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Abstract—Purpose of this work is the design and 

implementation of an automated method for digital volume 

segmentation, based on multi-parametric densities, fuzzy 

topology, and adaptive growth mechanism. The processing 

objective is the global segmentation of the digital volume, that is 

its partitioning into significant connected subsets, in a fully 

automatic way. The main advantage consists in the very nature 

of the algorithm that enables the automatic segmentation by 

running an iterative process that adapts to the volume at hand 

and does not require any user intervention. The designed 

method can be applied to multi-parametric volumes where 

different characteristics are available to analyze the same 

target. The robustness of the method has been evaluated and 

verified through statistical parameters, that will be discussed 

below, after application on volumes of biomedical images 

obtained through Magnetic Resonance Imaging. 

 
Index Terms—Segmentation, fuzzy processing, 

connectedness, multi-parametric data fusion.  

 

I. INTRODUCTION 

The purpose of this work is the region partitioning of 

digital volumes using a method based on topological fuzzy 

membership values. This method shows various relevant 

features such as being totally automatic, because it does not 

require any user intervention, and it is adaptive to the actual 

data under analysis. It also proves to be independent from 

parameters and it does not make use of any predefined model. 

Furthermore, it performs data-fusion since it is able to 

integrate more volumes at the same time, in order to gain 

more information. This can be very useful in the field of 

medical image analysis because, for example for Magnetic 

Resonance Imaging, it allows an integrated exploitation of 

T1-weighted and T2-weighted volumes in diagnostic task. 

As it is well known, on the contrary of Computed 

Tomography (CT), in Magnetic Resonance Imaging (MRI), a 

single homogeneous biological tissue is characterized by 

significant variability of the grey level intensities that 

represent a qualitative measure instead than a quantitative 

one. Such features cannot be numerically modeled, as it 

happens with the Hounsfield number of CT modality. At the 

same time, the contrast between various tissues is usually 

very smooth, especially because of the tomographic 

partial-volume effect.  

Due to these aspects, one of the major problems in 

biomedical image processing and a subject of extensive 

research work, is the image segmentation, for a fast 
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identification of regions of interest (ROI), or for the global 

segmentation able to localize all the significant regions of the 

image (or volume). Specifically, the segmentation of MRI 

images and volumes is still an open research point. The final 

aim might be a subsequent processing, such as the extraction 

of measures from regions or the classification of the image or 

its portions thus recognizing a possible pathology.  

Starting from the multi-seed approach proposed in [1] and 

[2], the aim of the proposed method is to develop an 

algorithm using more than one volume to take into account 

different features, for a better location of ROI and to extend 

this approach by using more seed points which are 

automatically selected with the goal of a global processing of 

the volume that gives as a result an unsupervised, automatic 

vectorial segmentation. 

Since the basic algorithm is based on fuzzy membership 

evaluation, intermediate results are exploited for the 

combination of subsequent iterative steps. 

The method starts from a random single seed point and 

ends with the complete segmentation of the image/volume 

automatically identifying other intermediate seed points. 

Each iterative step finds a new significant seed through the 

analysis of the intermediate fuzzy connectivity maps. When 

the stop condition is verified, a map of labels is generated 

from the final Total-Connectedness Map. The final result is 

the segmented volume, together with a list of significant seed 

points. Due to the complete independence from models and 

parameters, the method can also be used in application 

domains different from the medical field. 

 

II. RELATED WORKS  

The first proposed seed-segmentation method was the 

original work of Seeded-region-Growing (SRG) proposed by 

Adams and Bishof [3]. SGR is simple but gives good results, 

even if they are not optimal since dependent on the order of 

analysis, [4]. For this reason, some solutions have been 

suggested [4]-[6]. In all these works the classical 

probabilistic approach has been used and no fuzzy measure 

neither fuzzy processing is applied. The fuzzy framework, if 

used in the seed-growing approach, allows to relax the 

aggregation criterion by measuring the similarity of pixels to 

seed points, in terms of spatial relationship and also in terms 

of intensity similarity, without applying any test, avoiding 

any parameter and threshold setting and taking into account 

the inherent object material heterogeneity and imaging 

device artefacts. 

Some methods of image segmentation, based on fuzzy 

concept are reported in the literature [7]-[9]; in addition to 

fuzzy clustering [9], fuzzy rule-based methods [7], [10]-[12], 

fuzzy thresholding [8], [13]-[15], fuzzy Markov Random 

Fields [16]-[18], and fuzzy region growing [19], [20] have 
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been reported. Fuzzy connectedness can be defined in in 

terms of “intensity connectedness” [21] or  in terms of 

“affinity” [22]. They take into account both feature space 

information and contextual-spatial relationships among 

pixels. (as opposite to fuzzy clustering that does not take into 

account any spatial dependency among pixels). The “relative 

fuzzy connectedness” has been proposed in [23] by Udupa et 

al., explaining how various objects in the image/volume “are 

let to compete among themselves in having spels as their 

members”. In the experiments there proposed, multiple seeds 

were utilized to specify a class of objects and different 

co-objects in the background. A distinction between seeds 

corresponding to the class of interest and the seeds 

corresponding to the background are manually located by the 

user. Only one class at a time is segmented. Another work by 

Udupa is a vectorial image segmentation [24] whose results 

will be compared to the ones achieved by the present method. 

The innovative method proposed in this paper is based on 

the fully automatic seed selection that is driven by 

intermediate connectivity results since this information is 

used to establish the position of new seed point. This 

operation is repeated iteratively until all the volume is 

segmented into meaningful regions. 

Multiple sclerosis (MS) is a common chronic disease that 

predominantly involves the white matter of the central 

nervous system and often causes serious neurological 

disorders [25]. Unfortunately, the poor sensitivity of the 

standard tests currently used, does not permit objective and 

accurate quantification of the disease severity or of its change 

on its own or as a response to drug therapy. Magnetic 

resonance (MR) imaging has proven to be a very sensitive 

marker of the MS disease [26]. In fact macroscopic areas of 

damage or loss of myelin can be imaged with hyper or 

hypointensity with respect to the surrounding tissues.  

The proposed method has been evaluated and compared in 

the application of MS plaques segmentation. 

 

III. PROPOSED METHOD 

This method is divided into five steps described in sections 

from A to 3.5: 

A. Fuzzy χ- Connectedness Map 

The first seed point is here randomly placed, unlike the 

MSMC method [1], where seeds are manually selected by the 

user. Following [2], let V be a generic 3D square lattice, 

where iv ∈V  with i=1...,|V|, is the i-th voxel. The intensity 

map M is a function from V to the scalar domain, representing 

the random field of the grey levels of an original digital 

volume. Given an appropriate rationale number, r, a fuzzy 

map H is derived from M where 
 iv

 =  ir M v such that 

 iv
 is a fuzzy value within the unit real interval [0, 1]. 

Following paper [21], as a preliminary step, when a seed 

point is chosen, named av  the function av from V to the 

scalar fuzzy domain is defined as 

∀ a

i

v

i vv V =1-
   i av v

 
                       

(1) 

which gives a fuzzy value to each voxel according to the 

intensity similarity with the seed voxel. From [1], the 

fuzzy-intensity connectedness (or χ -connectedness) map,  

va
C


, is defined as 

∀ iv V va
C


= (v ,v ) (v ,v )max min (z)a

a i a i

v

P z P 
 
    

(2) 

where  ,a iP v v  is a path, i.e., a connected sequence of 

voxels from av to iv . 

Following the method described in [27] and [21], the 

above connectedness map is generated for the first seed point 

and all the subsequent ones. 

B. χ -Vectorial Computation 

In medical imaging, it is sometimes necessary to evaluate 

multiple images, for example, in MRI the T1 volume and T2 

volume are simultaneously evaluated, in order to establish or 

exclude the presence of a disease. For this reason, in this 

paper a vectorial fuzzy seed segmentation is proposed, unlike 

the method proposed in [2], where the volumes are taken one 

at a time. 

The formulation of the χ field av  previously described in 

equation (1) is unchanged, then for each seed the respective 

av

j , are calculated where av  indicates the seed point, and j 

indicates the number of the volume. 

Given a generic seed position, the two volumes are 

separately processed and the two χ-fields are calculated. 

Subsequently they are integrated, by using the following 

formula, related with the Euclidean norm: 

t =
2 2

1 2                                  (3) 

where 1  is the χ-map derived from the first volume and 2  

is the χ-map of the second volume. 

Therefore, only one connectivity map is derived from one 

seed, having exploited a two-parametric input information 

and the tC


is generated by applying equation (2). 

C. Total Connectedness Map 

Like in paper [2], connectivity information independently 

derived from each generic seed t, and contained in the related 

membership maps tC


, are merged into a single 

“Total-Connectedness Map” through a process of fuzzy 

union:  

1

T

T

t

C C t



                                    

(4) 

D. Minimum Research and New Seed 

A novel automatic method for searching seeds is here 

proposed. The method in paper [2] proposes a random 

selection of a few seeds at each iterative step, followed by a 

procedure devoted to find and remove eventual redundant 

seeds.  

With the aim of simplicity and faster computation, the new 

implemented method avoids redundant seeds thanks to a new 

search mechanism where only one seed point is added at each 

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

76



  

step. 

Given the map of total connectivity, the new approach 

looks for the minimum value ( minC ) and its location (
pv ): 

                                ∀
pv ∈  T PC v  

  
min min ( )T pC C v                        (5) 

Such a step has a two-fold reason. It is able to locate the 

so-called “residual voxels” which are not sufficiently well 

represented by the already selected seeds. 

It also turns useful for the stop condition criterion as 

explained in the following subsection. The coordinates (x, y, 

z) of the minimum voxel from equation (5) are stored as new 

location where to place a seed for the subsequent calculation 

of the new map, which will be merged with the previous ones 

through equation (4). 

E. Stopping Criterion and Labeling 

Since connectivity looks for connected zones, when all 

zones have been segmented as separate regions, the 

connectivity can no longer increase. If we plot the minimum 

value at each processing step we typically obtain a graph 

similar to the one, shown in Fig. 1. 

 

 
Fig. 1. Minimum connectivity value as a function of the seeds number. 

 

When the graph reaches a plateau, it means that the data 

has been completely segmented and the stop condition is 

verified 

One can then proceed with the final labeling, by creating 

the labeling map Λ where each region is associated with a 

different label value. 

In order to evaluate the method performances, MRI brain 

volumes have been considered, addressing the segmentation 

of intracranial brain tissues, i.e., Cerebrospinal Fluid (CSF), 

White Matter (WM) and Gray Matter (GM).  

 

IV. RESULTS  

To make the test results comparable with other works in 

the literature and to achieve a quantitative numerical 

evaluation, we have used the Brainweb [28] dataset, which 

has complete volume phantoms available, that represent the 

correct segmentation result. The used volume size is 

181×217×181 voxels, spatial resolution being 1 mm3. Fig. 2 

shows, as an example, the 100th brain slice of a considered 

volume affected by Multiple Sclerosis (MS) disease. The 

method generates the final-intensity-connectedness-map TC

, derived from the previous ones through the fuzzy union 

process, and, more importantly, the label map Λ. As an 

example, the connectivity map generated from the 

combination of 1  and 2  maps is shown in Fig. 3, as 

dealing with the first seed point placed in a CSF area. 

 

  
(a) (b) 

Fig. 2 (a). Simulated T1-weighted pathological MR image, 100th slice: 0% 

noise. (b) Simulated T2-weighted MR image, 100th slice: 0% noise. 

 

 

  
Fig. 3. χ vectorial.The seed point is in 

red circle. 
Fig. 4. Colored label map for 20 

seed points. 

 

The first research of connectivity minimum is carried on 

this map. Fig. 4 shows the related final label map Λ where 

each label value is associated to a color for visualization 

purpose.  

 

 
Fig. 5. Trend of specificity for WM, GM and CSF. 

 

  
(a) (b) 

Fig. 6. Simulated pathological MR image, 100th slice: 0% noise (a) Label 

map for 20 seeds point; (b) Phantom. 

 

A statistical evaluation of performances is based on the 

computation of parameters such as Accuracy, Sensitivity and 

Specificity [7]. The achieved results are compared to the true 

segmentation provided by the Brainweb phantom, by 
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changing the final seeds number. As shown in Fig. 5 the 

Specificity value grows until about 30-40 seeds point for WM 

and CSF, but it decreases for GM. When this empirical 

evidence is used as a stop condition, a number equal to 20 

seeds is chosen as a good compromise. The final result is 

show in Fig. 6 (left part) as compared with the phantom (right 

part). In Table I the obtained results in terms of sensitivity, 

specificity, accuracy, for 0% RF, 0% noise; 20 seeds are 

reported. 

 
TABLE I: ACCURACY RESULTS FOR PATHOLOGICAL MRI VOLUME, 0% RF, 

0% NOISE; 20 SEEDS 

Class Specificity Sensitivity Accuracy 

WM 98.6874% 97.5388% 98.4684% 

GM 97.8387% 96.9148% 97.4108% 

CSF 99.4296% 98.0334% 98.9489% 

MS 99.9845% 79.7836% 99.9482% 

Overall Accuracy  97.3881% 

 

  
(a) (b) 

Fig. 7 (a). Real axial T1-weighted pathological MR image, 0% noise.(b) 

Color label map for 40 seeds point. 

 

  
(a) (b) 

 
(c) 

Fig. 8 (a). Real axial T1-weighted pathological MR image; (b) Label map of 

MR image; (c) LUT of label map. 

 

A very good specificity, sensitivity and accuracy levels are 

achieved for MS class. In addition to the limited precision of 

the phantom one can notice that very often the segmentation 

error does not rely on the lesion identification but an 

under-segmentation of the single object occurs, so that the 

error is not in the detection of the lesion but in its size 

estimation. This may be less critical if the application goal is 

limited to guide the medical staff toward a quick 

identification of the position of the lesions, leaving to a 

further and deeper step the analysis of original volumes to 

understand the lesion situation.We performed a test on a real 

MR brain image in axial view (Fig. 7) provided by the 

Internet Brain Segmentation Repository (IBSR) [29] where 

the disease has been well recognized. 

 

 
Fig. 9. MIP of multiple sclerosis lesion. 

 

  
Fig. 10 (a). Satellite image; (b) Label map of satellite image. 

 

In Fig. 8 we have a real T1- weighted MR brain image in 

axial view provided by Neuroimaging informatics tools and 

resources clearinghouse (NITRC) [30] and we can observe 

that all the most important regions in the image are correctly 

segmented. 

Finally, we compared our method with another fuzzy 

vectorial method proposed by Udupa [24] and the results are 

shown in Table II. Fig. 9 shows a maximum intensity 

projection (MIP) of multiple sclerosis lesion, as a final result 

of our segmentation.  

 
TABLE II: COMPARISON BETWEEN SPECIFICITY AND SENSITIVITY 

PARAMETERS OBTAINED BY PROPOSED ALGORITHM AND METHOD 

PRESENTED IN [24] FOR VOLUMES WITH 0% RF, 1% NOISE 

 Vectorial proposed Fuzzy vectorial [24] 

Class Spec. Sens. Spec. Sens. 

CSF 99.14 % 98.14 % 93.90% 94.10% 

GM 99.23 % 91.16 % 94.80% 94.80% 

WM 94.80 % 99.83 % 96.80% 96.40% 

 

We have performed a test on a satellite image, shown in 

Fig. 10. 
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V. CONCLUSION 

In conclusion, an automatic unsupervised fuzzy method 

for Magnetic Resonance image segmentation has been 

proposed. More precisely, the aim was a total segmentation 

of digital volumes without user intervention and this was 

performed with different phases that follow each other 

iteratively until the stop condition is verified. So starting 

from an existing method, new image processing steps were 

introduced: the automatic seed points selection, the new 

method for multi-parametric volumes integration, the three 

dimensional extension and a study for the stop condition. 

An extensive evaluation session has been developed as 

dealing with robustness to the randomly selected initial seed, 

to the noise level, and to different case studies. In Section 4 

quantitative performance evaluation of the method has been 

presented with special focus to the segmentation of 

intra-cranial tissues of simulated brain MRI volumes (normal 

and pathological). 

As shown in the previous sections, good results have been 

obtained, comparable or superior to those presented in the 

literature but with some advantages. In fact, the present 

method does not make use of any supervised training phase 

for parameter estimation; no through a-priori information or 

models are used. Because this method is independent on the 

image content and on the image resolution, it works well for 

any kind of images.  

Very interesting developments might be devised, 

addressing for instance, the integration of multi-modal and 

multi-temporal images, as well as their analysis as a support 

for location of changes. 
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