



Abstract—The possibility to face pattern recognition

problems directly on structured domains (e.g., multimedia data,

strings, graphs) is fundamental to the effective solution of many

interesting applications. In this paper, we deal with a clustering

problem defined in the string domain, focusing on the problem

of cluster representation in data domains where only a

dissimilarity measure can be fixed. To this aim, we adopt the

MinSOD (Minimum Sum of Distances) cluster representation

technique, which defines the representative as the element of

the cluster minimizing the sum of dissimilarities from all the

other elements in the considered set. Since the precise

computation of the MinSOD have a high computational cost, we

propose a suboptimal procedure consisting in computing the

representative of the cluster considering only a reduced pool of

samples, instead of the whole set of objects in the cluster. We

have carried out some tests in order to ascertain the sensitivity

of the clustering procedure with respect to the number of

samples in the pool used to compute the MinSOD. Results show

a good robustness of the proposed procedure. The

implementations are available as part of the SPARE library,

which is available as an open source project.

Index Terms—Clustering strings, MinSOD representative,

software library.

I. INTRODUCTION

The recent research on Pattern Recognition and Inductive

Modeling has defined effective systems able to deal with the

Rn vector space. However, many interesting applications,

coming for instance from computational biology, multimedia

intelligent processing and computer vision, deal with

structured patterns, such as, images, audio and video

sequences, strings and labeled graphs [1], [2]. Usually, in

order to take advantage of the existing data driven modeling

systems, each pattern of a structured domain X is reduced to a

set of real valued features by adopting a preprocessing

function, tailored on the specific application. The design of

this preprocessing procedure needs a deep expertise and it is

a critical task, since useful information for the task at hand

could be loss due to an excessive information compression.

As a consequence, it is useful to design Pattern Recognition

systems able to deal directly with structured domains.

Consequently, it is fundamental the availability of effective

models able to represent a set of samples belonging to X [3].

The abstraction of a cluster of objects by a representative

model is useful for two main reasons. The first reason deals

Manuscript received July 10, 2013; revised September 15, 2013.

The authors are with Department of Information Engineering, Electronics

and Telecommunications, SAPIENZA University of Rome, Via Eudossiana

18, 00184 Rome, Italy (e-mail: delvescovo, livi@diet.uniroma1.it,

antonello.rizzi@uniroma1.it, mascioli@infocom.uniroma1.it).

with computational issues. For example, comparing a

particular pattern with the cluster representative instead of

each single element in the cluster, of course results in a

remarkable speed up. The second reason deals with the

ability of a learning system to create abstract knowledge, a

fundamental feature of the cerebral cortex in biological

brains. The human ability to synthesize concepts describing a

family of objects plays a key role in human reasoning.

Many ways are known for representing a cluster of

samples in Rn considered as a metric space where, for

instance, it is possible to define an Euclidean distance

measure. In this case it is easy to define a way to represent a

cluster, for example by the mean vector (centroid). As a

consequence the sample to cluster distance can be

conveniently defined as the Euclidean distance between the

sample and the cluster centroid. Where necessary is it

possible to adopt a more descriptive representative of a

cluster by using second order statistical moments such as the

covariance matrix and adopting the Mahalanobis distance for

measuring sample to cluster dissimilarities. Other examples

of representatives include hyperboxes, rough sets, etc. [3].

When dealing with data domains different from Rn, like

structured data domain as strings and graphs, or multimedia

data, using obvious and efficient ways of representing a

cluster is not always possible. The element in the cluster that

minimizes the Sum Of Distances (SOD) between itself and

the other elements is a natural candidate for representing the

cluster where more powerful abstraction techniques are not

available [4]-[6]. The determination of the SOD-minimizing

element can be seen as a meta-algorithm, since it only refers

to the definition of a dissimilarity measure between samples.

For this reason, the availability of a reliable and efficient

implementation of this meta-algorithm is interesting, since it

immediately allows the application of a number of Pattern

Recognition and Machine Learning algorithms in a vast

range of data domains. In fact, each inference algorithm

relying on the availability of a cluster modeling method can

be applied using the SOD-minimizing element as the cluster

representative.

In this paper, we propose a suboptimal procedure for

computing the MinSOD representative of the cluster,

considering only a reduced pool of samples. We evaluate the

algorithm in the framework of clustering of strings, by

analyzing a suited performance measure. All

implementations are available as part of the SPARE C++

library, which is briefly introduced in the next section.

II. THE SPARE LIBRARY: A BRIEF OVERVIEW

SPARE – Something for PAttern REcognition – is a C++

Guido Del Vescovo, Lorenzo Livi, Fabio Massimo Frattale Mascioli, and Antonello Rizzi

On the Problem of Modeling Structured Data with the

MinSOD Representative

International Journal of Computer Theory and Engineering, Vol. 6, No. 1, February 2014

9DOI: 10.7763/IJCTE.2014.V6.827

library conceived as the core of a software framework for

rapid development of Pattern Recognition and

Computational Intelligence applications. SPARE is based on

concept-driven template meta-programming technique,

aiming to provide basic classes and procedures for rapid

application development when dealing with clustering

algorithms, inductive modeling systems (classification and

function approximation) and optimization problems by

neural networks, fuzzy logic and evolutionary computation.

The set of concepts and classes have been thought in order to

capture the essence of some basic algorithms, and reflects the

fact that even the most complex data driven modeling system

can be conceived and redesigned as an organized ensemble of

small code blocks, each of them implementing specific

functionalities with a standard interface. Designing a library

with concepts in mind allows creating a set of classes that are

not relegated to a fixed hierarchy. Concepts are non-invasive

design choice. The meta-algorithms implemented in SPARE

can be easily used to build Pattern Recognition applications

dealing with customizable data spaces, without any necessity

to represent objects in the real valued vector space. SPARE is

an open source software library, released under the GNU

GPL 3.0 license. The main site of the project is located at

http://libspare.org/, where you can obtain a version of the

SPARE library, as well as all the available documentation and

tutorials.

III. THE K-MEANS CLUSTERING PROCEDURE AS A

META-ALGORITHM

In the present paper, the well-known k-means algorithm

[7] is employed in a version retaining the original clustering

procedure, but not strictly referring to the Rn Euclidean space

environment providing the support domain in which the

k-means is usually presented and described. The support

domain is seen as a general data space, in which some

facilities like dissimilarity measures and cluster abstraction

methods are defined. In this sense we talk about the k-means

as a meta-algorithm.

A. Clustering Structured Data by K-Means

First, the clustering problem definition in the Euclidean

space is briefly recalled. Given a finite input set X={x1, ...,

xn}, where xi  Rn, i=1, ..., n, a clustering problem consists in

finding a partition P={C1, ..., Ck} of this set in a number

k ≤ n of clusters, with k
i iCX 1 and  ji CC ,

jiji  ,, so as to minimize the within-cluster sum of

squares (WCSS)

  
 

k

i Cx
ij

P
ij

x
1

2

minarg  (1)

where i is the mean vector of the i-th cluster Ci. This

number k is called the order of the clustering and can be

defined a priori or identified at runtime by the algorithm

itself. The well known k-means algorithm [2] takes the

number of clusters as an argument. It is a two-phase iterative

heuristic algorithm that is based on the assignment of each

input pattern xi to the cluster with the closest mean i . After

the assignment phase follows the update of the means of each

cluster for a maximum number of predefined steps.

In order to define clustering algorithms not necessarily

dealing with the Euclidean space domain, we observe some

general (meta) elements which play a fundamental role in the

clustering process. Each cluster is modeled by a

representative, i.e. an element not necessarily belonging to

the problem data space, able to characterize the set of patterns

in the cluster. The other important concept is the dissimilarity

measure used to compute the distance between patterns and

representatives. It is easy to understand that these two

definitions of representative of a cluster and the

sample-to-cluster dissimilarity strictly depend on the domain

of the problem. For example, if X=G, where G is a set of

graphs, the problem of deriving a representative graph is

known as the set median graph computation [1], [5], [6].

Abstracting the input domain, it is possible to define a

generic k-means algorithm that uses a generic representative

object, configured with a generic dissimilarity measure

defined between patterns and representatives. That is, it is

possible to abstract the algorithm itself obtaining a

meta-algorithm that will work on many different problems

but preserving the main behavior. The same generalization

could be applied virtually to any Pattern Recognition

problem, such as the ones of classification and function

approximation.

In Algorithm III.1 it is shown the pseudo-code of the

generic k-means algorithm over a generic set X, configured

with a set of representatives objects k ,...,1 defined with a

dissimilarity function


 oRXXd : .

Algorithm III.1 Generic k-means

Input: A generic finite input set X={x1,…,xn}, the order k of the

clustering, a dissimilarity function


 oRXXd : , the cluster

representatives  k ,...,1 , MAX number of allowed iterations.

Output: A partition P={C1,…,Ck}.

1: Initialize every representative i, i=1,…,k

2: t=0, P

3: loop

4: t+=1

5: Assignment Step: assign each sample xj to the cluster with the

closest representative

6:
     kjijj

t

i xdxdxC  ,,:{  for all h=1,…,k}

7: Update Step: update the representatives

8:
    kiCR i

t

i 


1,
1



9: Update the partition with the modified clusters: Pt={C1,…,Ck}

10: if
1


tt

PPMAXt then

11: return Pt

12: end if

13: end loop

International Journal of Computer Theory and Engineering, Vol. 6, No. 1, February 2014

10

The pseudo-code of the Algorithm III.1 shows that the

dissimilarity evaluations between a sample xj and a cluster Ci

can be done matching the sample with the representative of

this cluster, namely i , using the dissimilarity function d(·,·)

(line 6), defined over the generic set X. The update of each

representative is carried out by a generic operator  R (line

8), able to derive the representative of the modified cluster Ci.

At each step t is induced a new partition Pt (line 9) since the

stop condition is reached (line 10).

B. The Levenshtein Distance and the MinSOD

Representative

Given a generic finite input set X={x1, ..., xn} of objects,

the definition of the representative of this set vary

considering different domains. For example, if
n

RX  the

representative is simply the mean or centroid, that is, a vector

 i ix
n

x
1*

,
n

Rx 
*

 that can be outside the set X. This

problem can be generalized to any set of objects where it is

possible to define a dissimilarity measure d(·,·) considering

this new formulation

 



j

ij

i

xxd
Xx

x ,minarg
*

 (2)

That is, the set mean in this case is taken as the element of

the set X that minimizes the sum of the distances between the

element itself and the other elements in the set. For brevity,

we call this element MinSOD. To obtain the MinSOD we

need to execute a quadratic number of distance calculations.

That is, the total complexity depends on the complexity of

d(·,·). If we consider graphs, the distance between pairs of

samples could be obtained with the well known Graph Edit

Distance (GED) [8]-[10]. The computation of the (exact)

GED is known to be in NP, and then the whole complexity is

also in NP.

If X=, where  is the set of strings defined on a finite

alphabet , the distances could be obtained with a quadratic

algorithm using the Levenshtein edit distance [11], and the

whole complexity become of the order O(n4). If X is a large

set, the evaluation of the distance between every objects of X

become prohibitive and some approximation mechanism

must be taken into account.

In SPARE the MinSOD determination is achieved through

a specific class, named MinSod, which models the

Representative concept. The object performs an important

computational speed up by only determining the MinSOD

representative inside a reduced pool of samples, instead of

the whole set of the samples inserted in the cluster so far. The

reduced pool of samples is called the cache and its size is a

relevant user-defined parameter. In order to work with a

reduced set of samples, a replacement policy has to be

defined to discard some samples from the pool as new

samples are inserted in the set. The aim of this paper is to

show that the adopted replacement policy allows a well

behaved tracking of the MinSOD representative with a high

automation degree, thanks to the low sensitivity to the cache

size value. This statement is supported here by a test where

the performance is evaluated on the basis of a quality

parameter defined on a particular Pattern Recognition

problem. The replacement policy of the elements adopted by

the (default) MinSod class is simple and proved to assure

uniform coverage of the input set. Each new element is

inserted since the defined cache size is reached. Then, for

each new sample an old one must be discarded. The old

sample to discard is chosen as follows: two samples are

chosen with uniform probability, and the one farthest away

from the actual MinSOD representative is discarded.

Preliminary tests made during the development of the class

suggested that discarding deterministically the globally

farthest sample from the representative can lead to poor

tracking of the optimal representative due to undesired

phenomena. In Algorithm III.2 is shown the pseudo-code of

the behavior of the MinSod class of SPARE. It is worth to

stress however that different MinSOD implementations are

available in SPARE, providing additional and diverse

functionalities.

Algorithm III.2 MinSOD Determination and Updating

Input: A generic finite input set X={x1,…,xn}, the size M of the

cache C, a dissimilarity function


 oRXXd :

Output: The MinSOD determination Xxˆ

1: C

2: for all Xxi  do

3: if |C|<M then

4:  ixCC 

5: else

6: Select two elements, namely 1 e 2 from C with uniform

probability

7: if    xdxd ˆ,ˆ, 21   then

8: C=C \ {1}

9: else

10: C=C \ {2}

11: end if

12:  ixCC 

13: end if

14:)(ˆ CMinSODx 

15: end for

IV. EXPERIMENTS

The aim of the presented tests is to show that the cache size

parameter of the MinSOD implementation in the SPARE

library is not critical, that is, its determination (under

reasonable assumptions) does not affect critically the

performance of the considered Pattern Recognition task. We

will support this claim over a clustering problem defined over

a synthetically-generated domain of strings (sequences of

characters), considering two tests with different

International Journal of Computer Theory and Engineering, Vol. 6, No. 1, February 2014

11

configurations and difficulties.

A. Problem Definition and Synthetic Datasets

Firstly, we need to describe how we generate the set of

strings . This set is generated using a stochastic procedure

based on Markov Chains [12], [13]. If ||=n, the Markov

generation process is entirely described by its transition

matrix T, that is, if we are generating strings of length l, the

first symbol is chosen with uniform probability on , the

next symbol is chosen with conditional probability p(s2|s1),

that is with a probability that depends only on the last

selected symbol. A time-homogeneous Markov chain is

characterized by the fact that the transition matrix does not

change over time. The synthetic dataset used for our tests

were generated using a time-homogeneous Markov chain.

Let’s consider to have two distinct stationary Markov

chains that we see as classes of strings. Our clustering

problem is then defined as a two cluster problem (k=2),

where each cluster is labeled with one of the two Markov

chains, and the objective is to group strings that comes from

the same class, that is, are generated from the same Markov

chain. This is an unsupervised learning task, where the

distance between the strings is obtained with the Levenshtein

distance.

Once the partition is obtained, a quality index which

assumes values in [0.5, 1] (since we considered k=2) is

evaluated for each cluster. The quality index takes into

account the purity of the cluster in terms of the known class

labels. It is defined by the number of samples belonging to

the majority class in the cluster, divided by the total

cardinality of the cluster. An index value of one indicates a

cluster composed by samples of the same class only. An

index value of 0.5 indicates a cluster which contains half of

the samples from one class, half from the other. The overall

quality index is taken as the worst quality index over all

clusters. We will show the results obtained over two similar

tests, with the second dataset representing a more difficult

clustering problem with respect to the first one. We will

observe how, and if, the cache size of the MinSOD will affect

the performance measure.

All tests are carried out over an Intel(R) Core(TM)2 Quad

CPU Q6600 @ 2.40GHz with 4 Gb of RAM.

B. Results

In the first, easier, test we generate 5000 strings per class,

for a total of 10000 strings. The strings are built considering

an alphabet of size three, i.e., ||=3, and are characterized by

a variable-length varying between 18 and 22 symbols. The

two 33 transition matrices which we used to generate the

two classes of strings are defined as follows:
















1.08.01.0

1.01.08.0

8.01.01.0

1T















1.01.08.0

8.01.01.0

1.08.01.0

2T

The cache size is decremented starting from a value of 50

going down to 1, with a decrement step of 1. For each size of

the cache, the same test is carried out with five different

random seeds. The results for the quality index are eventually

taken as the average over these runs. The worst and better

case scenario is also considered. The results of this test are

shown in Fig. 1. It is possible to observe a clear breakdown at

a cache size of dimension 5. For higher values the results are

very stable and nearly optimal. Table I reports a detailed

sampling of the plot shown in Fig. 1.

Fig. 1. Results for the first test (easy problem).

TABLE I: SAMPLING AND DETAILS OF FIG. 1.

Cache

Size

Average Min Max 

5 0.6646 0.5730 0.7220 0.33190

10 0.9954 0.9866 0.9986 0.00140

15 0.9964 0.9930 0.9994 0.00077

20 0.9974 0.9962 0.9986 0.00111

25 0.9959 0.9952 0.9970 0.00102

30 0.9963 0.9954 0.9970 0.00080

35 0.9964 0.9954 0.9978 0.00077

40 0.9964 0.9946 0.9978 0.00078

45 0.9962 0.9954 0.9978 0.00083

50 0.9966 0.9956 0.9978 0.00076

The second test is carried out again considering 5000

strings per class. The string are now generated by using an

alphabet of size four, ||=4, and considering a variable length

between 28 and 32 symbols each. We have considered the

two following 44 transition matrices, T1 and T2, defined

as:



















7.01.01.01.0

1.01.07.01.0

1.01.01.07.0

1.07.01.01.0

1T



















1.01.01.07.0

7.01.01.01.0

1.07.01.01.0

1.01.07.01.0

2T

Fig. 2. Results for the second test.

The cache size of MinSOD varies as usual from 50 to 1,

with a decrement step of 1; the same considerations about the

International Journal of Computer Theory and Engineering, Vol. 6, No. 1, February 2014

12

random seed initialization hold also in this case. The results

for this second test are shown in Fig. 2. In this case, since the

problem is more difficult, it is possible to observe a non

optimal behavior for a cache size less or equal to 10. In Table

II we report the details of Fig. 2.

TABLE II: SAMPLING AND DETAILS OF FIG. 2.

Cache

Size

Average Min Max 

5 0.7345 0.6774 0.8590 0.06708

10 0.8656 0.8144 0.9050 0.03051

15 0.8728 0.8524 0.9050 0.01795

20 0.8879 0.8744 0.9178 0.01602

25 0.8900 0.8780 0.9074 0.01126

30 0.8992 0.8780 0.9376 0.02230

35 0.9037 0.8756 0.9300 0.01917

40 0.9180 0.9030 0.9320 0.01143

45 0.9064 0.8994 0.9300 0.01185

50 0.9086 0.9000 0.9246 0.01068

The performance tests which have been carried out show a

good stability of the behavior of the MinSOD algorithm with

respect to the cache size variations. In fact, until a very low

critical threshold for the cache size is reached, the size is

quite irrelevant to on the final modeling result. A very good

stability is observed with respect to the random variations in

the sequence of discarded samples, which is due to the

stochastic nature of the replacement algorithm. This stability

is observed along the whole interval of the valid settings of

the cache size, while strong variations only arise in the region

where the cache size is too low to guarantee a correct tracking

of the (suboptimal) representative.

V. CONCLUSIONS

In this paper, we have described a cost effective procedure

for the computation of the MinSOD representative in the

setting of clustering string data. Tests show that this

algorithm is sufficiently robust with respect to the cache size,

since for a wide range of values the established performance

measure defined for the faced clustering problem is stable

and of reasonable quality. It is important to remark that the

MinSOD representative can be adopted in virtually every

input data domain, as long as it is possible to define a

dissimilarity measure on that domain. Tests have been carried

out by means of the SPARE C++ library, which is available

as an open source project.

ACKNOWLEDGMENT

The work was supported by the Lazio Region with the

funds dedicated to the "Polo per la Mobilità Sostenibile"

(Research Center for Sustainable Mobility).

REFERENCES

[1] L. Livi and A. Rizzi, “The graph matching problem,” Pattern Analysis

and Applications, Springer, 2012.

[2] R. Marfil, F. Escolano, and A. Bandera. “Graph-Based Representations

in Pattern Recognition and Computational Intelligence,” in

Bio-Inspired Systems: Computational and Ambient Intelligence, J.

Cabestany, F. Sandoval, A. Prieto, and J. Corchado, Eds. Springer

Berlin Heidelberg, 2009, vol. 5517, pp. 399-406.

[3] S. Theodoridis and K. Koutroumbas, Pattern recognition,

Elsevier/Academic Press, 2006.

[4] X. Jiang, A. Müunger, and H. Bunke, “On median graphs: Properties,

algorithms, and applications,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 23, pp. 1144–1151, October 2001.

[5] M. Ferrer, E. Valveny, F. Serratosa, K. Riesen, and H. Bunke,

“Generalized median graph computation by means of graph embedding

in vector spaces,” Pattern Recogn., vol. 43, pp. 1642–1655, April 2010.

[6] I. Bardaji, M. Ferrer, and A. Sanfeliu, “A comparison between two

representatives of a set of graphs: median vs. barycenter graph,” in

Proc. the 2010 joint IAPR international conf. on Structural, syntactic,

and statistical pattern recognition,ser. SSPR &SPR’10, Berlin ,

Heidelberg: Springer-Verlag, 2010, pp. 149–158.

[7] J. B. Macqueen, “Some methods of classification and analysis of

multivariate observations,” in Proc. the Fifth Berkeley Symposium on

Mathematical Statistics and Probability, 1967, pp. 281–297.

[8] H. Bunke and G. Allermann, “Inexact graph matching for structural

pattern recognition,” Pattern Recognition Letters, vol. 1, no. 4, pp.

245–253, 1983.

[9] K. Riesen and H. Bunke, “Approximate graph edit distance

computation by means of bipartite graph matching,” Image Vision

Comput., vol. 27, pp. 950–959, June 2009.

[10] M. Neuhaus and H. Bunke, “A quadratic programming approach to the

graph edit distance problem,” in GbRPR, ser. Lecture Notes in

Computer Science, F. Escolano and M. Vento, Eds. Springer, 2007,

vol. 4538, pp. 92–102.

[11] V. I. Levenshtein, “Binary codes capable of correcting deletions,

insertions, and reversals,” Tech. Rep. vol. 8, 1966.

[12] L. Livi, G. Del Vescovo, and A. Rizzi, “Graph recognition by seriation

and frequent substructures mining,” in Proc. the First International

Conf. on Pattern Recognition Applications and Methods, vol. 1, pp.

186-191, Feb. 2012.

[13] L. Livi, G. D. Vescovo, and A. Rizzi. “Combining Graph Seriation and

Substructures Mining for Graph Recognition,” in Pattern Recognition -

Applications and Methods, Advances in Intelligent and Soft Computing,

P. L. Carmona, J. S. Sanchez, and A. L. Fred, Eds. Springer Berlin

Heidelberg, 2013, vol. 204, pp. 79-91.

Guido Del Vescovo is a post doctoral research associate

at the Information Electronics and Communications

Department (DIET) of the University of Rome "La

Sapienza" since 2008. He received the Laurea degree in

Electronics Engineering in 2004 and his Ph.D. in

Information and Communication Engineering in 2008

from the University of Rome "La Sapienza". His major

fields of interest include supervised and unsupervised

data driven modelling techniques, neural networks, fuzzy systems,

evolutionary algorithms and granular computing. He is a developer of the

SPARE library (http://libspare.org), an open source C++ project for pattern

recognition and machine learning.

Lorenzo Livi is a computer scientist with bachelor and

master degrees got from Computer Science Department

at SAPIENZA University of Rome in 2007 and 2010.

Currently, he is a final year Ph.D. student of the

Department of Information Engineering, Electronics,

and Telecommunications (DIET) at the same

University. He has also an appointment as research

assistant at Ryerson University, Toronto, with Prof.

Alireza Sadeghian.

During his studies, he has also worked in the ICT industry. Lorenzo's main

research interests are focused on pattern recognition, soft computing, and

parallel computing, mostly considering problems involving the analysis of

the so-called non-geometric spaces.

Fabio Massimo Frattale Mascioli was born in Rome,

Italy on June 13, 1963. He received the Laurea degree

in Electronic Engineering in 1989 and the Ph.D. degree

in Information and Communication Engineering in

1995 from the University "La Sapienza" of Rome. In

1996, he joined the DIET Department (ex INFOCOM)

of the University "La Sapienza” of Rome as an

assistant professor (researcher). Since 2000, he has

been an associate professor of Circuit Theory at the

International Journal of Computer Theory and Engineering, Vol. 6, No. 1, February 2014

13

same department. His research interest mainly regards neural networks and

neuro-fuzzy systems and their applications to clustering, classification and

function approximation problems. Currently, he is also working on circuit

modeling for vibration damping, energy conversion systems, electric and

hybrid vehicles, energy-mobility integrated systems. He is the author or

co-author of more than eighty papers presented at international conferences

or published in international scientific literature. Since 2007, he is the

scientific director of the "Polo per la Mobilità Sostenibile della Regione

Lazio" (Sustainable Mobility Pole of Lazio Region).

Antonello Rizzi received the Dr. Eng. degree in

Electronic Engineering from the University of Rome

"La Sapienza" in 1995 and the Ph.D. in Information

and Communication Engineering in 2000, from the

same University. In September 2000, he joined the

"Information and Communication" Department

(INFO-COM Dpt.) of the University of Rome "La

Sapienza" as an assistant professor. Since July 2010, he

joined the Department of "Information, Electronics and

Telecommunications Engineering" Department of the same University.

His major fields of interest are in the area of soft computing, pattern

recognition and computational intelligence, including supervised and

unsupervised data driven modeling techniques, neural networks, fuzzy

systems and evolutionary algorithms. His research activity concerns the

design of automatic modeling systems, with particular emphasis on

classification, clustering, function approximation and prediction problems.

In particular, he is currently working on classification and clustering systems

for structured patterns, graph matching, symbolic inductive modeling

systems, Granular Computing and Knowledge Discovery systems.

 Since 2008, he serves as the scientific and technical coordinator of the

R&D activities in the Intelligent Systems Laboratory within the Sustainable

Mobility Pole of Lazio Region. He is author of more than 90 international

publications.

International Journal of Computer Theory and Engineering, Vol. 6, No. 1, February 2014

14

