



Abstract—Service Oriented Computing (SOC) is an

emerging distributed computing technology that is set to

replace the existing ways of building software. Dissatisfactory

performance of SOA projects has stimulated the developers to

analyze the SOA worst practices or antipatterns. Our research

aimed at identifying these wrong practices in implementation of

SOA, i.e. antipatterns. In this paper, four antipatterns

SOA==SOAP, using plain WSDL, web service discovery only

through UDDI, and service for an application have been

identified and presented in SOA antipattern template. These

antipatterns are related to the use of SOAP, WSDL, UDDI and

basic service definition, which initially seemed to be correct but

later resulted into reduced performance benefits.

Index Terms—Antipatterns, service, service oriented

computing, SOA.

I. INTRODUCTION

Service Oriented Computing (SOC) is the latest design

paradigm used to implement distributed systems. It

comprises of a set of components as services that can be

invoked and whose interface descriptions are published and

discovered [1]-[3]. The popularity of SOA has motivated

designers to document its applications and implementations.

Many best practices in the form of design patterns have been

defined for SOA. They capture expert knowledge about best

practices in software design, in a form that allows that

knowledge to be reused and applied in the design of many

different types of software. Some of the solutions have stood

the test of time while others have not. These blemishing

design patterns lead to the concept of Antipatterns.
Antipatterns are specific repeated practices that appear

initially to be beneficial but ultimately result in undesirable

consequences Documentation of antipatterns helps the

programmer to be aware of the common wrong practices, and

hence improves the project statistics. There are various

problems in adaptation of SOA, which result into the

dissatisfactory performance of SOA projects. These

problems are to be seriously catered; hence practitioners have

started addressing different bad or worst practices of SOA

implementation in form of antipatterns.

There are several available SOA best practices and design

patterns, which are currently used in the implementation of

SOA based projects [3]-[5]. Antipatterns have been

Manuscript received December 30, 2012; revised July 5, 2013.

Deepali Tripathi is with the Modi Institute of Mgmt and Technology,

Kota, India (e-mail: deepalidt@gmail.com).

Ugrasen Suman, Maya Ingle, and S. K. Tanwani are with School of

Computer Science & IT, Devi Ahilya University, Indore, India.

addressed by practitioners after year’s long experience in the

field. A survey on different antipatterns was performed

exploring various worst practices and the causes of the failure

of SOA projects [6]-[11].

Antipatterns for SOA have already been documented

[12]-[16], but our major concern was on the SOA design

antipatterns. Moreover, they have been described at different

levels of abstraction, which makes them appear independent

and isolated. After studying various SOA implementations,

case studies [17]-[20], News agency Service project of

Signett IT enabled services, Travel Portal project various

antipatterns in SOA Design have been identified.

It has been observed that there are some flaws in

implementation of SOA. Four antipatterns have been

identified in this research work. They concentrate mainly on

SOA design. These are SOA==SOAP, Using Plain WSDL,

Web service discovery only through UDDI and Service for

application. The first antipatterns SOA==SOAP focuses on

ignorance of other parallel approaches to SOA. Second

Antipattern focuses on improper representation of service

using WSDL. Third antipattern recommends the use of REST

services which do not require any service registry to be

discovered and prefers using customized registries. The

fourth antipattern highlights the wrongly implemented

concept of service forgetting the basic service design

principles.

The rest of the paper is organized as follows. Section II of

the paper briefly explains the antipattern template that will be

used to describe the proposed antipatterns. Section III

explains each of these proposed antipatterns along with their

implementation and re-factored solutions. The fourth section

provides future work in this direction of research and the

conclusion of the paper followed by the references used.

II. SOA ANTIPATTERN TEMPLATE

Antipatterns describe a commonly occurring solution to a

problem that generates negative results i.e. seemingly well

but in fact, wrong solutions [21]. There are various problems

in the adaptation of SOA, which result into the failure of

SOA projects. Antipatterns proposed by different

organizations have been fragmented and have been focusing

on the complete SOA life cycle i.e. from the origin of concept

to realization [22-24]. The SOA antipatterns discussed in the

next section utilize the following SOA antipattern template to

document the common dysfunctional practices in the

adaptation of SOA. It specifies the name, root cause, primal

forces, description and the name of the antipattern to which

the current antipattern is similar to. Like design patterns,

antipatterns should also follow a general profile format for

Towards Introducing and Implementation of SOA Design

Antipatterns

Deepali Tripathi, Ugrasen Suman, Maya Ingle, and S. K. Tanwani

International Journal of Computer Theory and Engineering, Vol. 6, No. 1, February 2014

20DOI: 10.7763/IJCTE.2014.V6.829

their representation [9]. Following is the antipattern template

used to describe SOA design antipatterns.
Antipattern Name: The Antipattern name is a unique noun

phrase. The name is used for future reference to the principles

contained in the antipattern. They form the basis for an

organization’s terminology when members discuss and

document software and architectures.
Also Known As: This identifies additional popular or

descriptive names and phrases for this Antipattern.

Root Causes: These are the general causes for the

antipattern. They can be one or more of the following values:
 Haste: Hasty decisions lead to compromises in software

quality. As successive project deadlines are missed,

anything that appears to work is considered acceptable,

regardless of quality.
 Apathy: It refers to not caring about solving known

problems. It is a basic unwillingness to attempt a

solution.
 Narrow-mindedness: It is the refusal to practice solutions

that are otherwise widely known to be effective.

 Sloth: Automatically generated interface stubs and

skeletons make the task of constructing a distributed system

relatively easy.
 Avarice: Architectural avarice means the modeling of

excessive details, which results in excessive complexity

due to insufficient abstraction.
 Ignorance: It is the result of failing to seek understanding.

The problem of ignorance (implementation dependency)

often occurs in the migration of applications to

distributed architectures.
 Pride or responsibility: Often, developers unnecessarily

invent new designs when knowledge from preexisting

systems, products, and standards are readily applied

through architecture mining.
Primal Forces: Forces are concerns or issues that exist

within a decision-making context. The choices include any of

Management of functionality, Management of performance,

Management of complexity, Management of change,

Management of IT resources and Management of technology

transfer.

Re-factored Solutions. This section explains a re-factored

solution that is structured in terms of solution steps.

III. PROPOSED SOA ANTIPATTERNS

Fig. 1. Layered architectures.

Design patterns are proven solutions to a task presented in

a standard format and antipattern are the wrong ways of

doing a task which initially seemed to be correct [24]-[27].

SOA comprises of different architectures as shown in Fig. 1.

Antipatterns may exist in any of the layers shown, but our

research concentrated mainly on the antipatterns related to

SOA design.

In this paper, SOA==SOA, using plain WSDL, web

service discovery only through UDDI and service for an

application are identified as antipatterns and these are

discussed in the following subsections.

A. SOA==SOAP

Practitioners implementing SOA often consider that, the

three standards required for implementing web services are

the Simple Object Access Protocol (SOAP), Web Services

Description Language (WSDL), and Universal Description,

Discovery, and Integration (UDDI). SOAP is an XML-based

protocol to support communication between a Web service,

its clients, and UDDI registry. WSDL is an XML-based

standardized interface definition language used to describe

what a web service can do, where it resides, and how it can be

invoked. UDDI standard is used to publish, discover, and

manage web services in an UDDI registry. A REST

(Representational State Transfer) web service is basically a

simplified model where everything is wrapped around the

HTTP send/receive protocol.
Using services based on SOAP envelop always, may be an

overhead, whereas that same work could be done using

lightweight approach like REST using traditional methods.

The main responsibility of accessing the service in the

SOAP-WSDL process lies on the consumer.

Although core services holding logic should be bind in an

SOAP envelop but simple data handling services , CRUD

operations should be implemented using traditional Http

methods viz. GET, PUT, POST, DELETE i.e. through

RESTful way. REST emphasizes resources with a uniform

interface for addressing them, while SOAP based RPC

emphasizes processes with a uniform interface for invoking

them . With a RPC-based architecture, there is no limit to the

number of processes. For services representing basic CRUD

operations, REST way of implementing services is simpler

and lightweight.
1) Re-factored solution

In the development of Web service based SOA

applications, the designing of services should not be adamant

to a traditional style but other approaches should equally be

used when and where required. SOAP based and REST based

have been compared in the following paragraphs and

depending on the requirement, appropriate method for

implementing services could be selected. Both these

approaches are not the counterparts and can be used together

in the same application.

a) Approach

Let us first discuss these two different approaches of

implementing web services. REST is an architectural style

that prescribes the use of standards such as Http, URL,

Resource representations (XML, HTML, Gif etc.), MIME

Types etc. [11]. The RESTful web service makes available

URL to a resource and it may allow the client to specify the

format of the returned resource i.e. HTML or an XML

International Journal of Computer Theory and Engineering, Vol. 6, No. 1, February 2014

21

document. The service itself may be described using WSDL

or WRDL (Web Resource Description Language) and can be

accessed either as a resource or using JSON (Java Script

Object Notation). RESTful services are stateless; each

request from client to server must contain all necessary

information. All resources are accessed with generic

interface (Http GET, POST, PUT, DELETE). These

resources are named using URI (Uniform Resource

Identifier). The client may progress from one state to another

using interconnected URL representation.

In SOAP method, provider creates and implements a web

service interface on an existing application. He has to create a

XSD (XML Schema Document) and WSDL contract in order

to distribute the web service details to potential consumers.

Consumer obtains WSDL contract for consumption through

UDDI registry. It is the responsibility of the SOAP server to a

parse the SOAP message and determines which method to

invoke. The returned data would not contain any URL, since

a URL that points to a SOAP service is just to the SOAP

server. In REST all decisions are made based upon the URL

and the Http method selected while in SOAP, server receives

all messages, peeks into the SOAP envelop and then

distributes each message to the appropriate application for

processing.

b) Proxy servers

Proxy servers play a major role as web intermediaries for a

web application. In the REST approach, the URL identifies

the resource that is desired. The Http method identifies the

desired operation. The Proxy server decides based upon the

identified resource and the Http method whether or not to

allow the operation. Using XLink (the XML hyperlink

technology) in addition to providing a URL to the target

resource, data about the resource could also be provided

using Xlink:role. The application can dynamically make

decision about what resource is to be accessed next.

In SOAP based approach, proxy server cannot directly

allow or disallow the message since it is unaware of the

desired contents or resources. Either the proxy server should

understand the semantics of each SOAP application that a

client will access, but for that the proxy server will need to be

updated for each new SOAP application.

c) Caching

It refers to the ability to maintain a copy of the desired

resources in order to improve the performance. In the REST

approach, the response of a resource contains an indication in

the Http header of whether the results are cacheable or not. If

it is, cache servers make a local copy, which can be returned

for the same request if repeated. A SOAP message is always

with a POST method, which makes the cache server unaware

of the actual intention of the request type (GET or POST).

Moreover the SOAP URI is always to the SOAP server

which prohibits the cache server again from knowing the

actual resource requested. Hence no caching is possible with

SOAP.

d) Generic Interface

Generic interfaces imply generalized functionality and

hence support scalability whereas application specific or

custom interface interfaces may need some additional

functionality to be called in a generic context. In REST, every

resource has a generic interface namely Http GET, PUT

POST, and DELETE which enable caching and proxy servers

to do their work. Whereas in SOAP, There is no defined

standard set of methods. Any type of methods could be

defined which makes customization on application basis and

reduces scalability.

e) Interoperability

Interoperability means sharing the data amongst multiple

applications. The more interoperable software programs are,

the easier it is for them to exchange information. In REST,

Interoperability is based on standardization. REST relies on

standards of addressing and naming resources (URI),

resource interfaces (GET, POST, PUT etc.), representations

(HTML, XML etc.), and media types (MIME types).

REST and SOAP do not replace each other, each of them

have their uses but when making high performance and client

rich websites REST can provide a significant improvement.

Traditional way of implementing SOA only through SOAP

also leads to other antipatterns. REST style needs no registry

and makes resources directly available hence it also helps in

overcoming the following two antipatterns viz. Discovery of

web service through UDDI and Using plain WSDL to define

service interface.
2) Standard representation

Following the Standard Antipattern Template [14] and

SOA Antipattern Template, the above proposed antipatterns

can be described as follows:

Antipattern Name: SOA==SOAP
Also known as/ similar to: Not Applicable
Root Cause: The common and fundamental reasons for the

problem can be coined as haste, apathy, ignorance.
Primal Forces: These are certain architecture and

development related concerns or issues present in most

decision making context. They greatly affect the design and

development process and in this case it can be management

of functionality and management of technology transfer.

Misuse of these above mentioned forces leads to the

development of this antipattern.

Description: SOAP-WSDL is considered to be the only

way of implementing SOA by companies implementing SOA

for the first time.
Solution: Although SOAP-WSDL is the established way of

SOA implementation through web services but other

alternative ways like REST should be equally considered.

For CRUD applications RESTful services should be

preferred and for application specific services holding core

logic SOAP based services should be preferred.
3) Implementation

Following are few screenshots of their implementation i.e.

SOAP-WSDL based web service in .Net through Visual

Studio 2008 and REST Based web service in java through

Netbeans7.0.1 Fig. 2 represents a structure of SOAP based

service. It shows various methods which are application

specific and need not have a generic structure.

Fig. 3 shows the structure of REST based service. It

reflects certain methods like getJSON() to retrieve java script

object notation form of data, getXML() to retrieve its XML

format.

International Journal of Computer Theory and Engineering, Vol. 6, No. 1, February 2014

22

Fig. 2. Structure of SOAP based service.

Fig. 3. Structure of REST based service.

Through the interface of the REST based web service the

resources are available in the form of URI (Uniform

Resource Identifier) in the returned page. User can access

these web services by simple clicking on the URL shown, the

get XML () or get JSON() methods are called accordingly.

B. Using Plain WSDL

WSDL (Web Service Description Language) is used to

define service interfaces. It describes two different aspects of

a service: its signature (name and parameters) and its binding

and deployment details (protocol and location). WSDL does

not contain full interface of a service, it does not have any

semantic information [28]. A WSDL file does not specify

how to access next desired service, how long a service

usually runs, who is allowed to call it, how much a service

call cost and many other non functional attributes. All these

aspects must usually be known in order to manage a service

in a large SOA landscape. With future WSDL versions this

might change.

1) Re-factored solution

Service Description should be provided in a separate

format and WSDL should be generated from it when

required. WSDL files can be extended internally with

additional XML elements and attributes or externally with

supplementary files [20]. WSDL allows elements

representing a specific technology under various elements

defined by WSDL. These elements are known as

extensibility elements. Extensibility elements allow vendors to

expose their Web Services as EJB’s, Remote Java Objects and

.NET objects without having to write SOAP bindings for them.

Currently, the WSDL specification introduces specific

binding extensions for the SOAP, HTTP GET/POST, MIME

protocols and message formats.
Using the extensibility mechanism a service developer can

describe commonly used services such as EJB, .NET and

Java Objects. The consumer of the service can use the WSDL

and generate the necessary client side stubs to invoke the

endpoints in the native protocol. This approach has a several

advantages. A service can have multiple bindings associated

with it and the consumer of the service will have the choice of

selecting one binding or the other.

a) Implementation
The Fig. 4 below shows the standard WSDL file for a

simple web service in java.

Fig. 4. Standard WSDL representing a service.

In the Fig. 5 code segment the information for locating the

EJB is stored in <ejb:port> section of the WSDL definition

and the information for invoking the EJB is stored in the

<wsdl:binding> section.

Fig. 5. WSDL extensions using WSDL4J.

International Journal of Computer Theory and Engineering, Vol. 6, No. 1, February 2014

23

2) Standard representation

According to SOA Antipattern Template, the above

proposed antipatterns can be described as follows:

Antipattern Name: Using Plain WSDL to define all service

interfaces.
Also known as/ similar to: Not Applicable.
Root Cause: It can be the result of haste, sloth and

ignorance.
Primal Forces: Management of change, management of

complexity and management of technology transfer.

Description: Simple WSDL describes only signature (name

and parameters) and its binding and deployment details

(protocol and location). This does not describe various non

functional attributes like how to access next desired service,

cost of service etc.
Solution: WSDL files can be extended internally with

additional XML elements and attributes or externally with

supplementary files. Certain extensibility mechanisms have

been defined for specific purposes like, those supported by

WSDL4J for ejb’s. Techniques for defining WSDL

extensions have been proposed [12] and are one of the major

research areas in WSDL.

C. Web Service Discovery only through UDDI

In a real SOA enterprise infrastructure with hundreds of

services, it is safe to assume that service endpoints are going

to constantly be subjected to changes in areas such as

location (URL), policy (security, etc) or contract (WSDL,

operations).
In order to address these challenges, the big SOA vendors

(Microsoft, Oracle, IBM etc.) created a standard that with the

purpose of modeling service metadata information that could

be used to enable service discovery capabilities. The standard

was known as Universal Data Discovery and Integration

(UDDI) and, unfortunately, it became the cornerstone of

SOA governance products. UDDI has proven to be an

incredibly ineffective mechanism to enable service

publishing and discovery. The SOA models created with

UDDI are incredibly complex to implement and use. They

end up becoming another bottleneck of SOA.

1) Re-factored solution

While building SOA application, the complexities of

UDDI should be avoided and instead use a simpler

mechanism to facilitate the discovery and query of services.

This can be achieved by implementing a 100% RESTful API

that allows querying the entire service registry using plain

HTTP GETs methods. There is no requirement of centralized

registry. More advantages of REST are discussed in previous

section. User defined or application specific registries can

also be defined like Oracle’s OSR (Oracle service registry),

But these application specific registries are very complex and

far from the reach of a simple programmer.

2) Standard representation

According to SOA Antipattern Template, the above

proposed antipatterns can be described as follows:

Antipattern Name: Discovery of web service through UDDI.
Also known as/ similar to: Not Applicable.
Root Cause: It can be haste, sloth and ignorance.

Primal Forces: Management of performance, management

of IT resources and management of technology transfer.

Description: Since SOA literatures and previous

implementation of the technology, effectively present the

usage of UDDI as the central registry for SOA services, the

new small projects consider it to be an un-detachable

component of SOA. UDDI is incredibly complex and

difficult to implement. Even IBM and Microsoft have refrain

from their UDDI registries. In such case, adhering to UDDI

seems to be right but in fact not the perfect way of service

discovery.

Solution: Customized registries according to the

application should be created. Various other registries using

JNDI (Java Naming and Directory Interface), OSR (Oracle

Service Registry) can also be used in an SOA application.

REST based services should be preferred for data access

services. They are directly accessed through URI’s hence

require no central registry.

D. Service for an Application

In the development phase of the module it has been

observed that the first step in implementation of SOA, if

taken mistakenly can prove to be a useless investment.

Services are supposed to be designed for achieving main

goals of SOA viz. reusability, interoperability, increasing

organizational agility etc. Many IT developers with object

oriented experience implement SOA in the way they started

Object oriented software. Services are designed application

specific. No enterprise level service classification is

involved. Service just become another way of creating an

application, hence, provides no business benefits. Large

numbers of services are designed, leading to another

antipattern: Service Silos.

1) Refactored solution

Proper training and education of basic SOA goals and

principles should be given to the involved members before

the actual work begins on the project.
The service design should also follow basic SOA design

principles [12]:
1) Standardized Service Contract: Services in the same

inventory should follow same design contract.
2) Service Loose Coupling: Services should be loosely

coupled with customer requirements and their own

surrounding environments.
3) Service Abstraction: Service contract should contain

only the essential generic information.
4) Service Reusability: Services should have reusable

enterprise logic.
5) Service Autonomy: Services should be autonomous i.e.

their runtime environment should be under their control.

6) Service Statelessness: State information should not be

maintained with service itself.

7) Service Discoverability: Services should be effectively

discovered and interpreted through suitable mechanisms.

2) Standard representation

According to SOA Antipattern Template, the above

proposed antipatterns can be described as follows:

Antipattern Name: Service for an Application.
Also known as/ similar to: Not Applicable.
Root Cause: It can be haste, apathy, sloth and ignorance.

Primal Forces: Management of functionality, management of

change, management of complexity and management of

International Journal of Computer Theory and Engineering, Vol. 6, No. 1, February 2014

24

technology transfer.

Description: Services are built for use within an application

forgetting the basic service design principles.
Solution: The services should be classified as intra

application and inter application. Inter application services

should be designed for interoperability. Application specific

services if required should be at the lowest level and callable

only by the generic services providing interface to the service

consumer. Services at lowest level should further be properly

identified as entity services, task services and utility services

[15]. Services should essentially follow basic design

principles for a successful SOA implementation.

IV. CONCLUSION AND FUTURE WORK

It has been observed that amongst the large number of

addressed SOA antipatterns, failures are mainly due to

limited number of interrelated antipatterns focusing mainly

on the SOA design [29]. Four antipatterns SOA==SOAP,

Discovery of web service through UDDI, Using Plain WSDL

to define all service interfaces, Service for an application

were identified and represented. The above conclusions and

derivations were based on the case studies and SOA

implementation, using both, SOAP based and REST based

services. In this paper we mainly emphasized SOA design

antipatterns. Some of the domain areas such as request

change, data handling have been left unexplored and few

more antipatterns can be identified. A framework for

building SOA applications could also be developed which

would integrate various features necessary for SOA

implementations.

REFERENCES

[1] L. Srinivasan, “An overview of Service Oriented Architecture, Web

Services and Grid Computing,” HP (Hewlett Packard) White Paper,

November 2006.
[2] Y. Zhao, “Service Oriented Infrastructure Framework,” IEEE

Congress on Services, 2008.
[3] M. P. Papazoglou and P. Traverso, “Service-Oriented Computing:

State of the Art and Research Challenges,” IEEE Computer Society,

November 2007.

[4] S. Chatterjee, “An Introductory Overview of Web Services,” CSI

Journal, pp. 6-12, March 2007.

[5] D. Jana, “Service Oriented Architecture-A new Paradigm,” CSI

Journal, pp. 12-15, March 2006.

[6] T. Erl, SOA: Principles, Concepts and Techniques, 1st ed. Prentice

Hall, 2009.

[7] A. Kontogogos and P. Ageriou, “An overview of Software Engineering

approaches to Service Oriented Architectures in various fields,” in

Proc. 18th IEEE International Workshop on Enabling Technologies,

2009.
[8] D. Tripathi, “Development Trends and Evolution of SOA,” in Proc.

Emerging Trends in Mechanical, Electronics and Computer

Engineering, April 2010, pp. 139-143.
[9] J. Evdemon, “Principles of Service Design: Service Patterns and

Antipatterns,” Microsoft Corporation, Architecture Strategy, August

2005.
[10] T. Erl, SOA: Design Patterns, 1st ed. Prentice Hall, 2009.

[11] G. Farrow, SOA Antipatterns, IBM White paper, June 2009.

[12] T. Erl, SOA: Principles of Service Design, 1st ed. Prentice Hall, 2009.

[13] SOA Antipatterns: How not to do service Oriented Architecture, Oracle

White Paper in Enterprise Architecture, January 2010.
[14] J. Kral and M. Zemlicka, “Popular SOA Antipatterns,” Computation

World: Future Computing, Service Computation, Cognitive Content,

Patterns, 2008.

[15] R. T. Fielding, “Architectural styles and the design of network-based

software architectures,” Ph.D. dissertation, University of California,

2000.

[16] D. Tripathi, U. Suman, and M. Ingle, “A systematic review of

Antipatterns in SOA,” in Proc. Computing Business Application and

Legal Issues (ICCBALI'11), Ghaziabad, March 2011, pp. 2-7.
[17] M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte, P. Krogdahl, M.

Luo, and T. Newling, “Patterns: Service Oriented Architecture and

Web Services,” IBM Redbook, April 2004.
[18] J. Chung and M. Zhu, “Evaluating a Service-Oriented Travel Portal,” in

Proc. Fifth IEEE International Symposium on Service Oriented System

Engineering, 2010.

[19] Web Services. [Online]. Available:

http://www.java.sun.com/techArticles/WebServices/soa3/loanprocess.

htm

[20] C. Satish, “Barriers of SOC,” in Proc. the Second Workshop on

Introducing Service-Oriented Computing WISOC, 2007.
[21] S. Moosavi and M. Seyyadi, “A method for Service Oriented Design,”

presented at 6th International Conference on IT, New Generations,

2009.
[22] N. Milanovic, “Service Engineering Design Patterns,” presented at 2nd

International Symposium on Service Oriented Systems Engineering

SOSE, 2006.
[23] Reference Service-Oriented architecture model 1.0. Commission

Specification 1. (August 2, 2006). [Online]. Available:

http://www.oasisopen.org/committees/download.php/19679/soa-rm-cs

.pdf

[24] C. Smith and L. G. Williams, “Software Performance Antipatterns,”

presented at 2nd International Workshop on Software Engineering and

Research, 2008.
[25] SOA Pattens. [Online]. Available: http://www.SoaPatterns.org

[26] S. Chatterjee, “A Introductory overview of Web Services,” CSI journal

vol. 29, issue. 9, pp. 6-12, March 2007.
[27] J. Fronckowiak, “SOA Best practices and design patterns,” White

paper, March 2008

[28] S. Punita and C. Babu, “Performance prediction model for service

oriented applications,” in Proc. 10th International Conference on

HPC and Communications, 2008.
[29] C. Dai, “A flexible extension of WSDL to describe nonfunctional

attributes,” IEEE, 2010.
[30] W. J. Brown and R. Malveau, Antipatterns: Refactoring Software,

Architectures and Projects in Crisis, 2nd ed. John Wiley, 1998.

Deepali Tripathi was born in Kota, Raj, India. After

finishing her masters in Mathematics from MDS

University Ajmer. She completed her MCA from

Rajasthan Vidyapeeth Udaipur. She did her M.Tech

(Computer Science) from Devi Ahilya University,

Indore.

She has more than twelve years of teaching experience

in College education. She is currently an associate

professor at MIMT, Kota Rajasthan. She has published 4 International

papers, 7 National papers and 2 Books on programming.

 Ms Tripathi is a member of IEEE, ISTD and CSI. She is also a member of

review committees and editorial board of few journals.

Ugrasen Suman has received his master degree in

Computer Applications from Rani Durgawati University

Jabalpur and Ph.D. degree in Computer Science from

Devi Ahilya University Indore, India. He is presently an

associate professor at School of Computer Science &

Information Technology, Devi Ahilya University,

Indore. He is having more than 11 years teaching and

research experience. His areas of research are Software

Engineering, Knowledge Management & Mining, Databases & Information

Retrieval, Programming Paradigms and Service Oriented Computing. He has

guided One Ph.D. scholar, Four PG research scholars and more than 45 PG

projects. Currently he is guiding Eight PhD scholars and Three PG projects.

He has published more than 50 research papers. He is also working on a

UGC-SAP research project of Data Mining and Software Engineering. He is

a member of ACM-SIGSE, senior member of IACSIT. He is a

reviewer/referee of computer science journals/ conferences in various

publications.

International Journal of Computer Theory and Engineering, Vol. 6, No. 1, February 2014

25

