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Abstract—The possibility to face pattern recognition 

problems directly on structured domains (e.g., multimedia data, 

strings, graphs) is fundamental to the effective solution of many 

interesting applications. In this paper, we deal with a clustering 

problem defined in the string domain, focusing on the problem 

of cluster representation in data domains where only a 

dissimilarity measure can be fixed. To this aim, we adopt the 

MinSOD (Minimum Sum of Distances) cluster representation 

technique, which defines the representative as the element of 

the cluster minimizing the sum of dissimilarities from all the 

other elements in the considered set. Since the precise 

computation of the MinSOD have a high computational cost, we 

propose a suboptimal procedure consisting in computing the 

representative of the cluster considering only a reduced pool of 

samples, instead of the whole set of objects in the cluster. We 

have carried out some tests in order to ascertain the sensitivity 

of the clustering procedure with respect to the number of 

samples in the pool used to compute the MinSOD. Results show 

a good robustness of the proposed procedure. The 

implementations are available as part of the SPARE library, 

which is available as an open source project. 

 
Index Terms—Clustering strings, MinSOD representative, 

software library. 

 

I. INTRODUCTION 

The recent research on Pattern Recognition and Inductive 

Modeling has defined effective systems able to deal with the 

Rn vector space. However, many interesting applications, 

coming for instance from computational biology, multimedia 

intelligent processing and computer vision, deal with 

structured patterns, such as, images, audio and video 

sequences, strings and labeled graphs [1], [2]. Usually, in 

order to take advantage of the existing data driven modeling 

systems, each pattern of a structured domain X is reduced to a 

set of real valued features by adopting a preprocessing 

function, tailored on the specific application. The design of 

this preprocessing procedure needs a deep expertise and it is 

a critical task, since useful information for the task at hand 

could be loss due to an excessive information compression. 

As a consequence, it is useful to design Pattern Recognition 

systems able to deal directly with structured domains. 

Consequently, it is fundamental the availability of effective 

models able to represent a set of samples belonging to X [3]. 

The abstraction of a cluster of objects by a representative 

model is useful for two main reasons. The first reason deals 
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with computational issues. For example, comparing a 

particular pattern with the cluster representative instead of 

each single element in the cluster, of course results in a 

remarkable speed up. The second reason deals with the 

ability of a learning system to create abstract knowledge, a 

fundamental feature of the cerebral cortex in biological 

brains. The human ability to synthesize concepts describing a 

family of objects plays a key role in human reasoning. 

Many ways are known for representing a cluster of 

samples in Rn considered as a metric space where, for 

instance, it is possible to define an Euclidean distance 

measure. In this case it is easy to define a way to represent a 

cluster, for example by the mean vector (centroid). As a 

consequence the sample to cluster distance can be 

conveniently defined as the Euclidean distance between the 

sample and the cluster centroid. Where necessary is it 

possible to adopt a more descriptive representative of a 

cluster by using second order statistical moments such as the 

covariance matrix and adopting the Mahalanobis distance for 

measuring sample to cluster dissimilarities. Other examples 

of representatives include hyperboxes, rough sets, etc. [3]. 

When dealing with data domains different from Rn, like 

structured data domain as strings and graphs, or multimedia 

data, using obvious and efficient ways of representing a 

cluster is not always possible. The element in the cluster that 

minimizes the Sum Of Distances (SOD) between itself and 

the other elements is a natural candidate for representing the 

cluster where more powerful abstraction techniques are not 

available [4]-[6]. The determination of the SOD-minimizing 

element can be seen as a meta-algorithm, since it only refers 

to the definition of a dissimilarity measure between samples. 

For this reason, the availability of a reliable and efficient 

implementation of this meta-algorithm is interesting, since it 

immediately allows the application of a number of Pattern 

Recognition and Machine Learning algorithms in a vast 

range of data domains. In fact, each inference algorithm 

relying on the availability of a cluster modeling method can 

be applied using the SOD-minimizing element as the cluster 

representative. 

In this paper, we propose a suboptimal procedure for 

computing the MinSOD representative of the cluster, 

considering only a reduced pool of samples. We evaluate the 

algorithm in the framework of clustering of strings, by 

analyzing a suited performance measure. All 

implementations are available as part of the SPARE C++ 

library, which is briefly introduced in the next section. 

 

II. THE SPARE LIBRARY: A BRIEF OVERVIEW 

SPARE – Something for PAttern REcognition – is a C++ 
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library conceived as the core of a software framework for 

rapid development of Pattern Recognition and 

Computational Intelligence applications. SPARE is based on 

concept-driven template meta-programming technique, 

aiming to provide basic classes and procedures for rapid 

application development when dealing with clustering 

algorithms, inductive modeling systems (classification and 

function approximation) and optimization problems by 

neural networks, fuzzy logic and evolutionary computation. 

The set of concepts and classes have been thought in order to 

capture the essence of some basic algorithms, and reflects the 

fact that even the most complex data driven modeling system 

can be conceived and redesigned as an organized ensemble of 

small code blocks, each of them implementing specific 

functionalities with a standard interface. Designing a library 

with concepts in mind allows creating a set of classes that are 

not relegated to a fixed hierarchy. Concepts are non-invasive 

design choice. The meta-algorithms implemented in SPARE 

can be easily used to build Pattern Recognition applications 

dealing with customizable data spaces, without any necessity 

to represent objects in the real valued vector space. SPARE is 

an open source software library, released under the GNU 

GPL 3.0 license. The main site of the project is located at 

http://libspare.org/, where you can obtain a version of the 

SPARE library, as well as all the available documentation and 

tutorials. 

 

III. THE K-MEANS CLUSTERING PROCEDURE AS A 

META-ALGORITHM 

In the present paper, the well-known k-means algorithm 

[7] is employed in a version retaining the original clustering 

procedure, but not strictly referring to the Rn Euclidean space 

environment providing the support domain in which the 

k-means is usually presented and described. The support 

domain is seen as a general data space, in which some 

facilities like dissimilarity measures and cluster abstraction 

methods are defined. In this sense we talk about the k-means 

as a meta-algorithm. 

A. Clustering Structured Data by K-Means 

First, the clustering problem definition in the Euclidean 

space is briefly recalled. Given a finite input set X={x1, ..., 

xn}, where xi   Rn, i=1, ..., n, a clustering problem consists in 

finding a partition P={C1, ..., Ck} of this set in a number  

k ≤ n of clusters, with k
i iCX 1 and  ji CC , 

jiji  ,, so as to minimize the within-cluster sum of 

squares (WCSS) 

  
 

k

i Cx
ij

P
ij

x
1

2

minarg                          (1) 

where i  is the mean vector of the i-th cluster Ci. This 

number k is called the order of the clustering and can be 

defined a priori or identified at runtime by the algorithm 

itself. The well known k-means algorithm [2] takes the 

number of clusters as an argument. It is a two-phase iterative 

heuristic algorithm that is based on the assignment of each 

input pattern xi to the cluster with the closest mean i . After 

the assignment phase follows the update of the means of each 

cluster for a maximum number of predefined steps.  

In order to define clustering algorithms not necessarily 

dealing with the Euclidean space domain, we observe some 

general (meta) elements which play a fundamental role in the 

clustering process. Each cluster is modeled by a 

representative, i.e. an element not necessarily belonging to 

the problem data space, able to characterize the set of patterns 

in the cluster. The other important concept is the dissimilarity 

measure used to compute the distance between patterns and 

representatives. It is easy to understand that these two 

definitions of representative of a cluster and the 

sample-to-cluster dissimilarity strictly depend on the domain 

of the problem. For example, if X=G, where G is a set of 

graphs, the problem of deriving a representative graph is 

known as the set median graph computation [1], [5], [6].  

Abstracting the input domain, it is possible to define a 

generic k-means algorithm that uses a generic representative 

object, configured with a generic dissimilarity measure 

defined between patterns and representatives. That is, it is 

possible to abstract the algorithm itself obtaining a 

meta-algorithm that will work on many different problems 

but preserving the main behavior. The same generalization 

could be applied virtually to any Pattern Recognition 

problem, such as the ones of classification and function 

approximation. 

In Algorithm III.1 it is shown the pseudo-code of the 

generic k-means algorithm over a generic set X, configured 

with a set of representatives objects k ,...,1 defined with a 

dissimilarity function


 oRXXd : . 

 

Algorithm III.1 Generic k-means 

Input: A generic finite input set X={x1,…,xn}, the order k of the 

clustering, a dissimilarity function 


 oRXXd : , the cluster 

representatives  k ,...,1 , MAX number of allowed iterations. 

Output: A partition P={C1,…,Ck}. 

1: Initialize every representative i, i=1,…,k 

2: t=0, P  

3: loop 

4: t+=1 

5: Assignment Step: assign each sample xj  to the cluster with the 

closest representative 

6: 
     kjijj

t

i xdxdxC  ,,:{   for all h=1,…,k} 

7: Update Step: update the representatives 

8: 
    kiCR i

t

i 


1,
1

  

9: Update the partition with the modified clusters: Pt={C1,…,Ck} 

10: if 
1


tt

PPMAXt then 

11: return Pt 

12: end if 

13: end loop 
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The pseudo-code of the Algorithm III.1 shows that the 

dissimilarity evaluations between a sample xj and a cluster Ci 

can be done matching the sample with the representative of 

this cluster, namely i , using the dissimilarity function d(·,·) 

(line 6), defined over the generic set X. The update of each 

representative is carried out by a generic operator  R  (line 

8), able to derive the representative of the modified cluster Ci. 

At each step t is induced a new partition Pt (line 9) since the 

stop condition is reached (line 10). 

B. The Levenshtein Distance and the MinSOD 

Representative 

Given a generic finite input set X={x1, ..., xn} of objects, 

the definition of the representative of this set vary 

considering different domains. For example, if 
n

RX   the 

representative is simply the mean or centroid, that is, a vector 

 i ix
n

x
1*

,
n

Rx 
*

 that can be outside the set X. This 

problem can be generalized to any set of objects where it is 

possible to define a dissimilarity measure d(·,·) considering 

this new formulation 

 



j

ij

i

xxd
Xx

x ,minarg
*

                       (2) 

That is, the set mean in this case is taken as the element of 

the set X that minimizes the sum of the distances between the 

element itself and the other elements in the set. For brevity, 

we call this element MinSOD. To obtain the MinSOD we 

need to execute a quadratic number of distance calculations. 

That is, the total complexity depends on the complexity of 

d(·,·). If we consider graphs, the distance between pairs of 

samples could be obtained with the well known Graph Edit 

Distance (GED) [8]-[10]. The computation of the (exact) 

GED is known to be in NP, and then the whole complexity is 

also in NP. 

If X=, where  is the set of strings defined on a finite 

alphabet , the distances could be obtained with a quadratic 

algorithm using the Levenshtein edit distance [11], and the 

whole complexity become of the order O(n4). If X is a large 

set, the evaluation of the distance between every objects of X 

become prohibitive and some approximation mechanism 

must be taken into account. 

In SPARE the MinSOD determination is achieved through 

a specific class, named MinSod, which models the 

Representative concept. The object performs an important 

computational speed up by only determining the MinSOD 

representative inside a reduced pool of samples, instead of 

the whole set of the samples inserted in the cluster so far. The 

reduced pool of samples is called the cache and its size is a 

relevant user-defined parameter. In order to work with a 

reduced set of samples, a replacement policy has to be 

defined to discard some samples from the pool as new 

samples are inserted in the set. The aim of this paper is to 

show that the adopted replacement policy allows a well 

behaved tracking of the MinSOD representative with a high 

automation degree, thanks to the low sensitivity to the cache 

size value. This statement is supported here by a test where 

the performance is evaluated on the basis of a quality 

parameter defined on a particular Pattern Recognition 

problem. The replacement policy of the elements adopted by 

the (default) MinSod class is simple and proved to assure 

uniform coverage of the input set. Each new element is 

inserted since the defined cache size is reached. Then, for 

each new sample an old one must be discarded. The old 

sample to discard is chosen as follows: two samples are 

chosen with uniform probability, and the one farthest away 

from the actual MinSOD representative is discarded. 

Preliminary tests made during the development of the class 

suggested that discarding deterministically the globally 

farthest sample from the representative can lead to poor 

tracking of the optimal representative due to undesired 

phenomena. In Algorithm III.2 is shown the pseudo-code of 

the behavior of the MinSod class of SPARE. It is worth to 

stress however that different MinSOD implementations are 

available in SPARE, providing additional and diverse 

functionalities. 

 

Algorithm III.2 MinSOD Determination and Updating 

Input: A generic finite input set X={x1,…,xn}, the size M of the 

cache C, a dissimilarity function 


 oRXXd :  

Output: The MinSOD determination Xxˆ  

1: C  

2: for all Xxi  do 

3: if |C|<M then 

4:  ixCC   

5: else 

6: Select two elements, namely 1 e 2 from C with uniform 

probability 

7: if    xdxd ˆ,ˆ, 21   then 

8: C=C \ {1} 

9: else 

10: C=C \ {2} 

11: end if 

12:  ixCC   

13: end if 

14: )(ˆ CMinSODx   

15: end for 

 

IV. EXPERIMENTS 

The aim of the presented tests is to show that the cache size 

parameter of the MinSOD implementation in the SPARE 

library is not critical, that is, its determination (under 

reasonable assumptions) does not affect critically the 

performance of the considered Pattern Recognition task. We 

will support this claim over a clustering problem defined over 

a synthetically-generated domain of strings (sequences of 

characters), considering two tests with different 
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configurations and difficulties. 

A. Problem Definition and Synthetic Datasets 

Firstly, we need to describe how we generate the set of 

strings . This set is generated using a stochastic procedure 

based on Markov Chains [12], [13]. If ||=n, the Markov 

generation process is entirely described by its transition 

matrix T, that is, if we are generating strings of length l, the 

first symbol is chosen with uniform probability on , the 

next symbol is chosen with conditional probability p(s2|s1), 

that is with a probability that depends only on the last 

selected symbol. A time-homogeneous Markov chain is 

characterized by the fact that the transition matrix does not 

change over time. The synthetic dataset used for our tests 

were generated using a time-homogeneous Markov chain. 

Let’s consider to have two distinct stationary Markov 

chains that we see as classes of strings. Our clustering 

problem is then defined as a two cluster problem (k=2), 

where each cluster is labeled with one of the two Markov 

chains, and the objective is to group strings that comes from 

the same class, that is, are generated from the same Markov 

chain. This is an unsupervised learning task, where the 

distance between the strings is obtained with the Levenshtein 

distance. 

Once the partition is obtained, a quality index which 

assumes values in [0.5, 1] (since we considered k=2) is 

evaluated for each cluster. The quality index takes into 

account the purity of the cluster in terms of the known class 

labels. It is defined by the number of samples belonging to 

the majority class in the cluster, divided by the total 

cardinality of the cluster. An index value of one indicates a 

cluster composed by samples of the same class only. An 

index value of 0.5 indicates a cluster which contains half of 

the samples from one class, half from the other. The overall 

quality index is taken as the worst quality index over all 

clusters. We will show the results obtained over two similar 

tests, with the second dataset representing a more difficult 

clustering problem with respect to the first one. We will 

observe how, and if, the cache size of the MinSOD will affect 

the performance measure.  

All tests are carried out over an Intel(R) Core(TM)2 Quad 

CPU Q6600  @ 2.40GHz with 4 Gb of RAM. 

B. Results 

In the first, easier, test we generate 5000 strings per class, 

for a total of 10000 strings. The strings are built considering 

an alphabet of size three, i.e., ||=3, and are characterized by 

a variable-length varying between 18 and 22 symbols. The 

two 33 transition matrices which we used to generate the 

two classes of strings are defined as follows: 

 
















1.08.01.0

1.01.08.0

8.01.01.0

1T  















1.01.08.0

8.01.01.0

1.08.01.0

2T  

 

The cache size is decremented starting from a value of 50 

going down to 1, with a decrement step of 1. For each size of 

the cache, the same test is carried out with five different 

random seeds. The results for the quality index are eventually 

taken as the average over these runs. The worst and better 

case scenario is also considered. The results of this test are 

shown in Fig. 1. It is possible to observe a clear breakdown at 

a cache size of dimension 5. For higher values the results are 

very stable and nearly optimal. Table I reports a detailed 

sampling of the plot shown in Fig. 1.  

 

 
Fig. 1. Results for the first test (easy problem). 

 
TABLE I: SAMPLING AND DETAILS OF FIG. 1. 

Cache 

Size 

Average Min Max 

5 0.6646 0.5730 0.7220 0.33190 

10 0.9954 0.9866 0.9986 0.00140 

15 0.9964 0.9930 0.9994 0.00077 

20 0.9974 0.9962 0.9986 0.00111 

25 0.9959 0.9952 0.9970 0.00102 

30 0.9963 0.9954 0.9970 0.00080 

35 0.9964 0.9954 0.9978 0.00077 

40 0.9964 0.9946 0.9978 0.00078 

45 0.9962 0.9954 0.9978 0.00083 

50 0.9966 0.9956 0.9978 0.00076 

 

The second test is carried out again considering 5000 

strings per class. The string are now generated by using an 

alphabet of size four, ||=4, and considering a variable length 

between 28 and 32 symbols each. We have considered the 

two following 44  transition matrices, T1 and T2, defined 

as: 

 



















7.01.01.01.0

1.01.07.01.0

1.01.01.07.0

1.07.01.01.0

1T



















1.01.01.07.0

7.01.01.01.0

1.07.01.01.0

1.01.07.01.0

2T  

 

 
Fig. 2. Results for the second test. 

 

The cache size of MinSOD varies as usual from 50 to 1, 

with a decrement step of 1; the same considerations about the 
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random seed initialization hold also in this case. The results 

for this second test are shown in Fig. 2. In this case, since the 

problem is more difficult, it is possible to observe a non 

optimal behavior for a cache size less or equal to 10. In Table 

II we report the details of Fig. 2. 

 
TABLE II: SAMPLING AND DETAILS OF FIG. 2. 

Cache 

Size 

Average Min Max 

5 0.7345 0.6774 0.8590 0.06708 

10 0.8656 0.8144 0.9050 0.03051 

15 0.8728 0.8524 0.9050 0.01795 

20 0.8879 0.8744 0.9178 0.01602 

25 0.8900 0.8780 0.9074 0.01126 

30 0.8992 0.8780 0.9376 0.02230 

35 0.9037 0.8756 0.9300 0.01917 

40 0.9180 0.9030 0.9320 0.01143 

45 0.9064 0.8994 0.9300 0.01185 

50 0.9086 0.9000 0.9246 0.01068 

 

The performance tests which have been carried out show a 

good stability of the behavior of the MinSOD algorithm with 

respect to the cache size variations. In fact, until a very low 

critical threshold for the cache size is reached, the size is 

quite irrelevant to on the final modeling result. A very good 

stability is observed with respect to the random variations in 

the sequence of discarded samples, which is due to the 

stochastic nature of the replacement algorithm. This stability 

is observed along the whole interval of the valid settings of 

the cache size, while strong variations only arise in the region 

where the cache size is too low to guarantee a correct tracking 

of the (suboptimal) representative. 

 

V. CONCLUSIONS 

In this paper, we have described a cost effective procedure 

for the computation of the MinSOD representative in the 

setting of clustering string data. Tests show that this 

algorithm is sufficiently robust with respect to the cache size, 

since for a wide range of values the established performance 

measure defined for the faced clustering problem is stable 

and of reasonable quality. It is important to remark that the 

MinSOD representative can be adopted in virtually every 

input data domain, as long as it is possible to define a 

dissimilarity measure on that domain. Tests have been carried 

out by means of the SPARE C++ library, which is available 

as an open source project. 
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