
  

 

Abstract—Reliable forecasts of the price of natural resource 

commodity is of interest for a wide range of applications. This 

includes generating macroeconomic projections and in 

assessing macroeconomic risks. Various approaches have been 

introduced in developing the required forecasting models. In 

this paper, a forecasting model based on an optimized Least 

Squares Support Vector Machine is proposed. The 

determination of hyper-parameters is performed using a nature 

inspired algorithm, Artificial Bee Colony. The proposed 

forecasting model is realized in gold price forecasting. The 

undertaken experiments showed that the prediction accuracy 

and Mean Absolute Percentage Error produced by the 

proposed model is better compared to the one produced using 

Least Squares Support Vector Machine as an individual. 

 
Index Terms—Artificial bee colony, least squares support 

vector machine, swarm computing, forecasting, optimization. 

 

I. INTRODUCTION 

The importance of price forecasting model for commodity, 

particularly for nonrenewable natural resource commodity, 

namely energy fuels and metals is undeniable. This situation 

has resulted to a large and growing body of literature. In price 

forecasting, numerous models have been presented, ranging 

from statistical to Computational Intelligence (CI) models. A 

major shortfall of statistical techniques [1]-[8] have led 

researchers to suggest Computer Intelligence (CI) based 

forecasting tool, which is Artificial Neural Networks (ANN) 

[9], to overcome the complexity in choosing an appropriate 

forecasting approach. Application of ANN in the area of 

finance range from financial crisis to commodity price [10]. 

In prediction of commodity prices, particularly in energy 

fuels [11] and metal prices [3], [12], the application of ANN 

proved its effectiveness against statistical methods. 

Nevertheless, existing work [11], [13] also suggest that ANN 

is weak in generalization. On the other hand, there are various 

successful work reported on Least Support Vector Machine 

(LSSVM) which is a variant of Support Vector Machine 

(SVM). 

Support Vector Machines are particular classifiers that are 

based on the margin-maximization principle. They perform 

structural risk minimization, which was introduced to 

machine learning by Vapnik [14], and which have yielded 

excellent generalization performance. LSSVM reformulates 
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the original SVM algorithm and is reported to consume less 

computational effort in a huge-scale problem compared to 

standard SVM’s [15]. For LSSVM, the regularization and 

kernel(s) parameters are known as hyper-parameters. The 

hyper-parameter tuning is important to the performance of 

LSSVM. Hence, in this paper, the values of LSSVM 

hyper-parameters is optimized based on Artificial Bee 

Colony (ABC), which is a nature inspired algorithm. Existing 

research suggested that ABC possess the advantages on 

memory, local search and the ability of self-enhancement in 

finding solution. Hence it generates promising results in 

optimization problem. 

This paper is organized as follows: Section II presents a 

review on LSSVM, ABC and also research undertaken in the 

area of time series forecasting. Section III includes on how 

the experiments was performed while the results is presented 

in Section IV. Finally, conclusion of the work is presented in 

section V. 

II. LITERATURE REVIEW 

A. Least Squares Support Vector Machine 

Least squares support vector machine (LSSVM) is a 

variant of standard SVM. Least Squares Support Vector 

Machines (LSSVM) reformulates the original SVM 

algorithm. It has been proposed by Suykens and Vandewalle 

[15] for the purpose to solve short term load prediction 

problems. LSSVM is reported to consume less computational 

effort in the huge-scale problem compared to standard 

SVM’s. As a modified version of a standard SVM, LSSVM 

applies equality constraint instead of inequality constraint 

that has been used in SVM to obtain a linear set of equations 

[16], which it simplify the complex calculation and easy to 

train [17]. In addition, in several real-cases demonstration, 

LSSVM has been reported to produce outstanding 

generalization performance with low cost in computational 

[18]. 

Usually, the training of the LSSVM model involves an 

optimal selection of regularization parameter γ and kernel 

parameter σ
2
. Several kernel functions, viz. Gaussian Radial 

Basis Function (RBF) Kernel, linear Kernel and quadratic 

Kernel are available. In this paper, the employed RBF Kernel 

is expressed as: 
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where, σ
2
 is a tuning parameter which associated with RBF 

function.  

B. Artificial Bee Colony 

Recently, another nature inspired algorithm, Artificial Bee 

Colony (ABC), has been proposed by Karaboga and it is 
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proven to be strong in  global optimistic result [19]. It is a 

new meta-heuristic population-based optimization technique 

motivated by the intelligent foraging behavior of honey bee 

swarms. ABC posses the advantages on memory, local search 

and the ability of self-enhancement  in finding solution [20] 

where it leads to yield outstanding results in solving 

optimization issues. The ease of use [21] and capability in 

avoiding local minimum reinforce the advantage of ABC 

algorithm [22], [23]. In addition, ABC also appear to be faster 

in searching optimal solution [22]. 

In ABC, the colony of artificial bees incorporated of three 

groups of bees: employed, onlooker and scout bees. Half of 

the colony is composed of employed bees and the rest are of 

the onlooker bees. The number of food sources/nectar 

sources is equal with the employed bees, which means that 

one employed bee is responsible for a single nectar source. 

The aim of the whole colony is to maximize the amount of 

nectar. The duty of employed bees is to search for food 

sources (solutions). Later, the amount of nectars (solutions’ 

qualities/fitness value) is calculated. Then, the information 

obtained is shared with the onlooker bees which are waiting 

in the hive (dance area). The onlooker bees decide to exploit a 

nectar source depending on the information shared by the 

employed bees. The onlooker bees also determine the source 

to be abandoned and allocate its employed bee as scout bees. 

For the scout bees, their task is to find the new valuable food 

sources. They search the space near the hive randomly. 

C. Time Series Forecasting  

Research on energy fuels and metal’s behavior, including 

the price, have long occupied the interests of academia and 

this have resulted in the large volume of published studies 

describing the importance role of these commodities to the 

world. A great deal of attention have been paid to their price 

volatility and can be seen in the emerging various prediction 

model [24], ranging from econometrics model to 

computational model. The emergences of various techniques 

underscore the significance of these commodities in human 

life. Nevertheless, there are yet to be reported on the work 

that explores nature inspired computing in predicting prices 

of such resources.  

In the study that has been conducted by Malliaris and 

Malliaris [13], the asymmetric results produced in predicting 

the highly correlated data sets of metals indicated that the 

proposed prediction model is still dubious. This is due the 

incapability of ANN to outperform statistical method (i.e 

regression) in all price prediction process. From the final 

result of the study, even though ANN excel in predicting 

crude oil, heating oil and gasoline, nevertheless in predicting 

propane, the result is contrary.  

Wang and Li [25] highlight the importance of primary 

energy consumption prediction by presenting a prediction 

model utilizing LSSVM. By using Cross Validation in 

determining optimal value of LSSVM hyper parameters, the 

proposed method achieved the predetermined condition 

where the accepted error range is within 5%. In addition, it 

concluded that LSSVM is capable in dealing with small 

samples data sets as compared to ANN which frequently need 

more data for training purposes [26]. 

Prediction utilizing LSSVM in nonlinear water quality 

time series data has been presented by Tan, Yan, Gao and 

Yang [27]. The purpose of the study is to predict the total 

phosphorus. The comparisons were made between two ANN 

based approach, namely the Backpropogation (BPNN) and 

Radial Basis Function (RBF) network. Parameters of 

LSSVM were empirically derived in obtaining the ideal value. 

Upon completing the simulation processes, LSSVM excel by 

producing lowest average relative value, which is 0.064% as 

compared to BPNN and RBF network which is 0.529% and 

0.552% respectively. As now many researchers are 

enthusiastic in proposing various optimization techniques for 

LSSVM, man-made approach which was applied in the 

undertaken work may be beneficial. 

 

III. EXPERIMENTS 

A. Data Preparation 

In this study, gold price time series data were employed. 

The time series data covered is from January 31, 2012 to June 

18, 2012 and is obtained from Barchart [28]. From the dataset, 

the first 70% is used for training while the balance of 30% is 

for testing. Data tabulated in Table I indicates the variables 

assigned to the features involved. The daily spot price (output) 

will help the model to fix current price while the derivation 

input is beneficial for the model in learning the underlying 

relationship that is constant over time [13]. 

 
TABLE I: INPUT AND OUTPUT VARIABLES 

Input Variable Output 

Gold daily closing price GC 

Gold daily spot 

price from day 21 

onwards (GC21) 

 

Percent change in gold daily 

closing spot price from the 

previous day 
 

 

%Chg 

Standard deviation over the 

previous 5 days of trading  

Stdev5 

 

Standard deviation over the 
previous 21 days of trading  

 

Stdev21 

 

B. Data Normalization 

Prior to training, all input and output were normalized 

using Min Max Normalization [29]. The objective is to 

independently normalize each feature component to the 

specified range. If the input values are in extremely at 

different ranges, the training of prediction model will become 

difficult. In addition, normalization technique may improve 

the prediction accuracy and data mining algorithm [29] 

C. Evaluation Metrics 

For the purpose of evaluating the proposed technique, two 

quantitative evaluation metrics are utilized, namely Mean 

Absolute Percentage Error (MAPE), and Prediction 

Accuracy (PA), which are defined as follows: 
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PA = )100(%100  MAPE                         (3)
 

where n = 1, 2, …, x; yn = actual values; pn = predicted values; 

N =Number of test data. 
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IV. RESULTS 

The empirical results of performance comparison between 

ABC-LSSVM and LSSVM on two metrics, namely MAPE 

and PA are reported in Table II. From the table, the best 

prediction performance of the ABC-LSSVM is obtained at γ= 

462.6987 and σ2= 11.3653, with error rate of 4.5024%. With 

that, the prediction accuracy achieved was 95.497%, which is 

higher compared to the one obtained using LSSVM. The 

single LSSVM was able to produce 95.078% accuracy, 

which is 0.4188% differs from ABC-LSSVM.  

 
TABLE II: GOLD PRICE PREDICTION 

 γ σ
2 

MAPE 

Training (%) 

MAPE 

Testing 

(%) 

PA (%) 

ABC-LSSVM 462.698 1 0.786 4.502 95.497 

LSSVM 1000 1 0.600 4.921 95.078 

 

V. CONCLUSION 

In this paper, we proposed an optimization of LSSVM, 

which is a variant of the popular SVM, using a 

nature-inspired algorithm. The ABC algorithm that mimics 

the behavior of honey bee is proved to be able to optimize the 

hyper-parameter values of LSSVM. Such an approach is 

applied on time series forecasting of gold prices. Comparing 

with a non-hybrid LSSVM, the ABC-LSSVM presented a 

higher accuracy. Hence, such an approach is believed to 

become an interesting competitor in the area of forecasting. 
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