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Abstract—Compiling documents in extensible markup 

language (XML) increasingly requires access to data services 

which provide both rapid response and the precise use of search 

engines. Efficient data service should be based on a skillful 

representation that can support low complexity and high 

precision search capabilities. In this paper, a novel complete 

path representation (CPR) associated with a modified inverted 

index is presented for the provision of efficient XML data 

services, where queries can be versatile in terms of predicates. 

CPR can completely preserve hierarchical information, and the 

new index is used to save semantic information. The CPR 

approach can provide template-based indexing for fast data 

search. An experiment is also conducted for the evaluation of the 

CPR approach. 

 
Index Terms—XML, DTD, complete path representation 

(CPR), structural summary tree (SST), versatile query. 

 

I. INTRODUCTION 

By recommendation of the World Wide Web Consortium 

(W3C) [1], XML has served as a standard information 

description language widely used in computer communication. 

This facility demands skillful XML data representation for 

fast internet searches [2]. Since XML data can be uniquely 

described with a semantically structured tree (i.e., a 

hierarchical structure associated with relationships among 

nodes), both structure and semantics are significant elements 

of XML data representation and feature selection.  

XML data representations can be categorized into string 

[3], [4] and path [5]-[15] groups. String representation can be 

derived with a preorder traversal algorithm; it requires 

dynamic programming for edit distance measurement. This 

approach, with its lack of structure information, may lead to 

indeterminate search results. Path approaches use sub-paths 

as the features, and represent each XML datum as a binary 

vector. An element in the binary vector denotes whether the 

datum involves a corresponding feature, where such features 

can be defined as tree nodes [6], two-node sub-paths (i.e., 

node-pair (NP)) [7], [8], or whole paths (WP) [9], [10]. To 

improve search efficiency, several path representation 
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modifications have been proposed. Yang et al. [11] use the 

content instead of the leaf node for node representation. Liu et 

al. [12] present a hybrid definition that combines NP and WP 

for XML data description. Based on the determined finite 

automata, Mustafa et al. [13] and Lee et al. [14] present a 

path-embedded string representation. In order to improve the 

efficiency of common Xpath and principal component 

analysis, Li [15] presents a modified WP with limited-length 

paths. These approaches essentially only concern the service 

of simple queries (single path queries). Recently, based on 

XML QBE [16], XQuery [17], PathStack and TwigStack [18], 

and query pattern tree (QPT) [19], several query parsers 

[20]-[23] have been developed to facilitate compound-type 

queries, which produce versatile multi-path queries in terms 

of predicates. Thirteen compound-type queries are also 

designed in order to evaluate the performance of this CPR 

approach. 

This paper is organized as follows: In Section II, the CPR is 

proposed for XML data description. In Section III, the 

modified inverted index is described. Section IV shows the 

performance evaluation results of handling versatile queries 

by using variant approaches. Finally, conclusions are drawn 

in Section V. 

 

II. XML DATA REPRESENTATION USING COMPLETE PATH 

ELEMENTS 

Any XML datum defined with the document type definition 

(DTD) can be modeled as an ordered label tree [3]. In this 

section, the hierarchical tree information is extracted by a 

pre-ordered traversal process performed with a document 

object model (DOM) API [1]. Following this, the CPE 

extraction based on the SSTs of XML data is described and 

the CPR is presented. 

A. The Extraction of Structural Summary Tree of XML 

Document 

SST is the XML tree skeleton commonly used for XML 

data representation [3]. The SST of an XML document can be 

extracted by four functional processes, as follows: 

Step 1. This step performs a tree conversion using Java 

DOM (JDOM), where the tree element values are 

neglected. For the DTD-formatted XML datum 

of Example 1, the tree conversion process result 

is illustrated in Fig. 1. 

Step 2. For efficient matching, we symbolize the name of 

the tree node with an abbreviated character order, 
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as shown in Fig. 2. 

Step 3. Based on the pre-order traversal process [3], SST 

extraction requires two simplification 

procedures: 

 a) For each node, examine whether the current 

node‟s name is equal to an ancestor‟s name. If it 

is, set the current node‟s sub-tree to be a child of 

the ancestor; otherwise, check the next node. The 

purpose of this procedure is to remove nested 

sub-paths, as shown in Fig. 3. 

 b) Exhaustive searching based on a Hash table is 

applied for discovering and eliminating repeated 

branches. Fig. 4 shows the repeated branch 

elimination result where the simplified tree is the 

SST. 

Step 4. For the extraction of CPEs, it is necessary to 

construct the adjacent-linked (AL) lists of the 

SSTs of all XML data. An AL list is a data 

structure that records the linking information of 

each node and facilitates the pre-order traversal 

process. The AL list of the SST in Fig. 4 is given 

in Table I where δi[n] denotes the nth head node 

of the ith XML datum. 

 

 
 

 
Fig. 1. The tree representation of Example 1 based on the JDOM. 

 

 
Fig. 2. The symbolization result of the XML tree of Example 1. 

 

 
Fig. 3. The XML tree in Example 1 with nested nodes removed. 

 
Fig. 4. The SST of Example 1 where the level of root is defined as 1 and 

increased towards the leaves. 

 

TABLE I: THE AL LIST OF THE SST OF EXAMPLE 1 

 

B. Complete Path Element Extraction and Representation 

An example of level definition is shown in Fig. 4, where 

four CP sets: CPL-1, CPL-2, CPL-3, and CPL-4, can be defined. 

The elements of the four CP sets are shown in Table II. 

  
TABLE II: THE FOUR LEVEL COMPLETE PATHS OF THE SST OF EXAMPLE 1 

 
Considering a database comprised of the three XML data 

shown in Fig. 5, the CPR can be found in Table III. In Fig. 5, 

there are two I nodes for both DOC 1 and 3. The two nodes 

with different children are distinct and cannot be merged. The 

two sub-paths /B/I/T in DOC 2 and /B/I/T/~ in DOC 1 have 

the same path length equal to 3, but have distinct distances 

from leaf node. The same distinctions also exist between the 

two elements /M/I/~ and /M/I/~/~ in the CPL-1. 

 

 
Fig. 5. The SSTs of three XML documents. 

 
TABLE III: THE CPR FOR THE DESCRIPTION OF THE THREE XML DATA 

SHOWN IN FIG. 5 

 
 

III. INDEXING THE COMPLETE PATH ELEMENTS 

A CPE with the tree characteristic is a high dimensional 

feature. Traditional B-tree indexing [24, 27, 28] based on 

node relationships is suitable for WP, NP and twig queries, 
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but is inefficient for CPR, which regards each CPE as a 

feature element. In this section, a new index with feature 

similarity structure (FSS) is presented for CPE management. 

The CPEs of Table III can be represented with a tree 

structure, as shown in Fig. 6, where Pi denotes a CPE subset 

with path length equal to i. The CPEs in Fig. 6 are inherent 

with the hierarchical information involving path length (Pi) 

and level (CPL-1) that are available for inferring semantic 

relations, e.g., AD, SB and CN relationships. A B-tree index 

with a key design can achieve a balanced binary tree structure 

for efficiently indexing the elements of NP and WP, but 

cannot provide hierarchical information. To facilitate the 

inference of semantic information, the inverted index 

structure with additional fields is applied for CPE indexing. 

The FSS with feature similarity provides a template-based 

hierarchical query service. This service method can 

effectively reduce the searching complexity induced by the 

path element increment of CPR, compared to that of the NP 

and WP. Utilizing the one-to-one property of ρi, XML 

documents can be uniquely described with a feature vector 

(FV), defined as 

FVDOC = [ρ0, ρ1, …, ρN-1], ρ0{0,1}              (1) 

where ρi denotes the label of ith CPE, and N denotes the total 

number of CPEs. The element with ρi = 1 implies that the 

document involves the ith labeled CPE. This labeling 

provides a template-based hierarchical query service. Let 

CPsT (l, i) be an indexing template involving the CPEs of 

CPL-l and Pi. An indexing template with (Ɩ, i) = (1, 1) can be 

defined with: 

1

1
3210#

0000
)1,1(













LCP

P

SW
CPsT




where SW denotes a switch. Setting a field of SW to one 

indicates that the corresponding CPE is selected. For example, 

an indexing template defined by: 

1

4
16151413#

1101
)4,1(













LCP

P

SW
CPsT




will yield a response as:  

ρ13 = /B/I/T/D in Doc1 
ρ15 = /B/I/A/L in Doc1 and Doc2 

ρ16 = /M/I/A/L in Doc3.  

Like the Region [22] and Dewey [26] methods, the CPE 

index can be easily updated with numerical labeling Updating 

the Dewey method is based on the extended Dewey labeling 

[25] [27], [28] which uses modular function to reserve even 

numbers for the insertion of new path elements. 

The FSS with path length and level also allows the 

inference of semantic information. The path elements with 

AD relationships can be easily obtained from the CPEs with 

the path length field filled in Pi for i ≥ 3, i.e., path length ≥ 3. 

For the example of Fig. 5, there are two kinds of AD 

relationship where A1 involves the path elements with 

one-generation AD, and A2 involves the path elements with 

two-generation AD. Note that these path elements are 

different from CPE, and are labeled with δ0 ~ δ11. SB and CN 

are relations among nodes, where these nodes have different 

descendants, but have the same father and grandfather node, 

respectively. For SB, the father nodes can be found in levels 

CPL-l for 1≤Ɩ ≤ L-1. Furthermore, the search of CN nodes aims 

to verify whether their father nodes are inherent with a SB 

relationship. The tree structure index, including semantic 

information, is illustrated in Fig. 7, where SB and CN 

indexing requires fewer levels than the indexing of AD. 

 
Fig. 6. The index structure of the tree representation of Fig. 5. Italic is a new 

path inserted.  

 
Fig. 7. The index structure of the ADs, SBs, and CNs of Fig. 6. 
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IV. EXPERIMENT 

For the data service efficiency analysis of CPR, an 

experiment using the simple dataset of Fig. 5 was performed. 

In this dataset, WP and NP have 6 and 10 feature elements 

respectively. For CPR, the feature elements of CPE and AD 

relation are 34 and 13, respectively. Some queries shown in 

Table IV are designed for the simulation of versatile client 

requests. These queries can be categorized into CPE 

(TPQ1~TPQ8), AD (TPQ9~TPQA), and SB&CN 

(TPQB~TPQD) groups, where TPQ1~TPQ5 belong to WP and 

NP types. TPQD is special due to the distinct I nodes. Decoded 

with the query parser [23], these statements can be translated 

into compound tree-pattern queries. Two commonly used 

indices: searching complexity and accuracy, are applied for 

performance evaluation. The searching complexity (SC) is 

defined with the total checking times required for matching all 

of the query paths. Here, we suppose that all of the path 

elements (in dataset) fitting query conditions should be 

checked in each query path matching. For TPQ1, there are 

four query paths with level=1 and path length=4. The level 

and path length determine the selection of the query template: 

CPsT(1,4), where four path elements: ρ13~ρ16, satisfy the 

conditions. Considering exhaustive matching, each query 

path should be matched four times. Thus the query service of 

CPR requires a complexity of SC=4×4=16, and the SW fields 

of ρ13~ρ16 will be set to 1:  

1

4
# 13 14 15 16

1 1 1 1
(1,  4)

LCP

P

SW
CPsT



 
  
     

 . 

The complexities required for serving TPQ2~TPQ9 are 

evaluated in Table V, where the symbol „-„ denotes that this 

representation method cannot serve the query. For TPQA, 

there are three 1-level query paths involving two 

one-generation AD and one two-generation AD. The level 

and AD relations determine the selection of two query 

templates: ADsT(1,1) and ADsT(1,2), where the former has 

five elements (δ0~δ4), and the latter has four elements (δ5~δ8). 

Also considering exhaustive search, the SC of TPQA can be 

found as SC = 5 * 2 + 4 = 14. The query templates are set by: 

1

2

1

1

8765#

43210#

0001
)2,1(

,
00110

)1,1(

























L

L

AD

A

AD

A

SW
ADsT

SW
ADsT





. 

For TPQB~D, the level and semantic relations will determine 

the selection of the three query templates: SBsT(3), CNsT(3), 

and SBsT(2). By using exhaustive search, the SC of the three 

queries can be found as SC = 4(2×2), 9(3×3), and 4(2×2) 

respectively. The query templates are set by: 

3

2726#

11
)3(













LSB
SW

SBsT


,

3

272625#

111
)3(













LCN
SW

CNsT


, and 

2

1817#

11
)2(













LSB
SW

SBsT


. 

TABLE IV: SOME QUERIES FOR THE SIMULATION OF VERSATILE CLIENT 

REQUESTS 

 
 

TABLE V: A COMPARISON OF THE XML DATA SERVICE PERFORMANCES OF 

WP, NP, AND CPR APPROACHES FOR THE QUERIES GIVEN IN TABLE IV 

 
 

Searching accuracy (SA) is defined with two bi-levels: 

Success and Fail, indicating whether or not the document can 

be found. With WP and NP element queries, the documents 

satisfying the conditions of TPQ1~TPQ5 can easily be 

retrieved for the WP and NP approaches respectively. For 

queries TPQ6~TPQ8 that request sub-paths starting from 

different levels, neither NP nor WP can handle these queries 

due to a lack of level information. The experiment clearly 

shows that NP and WP are subsets of the CPR. Nevertheless, 

with hierarchical template search, the increased feature 

elements do not reduce the searching efficiency of CPR at all. 

With the semantic relation inference capability, CPR can also 

easily serve the queries with inherent AD, SB and CN 

relationships. The SC of TPQ9 and TPQD are shown in Table 

V. However, neither WP nor NP can handle these queries due 

to a lack of level and path length information. 
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V. CONCLUSION 

In this paper, a new XML data representation called CPR is 

presented as a means of providing an efficient and versatile 

query service. CPR uses complete path elements as XML data 

description features. In association with a modified inverted 

index, the CPR approach can preserve both structure and 

semantic information, as well as provide a template-based 

indexing for fast XML data search. Performance evaluation 

results show that the CPR can be an efficient kernel for XML 

data service. 
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