



Abstract—Modern embedded control systems require new

techniques to fulfill the rapid increase in control requirements

and constraints. Multiprocessor systems have been proposed as

a promising solution for modern digital control systems.

Embedded control systems need to meet hard real-time

deadlines, while conducting additional tasks like tuning of

control parameters or executing a fault-tolerance algorithm. In

this paper, a novel low-cost custom FPGA-based quad-core

multiprocessor system-on-chip (MPSoC) architecture prototype

is introduced to enhance the performance of legacy digital PID

controllers. Due to its inherent parallelism, the PID controller

can be mapped directly to the proposed architecture which is

built-up using four soft-core microprocessors. The digital PID

algorithm is restructured to fit to the introduced system. The

main contribution of this paper is a throughput-oriented

high-performance low-cost digital PID controller. Results

showed remarkable reductions in the execution time of the

control loop of the introduced parallel PID controller.

Index Terms—Embedded control systems, multiprocessors,

PID control, SoC.

I. INTRODUCTION

Recently, Field-Programmable Gate Arrays (FPGAs) have

become an alternative solution for the realization of digital

control systems, which were previously dominated by general

purpose microprocessor systems [1]. Modern SoC

(System-on-Chip) designs show a clear trend towards the

integration of multiple processor cores. Furthermore, most of

the current embedded applications are migrating from single

processor-based systems to multiprocessor systems [2]. Such

multiprocessor systems are exploited by inherently parallel

algorithms leading to improvements in data throughput at

reduced clock speeds. In this paper, a custom quad-core

homogenous MPSoC system is introduced to enhance the

performance of legacy digital PID controllers. The introduced

architecture is based on a small-sized soft-core

microcontroller, the PicoBlaze microcontroller. The

proposed architecture is benchmarked to review its abilities to

execute parallel algorithms. The legacy sequential digital PID

control algorithm is restructured to form a new parallel PID

algorithm that is executed as parallel as possible on the

proposed architecture. The restructured algorithm is directly

mapped to the new multiprocessor architecture. The main

contribution of this paper is a novel real parallel PID

controller. As we will show during the next sections, the

controller is designed to for high-performance and it is

Manuscript received February 21, 2013; revised April 25, 2013.

The authors are with Faculty of Engineering, Minia University, Egypt

(e-mail: hassan_youness@eng.miniauniv.edu.eg, eng.mk@mu.edu.eg,

m.moness@mu.edu.eg).

throughput-oriented.

The rest of this paper is organized as follows. In the next

section, we review related work. Section III provides

information on the inherent parallelism of the legacy digital

PID control algorithm. Section IV describes the hardware

architecture of the proposed quad-core MPSoC platform.

Section V describes the restructured parallel PID algorithm.

Further performance improvement is introduced in Section VI.

Section VII shows how the parallel PID algorithm is

simulated and tested. Finally, conclusions and future work are

presented in Section VIII.

II. RELATED WORK

Embedded digital controllers have quantifiable

requirements, such as energy consumption, performance

(hard real-time computation), and implementation costs.

Therefore, the implementation of a controller based on an

embedded device differs from a controller based on a general

purpose computing platform, where those factors are not

implicit.

The use of reconfigurable hardware for digital control

applications, not only as prototyping platform but as final

target architecture, has been reported since the early 90’s.

However, it is only until recently that researchers have started

to show a greater interest in this technology, because of higher

computational demands of digital control systems, and the

fast evolution undergone by FPGAs in the last decades [3].

Many control applications are implemented directly within

FPGAs rather than using a microcontroller within the FPGA.

Performance in an FPGA is more flexible. For example, an

algorithm can be implemented sequentially or completely in

parallel, depending on the performance requirements. A

completely parallel implementation is faster but consumes

more FPGA resources. Microcontrollers and FPGAs can

successfully implement any digital logic function. However,

each has unique advantages in cost, performance, and ease of

use. On the other side, microcontrollers are well suited to

control applications, especially with widely changing

requirements [4].

In this section, we present a discussion of related work on

how reconfigurable computing can be used for control

applications with the focus on FPGA technology. Monmasson

et al. [5] reviewed the state of the art of FPGA design

methodologies with a focus on industrial control system

applications. Nakamura, T. et al. [6] proposed a PID-based

controller of an electro static levitation system. The controller

is implemented within an FPGA using soft-core

microprocessor and PID software. Hu Yue-li et al. [7]

proposed a novel quad-core master-slave architecture for

Quad-Core MPSoC Architecture for PID-Based

Embedded Control Systems

Hassan A. Youness, Mahmoud Khaled, and Mohamed Moness

International Journal of Computer Theory and Engineering, Vol. 5, No. 6, December 2013

914DOI: 10.7763/IJCTE.2013.V5.822

computer vision systems. The four cores are linked to a shared

bus/memory system. Using this system to implement the

proposed parallel PID algorithm will face the problem of

larger area cost and communication overhead. Hence, we use

a simpler direct communication between the four cores. We

will also use small soft-cores to minimize the cost and area.

Ben Othman et al. [8] proposed new dual-core architecture

for control applications. They aimed at designing a full speed

real-time motor control drive algorithms for FPGA based

MPSoC. However they split different control loops and tasks

over different cores, we propose a generic parallel PID

controller where the algorithm is restructured to run in a

parallel form. [1], [9]-[11] proposed different FPGA-based

digital PID controllers. They are implemented directly on

FPGAs using LUTs (Look-Up-Tables). Such design would be

perfect for standard control applications without any

requirements changes. Joao Lima et al. [12] proposed mixed

FPGA and microcontroller design where the PID is

implemented directly within the FPGA logic and a

microcontroller is used for parameter tuning.

Rather than using a single microcontroller, we propose a

quad-core system running a parallel PID algorithm to enhance

the performance and to keep the benefits of using a

microcontroller within an FPGA.

III. THE LEGACY PID ALGORITHM

The proportional, integral, derivative, or more popularly,

the PID, is probably one of the most popular controllers in use

today [13]. Equation (1) describes the basic operation of the

digital PID controller:

() () () ()p i dU k K E k K I k K D k   (1)

The system is represented in a sampled-data form. E

(K) ,the input to the controller and the K
th

 sample of the error

signal. The output of the controller is called control command,

U (K). I (K) represents the integral the K
th

 error sample while

D (K) represents the derivative of the same error sample. Kp,

Ki and Kd are the proportional, integral and derivative

controller parameters. Fig.1 describes the structure of the

digital PID controller.

Fig. 1. Structure of the digital PID controller.

The three branches of the system are distributed

calculations. The first branch is computed by simply

multiplying the error sample with the Kp parameter. The

second and third branches take more time to execute as they

need to compute the integral and derivative of the error

sample. The digital PID control algorithm is usually

implemented with a sequential algorithm. Fig.2 describes the

operations of the sequential digital PID control algorithm.

The sequential PID controller is inherently a parallel

algorithm but it is executed sequentially. The three major

tasks within the controller are the calculation of P, I and D

parts. These tasks are independent and ready to be executed

simultaneously.

Fig. 2. Operations within the sequential PID algorithm.

IV. THE PROPOSED MPSOC ARCHITECTURE

Before restructuring the sequential digital PID control

algorithm, a customized MPSoC architecture is proposed to

handle the new parallel algorithm. Fig. 3 shows the top-design

of the proposed MPSoC architecture. It consists of two main

components: The Enhanced Picoblaze Microcontroller (EPM)

and The Quad-Port Memories.

Fig. 3. Top level design of inner MPSoC system.

EPMs are the main building blocks of the system and will

be described in the next subsection. The system contains two

types of QP (Quad-Port) memories; a QP-RAM for data

exchange between the four cores and a QP-ROM for the

shared program memory. Each core is assigned a unique 2-bit

HWID (Hardware Identifier) which is used to execute the

appropriate task. Master-core manages the system work-flow

and synchronize slave-cores' tasks and may execute additional

task like parameter tuning. Three slave-cores calculate the

three parts of the PID algorithm concurrently and save their

results in the shared QP-RAM. Master-core should collect

calculations results and computes the controller output.

A. The Enhanced PicoBlaze Microcontroller

Digital controllers may be implemented on dedicated

microcontrollers. Programming control sequences in software

is often easier than creating similar structures in hardware, but

microcontrollers are typically limited by performance. Each

instruction executes sequentially. As an application increases

in complexity, the number of instructions required to

implement the application grows and system performance

decreases accordingly [4]. By contrast, performance in an

FPGA is more flexible. For example, an algorithm can be

International Journal of Computer Theory and Engineering, Vol. 5, No. 6, December 2013

915

implemented sequentially or completely in parallel,

depending on the performance requirements. A completely

parallel implementation is faster but consumes more FPGA

resources. A microcontroller embedded within an FPGA

provides the best of both worlds. The microcontroller

implements non-timing crucial complex control functions

while timing critical or data path functions are best

implemented using FPGA logic.

Fig. 4 shows the main building component of the system,

the EPM. It is shown in its simplest form, a single input port

and a single output port while the used version incorporates

many input/output ports. Xilinx PicoBlaze, a soft-core

microcontroller [4], has been enhanced by adding input

multiplexing logic for input port extension, output decoding

logic for output port extension and fast four-stage pipelined

FPU (Floating-Point Unit) [14] to enable floating-point

operations. The selection of such small microcontroller is due

to the fact that it was designed for efficiency, low deployment

cost and power conservation. Even with such resource

efficiency, it performs a respectable 44 to 100 million

instructions per second (MIPS) depending on the target

FPGA family and speed grade. The connected FPU is

modified to only perform the following basic floating-point

operations: Addition, Subtraction and Multiplication.

Fig. 4. The enhanced PicoBlaze.

B. Quad-Port Memories

Based on Xilinx application note on how to create

quad-port memories using existing dual-port memories [15],

we propose a quad-port RAM and a quad-port program ROM.

The quad-port RAM is used for data exchange and for

communications within the system using predefined memory

map that is known to all cores. Instead of using a separate

ROM for each core of the system, a single shared quad-port

ROM is used by all cores. The application embedded within

the ROM is designed to be executed by all cores, each with a

different behavior, using the predefined HWIDs.

C. Quad-Port Memories

All pieces are connected together to form this custom

MPSoC Parallel Digital PID (PDPID) controller. Fig. 5

shows the complete PDPID controller architecture. The

developed MPSoC is used within the PDPID controller.

The input, E (k), is distributed to all cores. This allows each

core to read the error sample and accomplish its defined task.

As the system manager, the master-core allows new samples

of error-signal to pass, collects data stored in shared RAM

and calculates the control signal U (K). The system was

designed to only allow the master-core to handle output of the

PDPID controller. Although this design limits future

fault-tolerant benefits, design requirements were to enhance

the control performance and to save hardware space and

power. Table I describes FPGA resources that are used for

different stages of system development.

Fig. 5. Top level design of the PDPID controller.

TABLE I: FPGA RESOURCE USAGE

Resources PicoBlaze EPM PDPID

Slices 96 1630 6511

Slice FFs (Flip Flops) 76 603 2572

4-Input LUTs 181 3134 12465

BRAMs 0 1 2

In order to gain a clear picture of benefits of duplicating

microcontroller cores within the system, the system is

benchmarked. Benchmarking of systems that employ small

microcontrollers is limited by their resources. Therefore, no

heavy benchmarking applications could be executed on the

system. Thanks to Křivka’s work to develop a C-Compiler for

the PicoBlaze [16], we created several applications to

benchmark the system. The compiler is based on SDCC

(Small Device C-Compiler) and it is called PBCC (PicoBlaze

C-Compiler). Enhancements are made to the PBCC to extend

its functionality to generate parallel applications that can run

efficiently on the proposed MPSoC architecture. Applications

are written in C language and compiled twice to run on both

the single-core PicoBlaze microcontroller and the MPSoC

architecture. Fig. 6 describes a complete development suite

used to generate applications to run on the proposed

architecture.

Fig. 6. Software development flow for the proposed architecture.

The development suite consists of: 1) Xilinx PicoBlaze

Assembler (KCPSM3), 2) Zbyněk Křivka’s PBCC, 3)

Libraries to handle the EPM ports, QP-RAM access and IO

operations and finally 4) Library to manage Task

Synchronization between the four cores. Software developer

will not schedule tasks by hand. The header file

International Journal of Computer Theory and Engineering, Vol. 5, No. 6, December 2013

916

“MainStamp_coreSync.h” will do the job. The developer will

only have to place the code each task within each function of

the four functions: Core0_Task() to Core3_Task(). Table II

and Table III show the results obtained from running different

benchmarking applications on both the single-core PicoBlaze

(EPM) system and the quad-core PicoBlaze (QCPB) system.

The first table describes the tests applied where the second

table shows the results of each one. For each test, the number

of arithmetic and floating-point operations (A/F Opr.) is

shown. Then, for each test, the execution time in terms of

clock cycles (Cyc.) and in terms of number of instructions

(Ins.) is shown. The last two columns emphasize the reduction

ratio (RR) when QCPB is compared with the EPM and the

ROM usage (RU) in percentage.

TABLE II: APPLIED BENCHMARKING TESTS

Category ID Test

ALU

1 12-elements 8-Bit integer Array Add.

2 12-elements 8-Bit integer Array Mul.

3 12-elements 8-Bit integer Array Div.

4 12-elements 16-Bit integer Array Add.

5 12-elements 16-Bit integer Array Mul.

6 12-elements 16-Bit integer Array Div.

RAM

7 16-Byte RAM data transfer

8 32-Byte RAM data transfer

9 64-Byte RAM data transfer

FPU
10

32-Bit (floating point) 2x2 Matrix

element-by-element Add./Sub./Mul./Div.

11 Two 4D 32-Bit float vector product

TABLE III: RESULTS OF APPLIED BENCHMARKING TESTS

ID
A/F

Opr.

EPM QCPB RR

[%]
RU

Ins. Cyc. Ins. Cyc.

1 12/0 203 406 55 110 73.0% 17%

2 48/0 980 1690 247 494 74.4% 23%

3 72/0 1156 2312 295 590 74.4% 23%

4 24/0 281 562 71 124 74.3% 28%

5 84/0 1932 3864 493 986 74.4% 34%

6 144/0 3025 6050 760 1520 74.8% 39%

7 0/0 1612 3224 398 796 75.3% 25%

8 0/0 3070 6140 762 1524 75.1% 25%

9 0/0 5982 11964 1490 2980 75.0% 25%

10 0/4 1244 2488 311 622 75.1% 87%

11 0/7 2177 8708 1249 2498 71.3% 97%

Four conclusions are extracted from the previous results: 1)

the system can greatly enhance the performance of

parallel-ready algorithms, 2) FPU operations consume ROM

heavily due to the code overhead in C language, 3) as PID

algorithm will exhibit more floating point computations, that

cannot be implemented using this C-Compiler due to ROM

limitations and 4) the proposed PID algorithm should be

implemented in assembly language to reduce the code-size

and execution time.

V. THE PARALLEL PID ALGORITHM

For software developers, the new hardware development

toward multicore architectures is a challenge, since existing

software must be restructured toward parallel execution to

take advantage of the additional computing resources. In

particular, software developers can no longer expect that the

increase of computing power can automatically be used by

their software products. Hence, additional effort is required at

the software level to take advantage of the increased

computing power [17].

A new parallel application, settling in the shared QP-ROM

is designed to perform all control tasks in parallel. Executed

by both master-core and slave-cores, the shared parallel

application needs a mechanism for task allocation and

synchronization. Fig.7 (a) describes the parallel tasks within

the proposed algorithm. Task allocation is accomplished

using the predefined hardware identifiers (HWIDs). Task

synchronization is performed using hardware signals between

different cores.

Fig. 7 (a). The shared parallel application.

The application uses the HWIDs to distinguish between

different cores as a mean of task-allocation. The HWID is

used to coordinate tasks at boot-up. Synchronization between

master-task and slave-tasks is performed with (READY) and

(START) signals. A slave-task must wait for a (START)

signal to read a new error-sample and compute its result.

Master-task will wait for all (READY) signals from all

slave-tasks. Such behavior will produce an application that is

only parallel in the phase of slave-tasks. The master-task is

not in parallel with the slave-tasks. Fig. 7 (b) describes this

behavior. The numbering of each task indicates the sample

number. Flags indicate delivery of control outputs.

Fig. 7 (b). Master is not in parallel with slaves.

The application is implemented in assembly language for

best optimization in both execution time and code-size. Xilinx

PicoBlaze assembler is used to generate VHDL file of shared

ROM from the assembly code. The shared ROM file is

included within the PDPID MPSoC, simulated and debugged

International Journal of Computer Theory and Engineering, Vol. 5, No. 6, December 2013

917

as will be described in the next sections.

VI. THE PIPELINED PARALLEL PID CONTROLLER

As described in Fig. 7 (a), master-task is not in parallel with

slave-tasks. Modification within the parallel application has

been made to increase the throughput using

software-pipelining. Task-loads have been measured and

redistributed to make all tasks within a close execution time.

Within master-task, if (START) signals were sent

immediately after receiving all (READY) signals, this will

make the slave-tasks continue with the next error-sample

while the master-task continues with calculations of previous

output. When the master-task finishes its output computations

of sample (K), and because of the close execution time, the

slave-tasks will have been finished computing their results of

sample (K+1). They will meet again to synchronize when the

master-task is waiting for all (READY) signals. Such

behavior results in software-pipelined parallelism between

master-task and slave-tasks. Fig. 8 describes this new

behavior.

Fig. 8. Effect of pipelined approach.

VII. SIMULATION AND TESTING

The system is proposed as a prototype that may be

implemented using any preferred technology. The proposed

PDPID system is modeled using two different languages:

VHDL and SystemC. VHDL is used to describe main parts of

the system like EPM, QP-RAM and QP-ROM while SystemC

is used to connect parts with SystemC HW channels. SystemC

is also used to drive the simulation process and to generate

clocks. MODELSIM is used to perform the simulation as it

has a powerful mixed-language simulation kernel.

A. Debugging the Parallel Algorithm

Fig. 9. Offline debugging technique.

The parallel application contains four simultaneously

running assembly instruction threads. Regular debugging

techniques such as cycle based HW debugging using

Modelsim and instruction based simulation using PicoBlaze

ISS (Instruction Set Simulator) are painful. The first is clearly

impossible and the latter is only able to simulate and debug a

single PicoBlaze microcontroller. Here we introduce a new

technique for debugging such systems; it is an offline

debugging technique. Fig. 9 describes the technique.

The process consists of two phases: generation of offline

DBG (Debug) schema and application debugging phase. The

first phase is to generate a schema-file that contains the

required information needed for debugging each core of the

system. This file is generated from MODELSIM using a TCL

(Tool Control Language) script that captures instructions,

register values and ports during the execution of a single loop

of the parallel PID algorithm and writes them to the schema

file. The second phase is responsible of using this file to

debug the system in an offline manner. The second phase is a

high level GUI (Graphical User Interface) application that

parses the schema file and enables offline debugging of the

application. Fig. 10 is a screenshot of the quad-core offline

debugger.

Fig. 10. Offline debugging application.

The main benefits of this technique are: 1) delayed

disassembling of instruction codes, 2) forward or backward

instruction stepping in zero-time and 3) multi-core

synchronous execution and stepping.

B. Simulation Results

TABLE IV: SIMULATION RESULTS

EPM PID

Controller

[Sequential]

PDPID

[Parallel]

Pipelined

PDPID

[Parallel]

PID Loop

(Cycle.)
Ts = 698

Tm = 498 Tm = 316

RR = -28% RR = -55%

ROM

Usage
68% 73% 74%

S%(4) -- 35% 55%

Table IV shows the simulation results for different

implementations during the development process of the

proposed parallel PID controller. For each implementation,

the PID loop time is shown in the term of the number of clock

cycles needed to execute a single loop. Moreover, the

execution Reduction Ratio (RR) is computed against the

sequential case. The calculation of PID-loop speed-up is

based on the “Equal Duration Model” [18]. The speedup

factor of a parallel system can be defined as the ratio between

the time taken by a single processor to solve a given problem

instance to the time taken by a parallel system consisting of (n)

processors to solve the same problem instance. Equation.2

describes how it is computed:

International Journal of Computer Theory and Engineering, Vol. 5, No. 6, December 2013

918

) s

m

T
S n

T
（ (2)

where, S(n) denotes the speed-up calculated for n processors,

Ts denotes the time taken by the single processor and Tm

denotes the time taken by the parallel system. In order to scale

the speedup factor to a value between 0% and 100%, we

divide it by the number of processors, n=4.

It may look odd that the results obtained from

benchmarking the system looks different from the results

obtained from applying the parallel PID on the system.

However most of the benchmarking showed a reduction of

about 73% to 75%, the reduction obtained from the parallel

PID algorithm is almost about 54%. The benchmarking tested

the system ability to enhance parallel-ready operations like

ALU, FPU and RAM operations while the parallel PID

algorithm contains more than just parallel-ready operations.

Task synchronization and communications between the four

cores should be taken into consideration. Although the system

managed to execute the algorithm in a parallel form, it also

increased the execution time and code size as it added many

task synchronization code.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, a custom FPGA-based MPSoC architecture is

designed to meet the requirements of proposed parallel digital

PID scheme. The main contribution of the paper is a novel

throughput-oriented high-performance parallel digital PID

controller. The proposed architecture is benchmarked to

review the benefits of duplicating cores within the system.

The sequential digital PID algorithm was restructured,

because of its inherent parallelism, to run concurrently inside

the four cores of the. The new parallel algorithm is directly

mapped to the MPSoC architecture using the means of

predefined hardware identifiers. Modifications to the

algorithm have been made to propose a two-stage software

pipelined approach of the system. Results obtained from

simulating and debugging of the system showed great

enhancement in the performance of the digital PID controller.

The software pipelining technique applied enhanced the

throughput of the system .The system represents a prototype

of a real parallel PID controller and it can be modeled and

implemented using many different system design fields.

Embedded systems are very power constrained and this

prototype faces challenges when power and space

conservations are considered. We hope to extend the work to

include a study of the power consumption and tuning for the

system.

REFERENCES

[1] Y. F. Chan et al., “Design and implementation of modular

FPGA-based PID controllers,” IEEE Trans. Ind. Electron., vol. 54, no.

4, pp. 1898-1906, Aug. 2007.

[2] K. Popovici, F. Rousseau, A. A. Jerraya, and M. Wolf, Embedded

Software Design and Programming of Multiprocessor System-on-chip,

Springer, 2010.

[3] C. V. P. Gatica, “Dynamically reconfigurable hardware for embedded

control systems,” Cognitive Interaction Technology, Exzellenzcluster,

Dissertation, Dr.Eng., 2012.

[4] Xilinx, PicoBlaze 8-bit embedded microcontroller user guide, vol. 2,

2010.

[5] E. Monmasson and Y. Chapuis, “Contributions of FPGAs to the

control of electrical systems, a review,” IEEE Industrial Electronics

Society Newsletter, December 2002, vol. 49, no. 4, pp. 8-15.

[6] T. Nakamura, Y. Awa, H. Shimoji, and H. Karasawa, “Control system

of electrostatic levitation furnace,” Acta Astronautica, 2002, vol. 50.

pp. 609-614.

[7] Y.-L. Hu and D. Qian, “Design of an architecture for multiprocessor

System-on-Chip (MPSoC),” in Proc. Conference on High Density

Microsystem Design and Packaging and Component Failure Analysis,

2006, pp. 63-66.

[8] S. B. Othman, A. K. B. Salem, and S. B. Saoud, “MPSoC design of RT

control applications based on FPGA softcore processors,” in Proc.

ICECS 2008, pp. 404-409, 2008.

[9] L. Samet, N. Masmoudi, M. W. Kharrat, and L. Kamoun, “A digital

PID controller for real time and multi loop control: a comparative

study,” in Proc. IEEE International Conference on Electronics,

Circuits and Systems, 1998, vol. 1, pp. 291-296.

[10] M. S. M. Siddiqui, A. H. Sajid, and D. G. Chougule, “FPGA based

efficient implementation of PID control algorithm,” in Proc.

International Conference on Control, Automation, Communication

and Energy Conservation, June 2009, pp. 4-6.

[11] R. A. Flores, F. R. Gutierrez, and C. Jeanniton, “Qualitative evaluation

of a PID controller for autonomous mobile robot navigation

implemented in an FPGA card,” in Proc. Seventh International

Conference on Natural Computation (ICNC), July 2011, vol. 3, pp.

1753-1757.

[12] J. Lima, R. Menotti, J. M. P. Cardoso, and E. Marques, “A

methodology to design FPGA-based PID controllers,” in Proc. IEEE

International Conference on Systems, Man and Cybernetics, Oct.

2006, vol. 3, pp. 2577-2583.

[13] J. Ledin, Embedded Control Systems in C/C++: An Introduction for

Software Developers Using MATLAB, CMP Books, January 12, 2003.

[14] R. Usselman. (2012). Open floating point unit. The Free IP Cores

Projects. [Online]. Available: http://www.opencores.org

[15] Quad-port memories in virtex devices, Xilinx Application Note, vol. 1,

no. 228, 2002.

[16] ZbynekKrivka, “PBCC: PicoBlaze C Compiler,” Rev., vol. 2, 2010.

[17] T. Rauber and G. Runger, Parallel Programming For Multicore and

Cluster Systems, Springer, 2010.

[18] H. E. Rewini and M. A. E. Barr, Advanced Computer Architecture and

Parallel Processing, John Wiley & Sons, Inc., 2005.

Hassan A. Youness received his B.Sc. and M.Sc.

degrees from Assiut University, Assiut, Egypt, and

Ph.D. from Graduate School of Information Science

and Technology, Osaka University with the

cooperation of Ain Shams University, Egypt. He

worked for IBM Company and Mentor Graphics in

Egypt. He is currently an assistant professor at Minia

University, Computers and Systems Eng. Department.

His research interests include Integrated System

Design, Fault Tolerance, HW/SW Co-design, Parallel Computers, and

MPSoCs.

Mahmoud Khaled was born in Minia, Egypt, on June

22, 1987. He received his B.Sc. from Faculty of

Engineering, Department of Computer and Systems,

Minia University, Egypt, in 2009.

He is a teaching assistant and M.Sc. student in

Faculty of Engineering, Department of Computer and

Systems, Minia University, Egypt. His research

interests are in the area of Embedded Control Systems

and MPSoCs.

Mohamed Moness received his B.Sc., M.Sc. and Ph.D.

degrees from Assiut University, Assiut, Egypt. He

worked as a head of Computer and Systems Engineering

Department, from 1999-2010, and worked as a dean for

the faculty of engineering for two times respectively. He

is currently a professor at Minia University, Computers

and Systems Eng. Department. His research area is

Automatic Control Systems.

International Journal of Computer Theory and Engineering, Vol. 5, No. 6, December 2013

919

