIn,” “nextInt( )” should be “nextInt(),” and “ans + 

""” should be “ans.” These patterns can be extracted with a 

basic text matching technique and provide the reliable 

evidence of the plagiarism. 

 

 
Fig. 2. A student program with peculiar code patterns. 

 

A plagiarist is likely to modify the student comment 

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

92



  

because he/she thinks that it is very conspicuous in the source 

file. However, if the modification is a cheap trick, a text 

matching technique also perceives such a trick and provides 

the evidence of the plagiarism. 

B. Process of Finding Plagiarisms 

The proposed method first finds suspect programs, then 

inspects the suspects in detail. Fig. 3 shows a block diagram 

of the method at a conceptual level. 

 

 
Fig. 3. Block diagram of the proposed method. 

 

First of all, the preprocessor splits every source file into the 

source code and the student comment. Then, the suspect 

finder normalizes the source code and evaluates the similarity 

of every pair of the normalized codes. Then the code analyzer 

evaluates the similarity of every pair of the raw source codes. 

Finally, the comment analyzer evaluates the similarity of the 

student comments. Following subsections describe each 

process in more detail. 

C. Preprocessor 

As mentioned in Section III, each student creates his/her 

source file from the common template file. First, the 

preprocessor finds the instructor comment and removes it. 

Then, the preprocessor detects the student comment, saves it 

in a separate file, and leaves only source code in the file. The 

preprocessor uses special patterns of text inside the instructor 

and student comments as clues for the detection. 

D. Suspect Finder 

The role of the suspect finder is to extract questionable 

programs that should be inspected in detail by both the code 

analyzer and comment analyzer. The suspect finder 

normalizes the source code by replacing every identifier to a 

fixed symbol “#” and by removing every white space 

character in the source code. Then it generates a trigram 

vector from ASCII printable (i.e. 0x21-0x7E) characters 

only. Then, it calculates the similarity SNOR, which is the 

cosine similarity of a trigram vector pair, X and Y, by using 

the following equation: 

 
YX

YX
Ssimilarity NOR


  (1) 

Then, the suspect finder judges the source code to be 

suspect if the similarity is higher than a threshold that will be 

discussed later. 

E. Code Analyzer 

The code analyzer finds evidence of plagiarisms among 

the suspected source codes in two levels: global and local. 

The term “global” means the overall style of the code, and 

“local” means specific small patterns in the code. 

In the global level, trigram vectors are generated again. 

This time, however, white spaces in the source code are not 

discarded. The reason is that the usage of white space 

characters reflects a tendency of the programmer. For 

example, one inserts nothing before the open braces „{‟, but 

another inserts a single space, and the others insert a new line 

and tabs. These styles of writing code are exactly reproduced 

in the plagiarist‟s code. Therefore, if the cosine similarity of 

trigram vectors including white spaces, SRAW, is extremely 

high, it will be the reliable evidence. 

At the local level, over 40 peculiar or strange patterns are 

extracted. Table III shows typical patterns. Each pattern is 

assigned a unique token. The code analyzer creates a 

sequence of tokens from patterns discovered in the source 

code. Then, it finds the LCS (Longest Common 

Subsequence) of every pair of the sequences. For example, 

suppose P1 = “ABCABC” and P2 = “ACAAB,” where P1 and 

P2 are sequences from two different source codes, and “A”, 

“B”, and “C” are tokens assigned to the patterns, 

respectively. The LCS of P1 and P2 is “ACAB.” If the length 

of the LCS, SPTN, is long, it will be the reliable evidence. 

 
TABLE III: EXAMPLES OF PECULIAR PATTERNS 

Regular 

Expression 
Example Description 

[^\s]\s+$ ; \n Extra spaces before newline 

[^\s]\s+; a = b  ; Extra spaces before semicolon 

(^\s*;)|(;\s*;) ;  ; Empty statement 

\"\" a + "" Empty string 

\(\s+\) (  ) Extra spaces in parentheses 

\s\. a .b Extra spaces before period 

\(\s.*\w\) ( a) Parentheses /w imbalanced content 

\s=[^=\s] a =b Assignments /w imbalanced operand 

\s\+\+[\s\);] a ++ b Extra spaces before incrementor 

\s==[^\s] a ==b Comparison /w imbalanced operand 

\s\+[^\+=\s] a +b Arithmetic  /w imbalanced operand 

(^\s+$)(^\s+$) \n\n Consecutive empty lines 

 

F. Comment Analyzer 

The comment analyzer finds the evidence of plagiarisms 

from the student comment. Plagiarists may replace 

words/phrases with synonyms, add/delete 

adverbs/adjectives, and join/divide sentences. However, the 

order of key words is not changed especially for their 

descriptions about procedures. Therefore, the comment 

analyzer finds again the LCS of every pair of the student 

comment strings, X and Y. Then, the comment analyzer 

normalizes the LCS length with the following equation so 

that the length of the student comment does not affect the 

results. If the normalized length of the LCS SCOM is long, it 

will be the reliable evidence. 

 
 
 YXmin_length

YXLCS_length
Ssimilarity COM

,

,
  (2) 

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

93



  

V. EVALUATION RESULTS 

A. Test Datasets 

This section evaluates the proposed method by using five 

real programming assignments used in 2013. Each test 

dataset was created from all student programs submitted for 

the assignments excluding incomplete programs. The 

assignments are as follows: 

A1: Create an LCM class that finds the least common 

multiple number of three natural numbers. 

A2: Create a StandardScore method that transforms 

student testing scores into the standard scores given by an 

array. 

A3: Create a DatePeriod class that has instance variables 

of start/end days and an instance method to get the number of 

days. 

A4:  Create an OrderList class that prints an invoice of 

product items which are instantiated from a given Item class. 

A5:  Create a MonthlyCalendar class that prints a calendar 

for any month of the year, which is derived from a given Date 

class. 

The assignments are arranged in order of difficulty; A1 is 

the easiest, and A5 is the most difficult. From our past 

experience, the ratio of plagiarisms increases as the difficulty 

of assignments increases. Table IV shows a summary of each 

dataset. The number of lines (#Lines) of student code 

includes every line from the starting declaration of a 

class/method to the ending brace symbol. 

 
TABLE IV: ASSIGNMENTS USED FOR THE EVALUATION 

Assignment #Source files 
#Lines of student 

code (average) 

#Lines of student 

comment (average) 

A1 120 39.5 4.0 

A2 105 21.0 4.1 

A3 100 49.4 4.4 

A4 90 49.3 5.9 

A5 75 115.7 8.1 

 

B. Finding Suspects 

The suspect finder calculates the similarity SNOR, which is 

the cosine similarity of trigram vectors made of normalized 

source codes. The distribution of SNOR for each dataset is 

shown in Fig. 4. 

 
Fig. 4. Distribution of SNOR. 

According to our experience, most of plagiarism pairs 

satisfy SNOR > 0.95, and most of pairs satisfying SNOR > 0.99 

are plagiarisms. The distribution was different for each 

assignment, but the pairs satisfying SNOR > 0.99 were less 

than 1% for all of the assignments. 

C. Analyzing Code 

The code analyzer calculates the similarity SRAW, which is 

the cosine similarity of trigram vectors made of raw source 

codes including white spaces. Fig. 5 shows the distribution of 

SRAW. This figure looks like Fig.4, but the distributions of 

similarity are wider and shift toward the lower similarity. The 

pairs satisfying SRAW > 0.9 were less than 5% for all of the 

assignments. 

 

 
Fig. 5. Distribution of SRAW. 

 

Then, the code analyzer creates a sequence of peculiar 

patterns in each source code, and finds the LCS for each pair 

of codes. Fig. 6 shows the length of the subsequence, SPTN. 

Peculiar patterns may match accidentally once or twice in 

pairs of source codes. The pairs satisfying SPTN > 3 were less 

than 5% for most of the assignments. 

 

 
Fig. 6. Distribution of SPTN. 

D. Analyzing Comment 

 

 
Fig. 7. Distribution of SCOM. 

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

94



  

The comment analyzer calculates the similarity SCOM, 

which is the ratio of LCS length over the total length of a 

student comment. For programs with the very short 

comment, SCOM was assumed to be 0. Fig. 7 shows the 

distribution of SCOM. The distribution of each assignment was 

almost same in this figure. The similarity SCOM tends to lower 

than the similarity SRAW in general, because the representation 

of natural language in the student comment is more flexible 

than the Java language in the source code. The pairs 

satisfying SCOM > 0.6 were less than 5% for most of the 

assignments. 

E. Plagiarism and Evidence 

Based on the considerations mentioned above and the 

statistical significance levels p < 0.05 and p < 0.01 which are 

commonly used in the statistics, the following criteria were 

used to determine suspects and plagiarisms for every 

assignment in the evaluation: 

 

• If SNOR > 0.99, the pair of programs is suspect. 

• If SRAW > 0.95 or SPTN > 5 or SCOM > 0.7, the suspect pair 

is indictable with strong evidence. 

• If SRAW > 0.9 or SPTN > 3 or SCOM > 0.6, the suspect pair is 

indictable with weak evidence. 

 

Table V shows the number of suspect and indictable pairs 

with strong and weak evidence in each dataset. In this table, 

“#distinct files” means the number of source files involved in 

the pairs. Note that it is not always double the number of 

pairs, because one particular file may participate in two or 

more pairs. 

 
TABLE V: NUMBER OF PLAGIARISM PAIRS 

(A) WITH STRONG EVIDENCE 

 Suspect Evidence Indictable 

Assign-

ment 

SNOR  

> 0.99 

SRAW 

> 0.95 

SPTN 

> 5 

SCOM  

> 0.7 

Strong 

evidence 

#distinct 

files 

A1 6 1 0 0 1 2 

A2 14 1 0 1 1 2 

A3 32 4 4 1 5 10 

A4 41 9 3 2 13 22 

A5 22 15 18 10 19 15 

 
(B) WITH WEAK EVIDENCE 

 Suspect Evidence Indictable 

Assign-

ment 

SNOR  

> 0.99 

SRAW 

> 0.9 

SPTN 

> 3 

SCOM  

> 0.6 

Weak 

evidence 

#distinct 

files 

A1 6 5 0 3 6 9 

A2 14 4 0 2 5 7 

A3 32 8 5 1 10 16 

A4 41 16 6 2 21 26 

A5 22 16 21 14 22 20 

In Table V (a), there was a suspect pair that satisfies SRAW > 

0.95 for assignment A1 and A2. By a manual inspection, the 

two files in each pair were almost same except some of 

identifiers (in Level 2 defined in Table I). For assignment A3, 

there were 4 pairs that satisfy SRAW > 0.95 and SPTN > 5. 

Actually, 3 pairs satisfied the both, one satisfied only the 

former, and another satisfied only the latter. By a manual 

inspection, 2 of the first 3 pairs were identical (in Level 0) 

and the other was in Level 2. For assignment A4, there were 

9, 3, and 2 pairs satisfying SRAW > 0.95, SPTN > 5, and SCOM > 

0.7, respectively. This means that only one pair satisfied two 

of the three conditions and the others satisfied only one. 

There were three identical programs having SRAW = 1 and SPTN 

= 0. The reason is that these programs were perfectly 

formatted. For assignment A5, there were 18 pairs satisfying 

SPTN > 5, which included all of 15 pairs satisfying SRAW > 

0.95. They also included 9 of 10 pairs satisfying SCOM > 0.7. 

Actually, there were two large plagiarist groups, 5 students 

joined in the former group and 4 students joined in the latter 

group. For this reason, the number of indictable pairs is larger 

than the number of distinct files. 

In Table V (b), threshold values to find evidence were 

loosened, thus more evidences were found especially for 

assignments A1 and A2. In these assignments, the evidence of 

plagiarisms tends to be weak, because the number of lines of 

the student code is small. You may think that it is possible to 

make strong evidence by accumulating weak evidences, but 

this idea fails to work on the programs in the evaluation. 

Based on the above considerations, the proposed method is 

effective to find many plagiarisms with evidence among 

elementary student programs. Although the effect depends on 

the assignments, the method can find many strong and weak 

evidences of plagiarisms. 

 

VI. CONCLUSION 

This paper has presented a method to find plagiarisms with 

evidence among a set of relatively small and simple student 

programs. The method is based on the n-gram vector and the 

longest common subsequence. The notable features of the 

method are based on white spaces and peculiar patterns in the 

source codes to find evidence of plagiarisms. The 

effectiveness of the method has been demonstrated by using 

actual student programs. The method has been used and 

improved since 2009 at Tokyo Denki University, helping the 

instructor and teaching assistants. 

The ability of finding evidence declines if students use 

code formatter tools before they submit their assignments. 

However, most of students in elementary courses prefer to 

write programs by their hands. Moreover, they cannot make 

good use of such tools. The current implementation runs as 

an offline batch processing, and is separated from a grading 

system that checks the functionality and structure of the 

student programs. The author is developing a new integrated 

online system, which accepts and tests student programs on 

the web, and gives a warning message immediately if a 

program is similar to another. 

REFERENCES 

[1] R. Koschke, “Survey of research on software clones,” in Proc. 

Dagstuhl Seminar on Duplication, Redundancy, and Similarity in 

Software, 2007, no. 06301. 

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

95



  

[2] U. Garg, “Plagiarism and detection tools: An overview,” Research 

Cell: Int. Journal of Engineering Sciences, vol. 2, pp. 92-97, 2011. 

[3] U. Inoue and S. Wada, “Detecting plagiarisms in elementary 

programming courses,” in Proc. 9th Int. Conf. on Fuzzy Systems and 

Knowledge Discovery (FSKD '12), 2012, pp. 2322-2326. 

[4] S. Schleimer, D. Wilkerson, and A. Aiken, “Winnowing: Local 

algorithms for document fingerprinting,” in Proc. Int. Conf. on 

Management of Data (SIGMOD '03), ACM, 2003, pp. 76-85. 

[5] A. Aiken. Moss: A system for detecting software plagiarism. [Online]. 

Available: http://theory.stanford.edu/~aiken/moss/ 

[6] L. Prechelt, G. Malpohl, and M. Philippsen, “Finding plagiarisms 

among a set of programs with JPlag,” J. Universal Computer Science, 

vol. 8, no. 11, 2002, pp. 1016-1038. 

[7] G. Malpohl. JPlag: Detecting software plagiarisms. [Online]. 

Available: https://www.ipd.uni-karlsruhe.de/jplag/ 

[8] R. Koschke, R. Falke, and P. Frenzel “Clone detection using abstract 

syntax suffix trees,” in Proc. 13th Working Conf. on Reverse 

Engineering (WCRD '06), IEEE, 2006, pp. 253-262. 

[9] D. Schuler, V. Dallmeier, and C. Lindig, “A dynamic birthmark for 

Java,” in Proc. 22nd Int. Conf. on Automated Software Engineering 

(ASE '07), IEEE/ACM, 2007, pp. 274-283. 

[10] B. Lu, F. Liu, X. Ge, B. Liu, and X. Luo, “A software birthmark based 

on dynamic opcode n-gram,” in Proc. 1st Int. Conf. on Semantic 

Computing (ICSC '07), IEEE, 2007, pp. 37-44. 

[11] K. Fukuda, and H. Tamada, “A dynamic birthmark from analyzing 

operand stack runtime behavior to detect copied software,” in Proc. 

14th Int. Conf. on Software Engineering, Artificial Intelligence, 

Networking and Parallel/Distributed Computing (SNPD '13), 

IEEE/ACIS, 2013, pp. 505-510. 

[12] J. Faidhi and S. Robinson, “An empirical approach for detecting 

program similarity and plagiarism within a university programming 

environment,” Computers & Education, Elsevier, vol. 11, pp. 11-19, 

1987. 

 

  

Ushio Inoue received his B.Eng. and D.Eng. degrees 

from Nagoya University, Japan in 1975 and 1992 

respectively. In 1975, he joined NTT Laboratories, 

where he was engaged in research of information 

retrieval and database management systems. In 1995, 

he was a senior research manager at NTT Data, where 

he developed distributed and multimedia information 

systems. Since 2004, he is a professor of Tokyo Denki 

University, Japan. Currently his research interests include geographic 

information systems, information retrieval and recommendation, and 

education support systems. Prof. Inoue is a member of ACM, IEICE, IPSJ, 

and GISA. He is currently a Vice Chair of ACM SIGMOD Japan. 

 

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

96


