



Abstract—Compiling documents in extensible markup

language (XML) increasingly requires access to data services

which provide both rapid response and the precise use of search

engines. Efficient data service should be based on a skillful

representation that can support low complexity and high

precision search capabilities. In this paper, a novel complete

path representation (CPR) associated with a modified inverted

index is presented for the provision of efficient XML data

services, where queries can be versatile in terms of predicates.

CPR can completely preserve hierarchical information, and the

new index is used to save semantic information. The CPR

approach can provide template-based indexing for fast data

search. An experiment is also conducted for the evaluation of the

CPR approach.

Index Terms—XML, DTD, complete path representation

(CPR), structural summary tree (SST), versatile query.

I. INTRODUCTION

By recommendation of the World Wide Web Consortium

(W3C) [1], XML has served as a standard information

description language widely used in computer communication.

This facility demands skillful XML data representation for

fast internet searches [2]. Since XML data can be uniquely

described with a semantically structured tree (i.e., a

hierarchical structure associated with relationships among

nodes), both structure and semantics are significant elements

of XML data representation and feature selection.

XML data representations can be categorized into string

[3], [4] and path [5]-[15] groups. String representation can be

derived with a preorder traversal algorithm; it requires

dynamic programming for edit distance measurement. This

approach, with its lack of structure information, may lead to

indeterminate search results. Path approaches use sub-paths

as the features, and represent each XML datum as a binary

vector. An element in the binary vector denotes whether the

datum involves a corresponding feature, where such features

can be defined as tree nodes [6], two-node sub-paths (i.e.,

node-pair (NP)) [7], [8], or whole paths (WP) [9], [10]. To

improve search efficiency, several path representation

Manuscript received January 12, 2013; revised March 25, 2013.

This work was supported in part by the National Science Council of

Taiwan under Grant NSC 101-2221-E-327-040.

H. K. Chang is with the Department of Information Engineering, I-Shou

University, Taiwan, R. O. C. (e-mail: hkchang@isu.edu.tw).

K. C. Hung is with Institute of Engineering Science and Technology,

National Kaohsiung First University of Science and Technology, Kaohsiung,

Taiwan, R. O. C. (e-mail: kchung@nkfust. edu.tw).

modifications have been proposed. Yang et al. [11] use the

content instead of the leaf node for node representation. Liu et

al. [12] present a hybrid definition that combines NP and WP

for XML data description. Based on the determined finite

automata, Mustafa et al. [13] and Lee et al. [14] present a

path-embedded string representation. In order to improve the

efficiency of common Xpath and principal component

analysis, Li [15] presents a modified WP with limited-length

paths. These approaches essentially only concern the service

of simple queries (single path queries). Recently, based on

XML QBE [16], XQuery [17], PathStack and TwigStack [18],

and query pattern tree (QPT) [19], several query parsers

[20]-[23] have been developed to facilitate compound-type

queries, which produce versatile multi-path queries in terms

of predicates. Thirteen compound-type queries are also

designed in order to evaluate the performance of this CPR

approach.

This paper is organized as follows: In Section II, the CPR is

proposed for XML data description. In Section III, the

modified inverted index is described. Section IV shows the

performance evaluation results of handling versatile queries

by using variant approaches. Finally, conclusions are drawn

in Section V.

II. XML DATA REPRESENTATION USING COMPLETE PATH

ELEMENTS

Any XML datum defined with the document type definition

(DTD) can be modeled as an ordered label tree [3]. In this

section, the hierarchical tree information is extracted by a

pre-ordered traversal process performed with a document

object model (DOM) API [1]. Following this, the CPE

extraction based on the SSTs of XML data is described and

the CPR is presented.

A. The Extraction of Structural Summary Tree of XML

Document

SST is the XML tree skeleton commonly used for XML

data representation [3]. The SST of an XML document can be

extracted by four functional processes, as follows:

Step 1. This step performs a tree conversion using Java

DOM (JDOM), where the tree element values are

neglected. For the DTD-formatted XML datum

of Example 1, the tree conversion process result

is illustrated in Fig. 1.

Step 2. For efficient matching, we symbolize the name of

the tree node with an abbreviated character order,

Structural Summary Tree with Complete Path

Representation for Intelligent Query of Social-Web

Documents

Hsu-Kuang Chang and King-Chu Hung

International Journal of Computer Theory and Engineering, Vol. 5, No. 6, December 2013

885DOI: 10.7763/IJCTE.2013.V5.816

as shown in Fig. 2.

Step 3. Based on the pre-order traversal process [3], SST

extraction requires two simplification

procedures:

 a) For each node, examine whether the current

node‟s name is equal to an ancestor‟s name. If it

is, set the current node‟s sub-tree to be a child of

the ancestor; otherwise, check the next node. The

purpose of this procedure is to remove nested

sub-paths, as shown in Fig. 3.

 b) Exhaustive searching based on a Hash table is

applied for discovering and eliminating repeated

branches. Fig. 4 shows the repeated branch

elimination result where the simplified tree is the

SST.

Step 4. For the extraction of CPEs, it is necessary to

construct the adjacent-linked (AL) lists of the

SSTs of all XML data. An AL list is a data

structure that records the linking information of

each node and facilitates the pre-order traversal

process. The AL list of the SST in Fig. 4 is given

in Table I where δi[n] denotes the nth head node

of the ith XML datum.

Fig. 1. The tree representation of Example 1 based on the JDOM.

Fig. 2. The symbolization result of the XML tree of Example 1.

Fig. 3. The XML tree in Example 1 with nested nodes removed.

Fig. 4. The SST of Example 1 where the level of root is defined as 1 and

increased towards the leaves.

TABLE I: THE AL LIST OF THE SST OF EXAMPLE 1

B. Complete Path Element Extraction and Representation

An example of level definition is shown in Fig. 4, where

four CP sets: CPL-1, CPL-2, CPL-3, and CPL-4, can be defined.

The elements of the four CP sets are shown in Table II.

TABLE II: THE FOUR LEVEL COMPLETE PATHS OF THE SST OF EXAMPLE 1

Considering a database comprised of the three XML data

shown in Fig. 5, the CPR can be found in Table III. In Fig. 5,

there are two I nodes for both DOC 1 and 3. The two nodes

with different children are distinct and cannot be merged. The

two sub-paths /B/I/T in DOC 2 and /B/I/T/~ in DOC 1 have

the same path length equal to 3, but have distinct distances

from leaf node. The same distinctions also exist between the

two elements /M/I/~ and /M/I/~/~ in the CPL-1.

Fig. 5. The SSTs of three XML documents.

TABLE III: THE CPR FOR THE DESCRIPTION OF THE THREE XML DATA

SHOWN IN FIG. 5

III. INDEXING THE COMPLETE PATH ELEMENTS

A CPE with the tree characteristic is a high dimensional

feature. Traditional B-tree indexing [24, 27, 28] based on

node relationships is suitable for WP, NP and twig queries,

International Journal of Computer Theory and Engineering, Vol. 5, No. 6, December 2013

886

but is inefficient for CPR, which regards each CPE as a

feature element. In this section, a new index with feature

similarity structure (FSS) is presented for CPE management.

The CPEs of Table III can be represented with a tree

structure, as shown in Fig. 6, where Pi denotes a CPE subset

with path length equal to i. The CPEs in Fig. 6 are inherent

with the hierarchical information involving path length (Pi)

and level (CPL-1) that are available for inferring semantic

relations, e.g., AD, SB and CN relationships. A B-tree index

with a key design can achieve a balanced binary tree structure

for efficiently indexing the elements of NP and WP, but

cannot provide hierarchical information. To facilitate the

inference of semantic information, the inverted index

structure with additional fields is applied for CPE indexing.

The FSS with feature similarity provides a template-based

hierarchical query service. This service method can

effectively reduce the searching complexity induced by the

path element increment of CPR, compared to that of the NP

and WP. Utilizing the one-to-one property of ρi, XML

documents can be uniquely described with a feature vector

(FV), defined as

FVDOC = [ρ0, ρ1, …, ρN-1], ρ0{0,1} (1)

where ρi denotes the label of ith CPE, and N denotes the total

number of CPEs. The element with ρi = 1 implies that the

document involves the ith labeled CPE. This labeling

provides a template-based hierarchical query service. Let

CPsT (l, i) be an indexing template involving the CPEs of

CPL-l and Pi. An indexing template with (Ɩ, i) = (1, 1) can be

defined with:

1

1
3210#

0000
)1,1(













LCP

P

SW
CPsT




where SW denotes a switch. Setting a field of SW to one

indicates that the corresponding CPE is selected. For example,

an indexing template defined by:

1

4
16151413#

1101
)4,1(













LCP

P

SW
CPsT




will yield a response as:

ρ13 = /B/I/T/D in Doc1
ρ15 = /B/I/A/L in Doc1 and Doc2

ρ16 = /M/I/A/L in Doc3.

Like the Region [22] and Dewey [26] methods, the CPE

index can be easily updated with numerical labeling Updating

the Dewey method is based on the extended Dewey labeling

[25] [27], [28] which uses modular function to reserve even

numbers for the insertion of new path elements.

The FSS with path length and level also allows the

inference of semantic information. The path elements with

AD relationships can be easily obtained from the CPEs with

the path length field filled in Pi for i ≥ 3, i.e., path length ≥ 3.

For the example of Fig. 5, there are two kinds of AD

relationship where A1 involves the path elements with

one-generation AD, and A2 involves the path elements with

two-generation AD. Note that these path elements are

different from CPE, and are labeled with δ0 ~ δ11. SB and CN

are relations among nodes, where these nodes have different

descendants, but have the same father and grandfather node,

respectively. For SB, the father nodes can be found in levels

CPL-l for 1≤Ɩ ≤ L-1. Furthermore, the search of CN nodes aims

to verify whether their father nodes are inherent with a SB

relationship. The tree structure index, including semantic

information, is illustrated in Fig. 7, where SB and CN

indexing requires fewer levels than the indexing of AD.

Fig. 6. The index structure of the tree representation of Fig. 5. Italic is a new

path inserted.

Fig. 7. The index structure of the ADs, SBs, and CNs of Fig. 6.

International Journal of Computer Theory and Engineering, Vol. 5, No. 6, December 2013

887

IV. EXPERIMENT

For the data service efficiency analysis of CPR, an

experiment using the simple dataset of Fig. 5 was performed.

In this dataset, WP and NP have 6 and 10 feature elements

respectively. For CPR, the feature elements of CPE and AD

relation are 34 and 13, respectively. Some queries shown in

Table IV are designed for the simulation of versatile client

requests. These queries can be categorized into CPE

(TPQ1~TPQ8), AD (TPQ9~TPQA), and SB&CN

(TPQB~TPQD) groups, where TPQ1~TPQ5 belong to WP and

NP types. TPQD is special due to the distinct I nodes. Decoded

with the query parser [23], these statements can be translated

into compound tree-pattern queries. Two commonly used

indices: searching complexity and accuracy, are applied for

performance evaluation. The searching complexity (SC) is

defined with the total checking times required for matching all

of the query paths. Here, we suppose that all of the path

elements (in dataset) fitting query conditions should be

checked in each query path matching. For TPQ1, there are

four query paths with level=1 and path length=4. The level

and path length determine the selection of the query template:

CPsT(1,4), where four path elements: ρ13~ρ16, satisfy the

conditions. Considering exhaustive matching, each query

path should be matched four times. Thus the query service of

CPR requires a complexity of SC=4×4=16, and the SW fields

of ρ13~ρ16 will be set to 1:

1

4
13 14 15 16

1 1 1 1
(1, 4)

LCP

P

SW
CPsT



 
  
     

 .

The complexities required for serving TPQ2~TPQ9 are

evaluated in Table V, where the symbol „-„ denotes that this

representation method cannot serve the query. For TPQA,

there are three 1-level query paths involving two

one-generation AD and one two-generation AD. The level

and AD relations determine the selection of two query

templates: ADsT(1,1) and ADsT(1,2), where the former has

five elements (δ0~δ4), and the latter has four elements (δ5~δ8).

Also considering exhaustive search, the SC of TPQA can be

found as SC = 5 * 2 + 4 = 14. The query templates are set by:

1

2

1

1

8765#

43210#

0001
)2,1(

,
00110

)1,1(

























L

L

AD

A

AD

A

SW
ADsT

SW
ADsT





.

For TPQB~D, the level and semantic relations will determine

the selection of the three query templates: SBsT(3), CNsT(3),

and SBsT(2). By using exhaustive search, the SC of the three

queries can be found as SC = 4(2×2), 9(3×3), and 4(2×2)

respectively. The query templates are set by:

3

2726#

11
)3(













LSB
SW

SBsT


,

3

272625#

111
)3(













LCN
SW

CNsT


, and

2

1817#

11
)2(













LSB
SW

SBsT


.

TABLE IV: SOME QUERIES FOR THE SIMULATION OF VERSATILE CLIENT

REQUESTS

TABLE V: A COMPARISON OF THE XML DATA SERVICE PERFORMANCES OF

WP, NP, AND CPR APPROACHES FOR THE QUERIES GIVEN IN TABLE IV

Searching accuracy (SA) is defined with two bi-levels:

Success and Fail, indicating whether or not the document can

be found. With WP and NP element queries, the documents

satisfying the conditions of TPQ1~TPQ5 can easily be

retrieved for the WP and NP approaches respectively. For

queries TPQ6~TPQ8 that request sub-paths starting from

different levels, neither NP nor WP can handle these queries

due to a lack of level information. The experiment clearly

shows that NP and WP are subsets of the CPR. Nevertheless,

with hierarchical template search, the increased feature

elements do not reduce the searching efficiency of CPR at all.

With the semantic relation inference capability, CPR can also

easily serve the queries with inherent AD, SB and CN

relationships. The SC of TPQ9 and TPQD are shown in Table

V. However, neither WP nor NP can handle these queries due

to a lack of level and path length information.

International Journal of Computer Theory and Engineering, Vol. 5, No. 6, December 2013

888

V. CONCLUSION

In this paper, a new XML data representation called CPR is

presented as a means of providing an efficient and versatile

query service. CPR uses complete path elements as XML data

description features. In association with a modified inverted

index, the CPR approach can preserve both structure and

semantic information, as well as provide a template-based

indexing for fast XML data search. Performance evaluation

results show that the CPR can be an efficient kernel for XML

data service.

REFERENCES

[1] The document object model. [Online]. Available:

http://www.w3.org/DOM/

[2] T. Dalamagas, T. Cheng, K. J. Winkel, and T. Sellis, “A methodology

for clustering XML documents by structure,” Information Systems, vol.

31, no. 3, pp. 187-228, 2006.

[3] T. Dalamagas et al., “Clustering XML Documents using Structural

Summaries,” EDBT Work-shop on Clustering Information over the

Web (ClustWeb04), Heraklion, Greece, 2004.

[4] A. Nierman and H. V. Jagadish, “Evaluating structural similarity in

XML documents,” presented at Fifth International Workshop on the

Web and Databases (WebDB 2002).

[5] S. Flesca et al., “Fast detection of XML structural similarity,” IEEE

Trans. on Knowledge and Data Engineering, vol. 17, no. 2, pp.

160-175, February 2004.

[6] W. Lian et al., “An efficient and scalable algorithm for clustering XML

documents by structure,” IEEE Trans. on Knowledge and Data

Engineering, vol. 16, no. 1, pp. 82-96, January 2004.

[7] M. Kozielski, “Improving the results and performance of clustering

bit-encoded XML documents,” presented at Sixth IEEE International

Conference on Data Mining - Workshops (ICDMW'06).

[8] J.-S. Yuan, X.-Y. Li, and L.-N. Ma, “An improved XML document

clustering using path feature,” presented at Fifth International

Conference on Fuzzy Systems and Knowledge Discovery, vol. 2, pp.

400-404, 2008.

[9] H.-P. Leung, F.-L. Chung, S. C. F. Chan, and R. Luk, “XML document

clustering using common Xpath,” in Proc. the International Workshop

on Challenges in Web Information Retrieval and Integration, Tokyo,

April 2005, pp. 91-96.

[10] A. Termier, M.-C. Rousset, and M. Sebag, “Treefinder: a first step

towards XML data mining,” in Proc. IEEE International Conf. on

Data Mining, Maebashi, December 2002, pp. 450-457.

[11] J.-W. Yang, W.-K. Cheung, and X.-O. Chen, “Learning the kernel

matrix for XML document clustering,” in Proc. the 2005 IEEE

International Conf. on e-Technology, e-Commerce and e-Service

(EEE'05), Hong Kong, April 2005, pp. 353-358.

[12] J.-H. Liu, J. T. L. Wang, W. Hsu, and K. G. Herbert, “XML clustering

by principal component analysis,” in Proc. the 16th IEEE

International Conf. on Tools with Artificial Intelligence (ICTAI'04),

Boca Raton, November 2004, pp. 658-662.

[13] J.-W. Lee, K. Lee, and W. Kim, “Preparation for semantic-based XML

mining,” presented at the 2001 IEEE International Conference on Data

Mining, San Jose, pp. 345-352, November 2001.

[14] M. H. Qureshi, Kozielski, and M. H. Samadzadeh, “Determining the

complexity of XML documents,” in Proc. the International Conf. on

Information Technology: Coding and Computing (ITCC'05), vol.

II–vol. 02, pp. 416-421.

[15] X.-Y. Li, “Using clustering technology to improve XML semantic

search,” in Proc. the Seventh International Conf. on Machine

Learning and Cybernetics, July 2008, vol. 5, pp. 2635-2639.

[16] S. Zhang, J. T. L. Wang, and K. G. Herbert, “Xml query by example,”

International Journal of Computational Intelligence and Applications,

vol. 2, no. 3, pp. 329-337, 2002.

[17] J. Robie and R. Hat, “XML Processing and data integration with

Xquery,” IEEE Internet Computing, vol. 11, no. 4, pp. 62-67, August

2007.

[18] N. Bruno, N. Koudas, and D. Srivastava, “Holistic twig joins: optimal

XML pattern matching,” in Proc. the SIGMOD Conference, 2002, pp.

310-321.

[19] Q.-K. Zhao, L. Chen, S.-S. Bhowmick, and S.-K. Madria, “XML

structural delta mining,” Issues and challenges. Data and Knowledge

Engineering, vol. 59, no. 3, pp. 627-651, 2006.

[20] S. Chen, H. G. Li., J. Tatemura, W. P. Hsiung, D. Agrawal, and K. S.

Candan, “Twig2 Stack: bottom-up processing of generalized

tree-pattern queries over XML documents,” in Proc. the VLDB Conf.,

2006, pp. 283-294.

[21] N. Bruno, N. Koudas, and D. Srivastava, “Holistic twig joins: optimal

XML pattern matching,” in Proc. the SIGMOD Conf., 2002, pp.

310-321.

[22] J. Lu, T. W. Ling, C. Y. Chan, and T. Chen, “From region encoding to

extended Dewey: on efficient processing of XML twig pattern

matching,” in Proc. the VLDB Conf., 2005, pp. 193-204.

[23] S. K. Izadi, T. Härder, and M. S. Haghjo, “S3: Evaluation of

tree-pattern XML queries supported by structural summaries,” Data &

Knowledge Engineering, vol. 68, issue 1, pp. 126-145, Jan. 2009.

[24] B. Catania and A. Maddalena, “XML document indexes: a

classification,” IEEE Internet Computing, vol. 9, no. 5, pp. 64-71,

October 2005.

[25] P. O'Neil, E. O'Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury,

ORDPATHs: Insert-Friendly XML Node Labels, SIGMOD, 2004, pp.

903-908.

[26] S. Tatarinov, K. S. Viglas, J. Beyer, E. Shanmugasun-daram, J. Shekita,

and C. Zhang, Storing and Querying Ordered XML Using a Relational

Database System, SIGMOD, 2002, pp. 204-215.

[27] T. Harder, M. P. Haustein, C. Mathis, and M. Wagner, “Node labeling

schemes for dynamic XML documents reconsidered,” Data and

Knowledge Engineering, vol. 60, no. 1, 2007, pp. 126-149.

[28] M. P. Haustein and T. Harder, “An efficient infrastructure for native

transactional XML processing,” Data and Knowledge Engineering,

vol. 61, no. 3, 2007, pp. 500-523.

Hsu-Kuang Chang received the B.S. degree in Computer

Science from New York Institute of Technology in 1989

and the M.S. degree in Computer Science from New York

Polytechnic University in 1991. He is a Ph.D. candidate in

National Kaohsiung First University of Science and

Technology, Taiwan. He is also a lecturer in the

Department of Information Engineering, I-Shou University,

Taiwan. His research interests include data mining,

multimedia database, and information retrieval.

King-Chu Hung was born in Tainan, Taiwan, R. O. C., on

March 29, 1959. He received the B.S., M.S., and Ph.D.

degrees in electrical engineering from National Cheng

Kong University, Tainan, in 1980, 1982, and 1988,

respectively.

In 1988, he was an associate professor with the Institute

of Computer Science and Electronic Engineering, National

Central University, Taiwan. From 1989 to 1995, he was an

Associate Researcher and Technology Supervisor with Chung Shan Institute of

Science and Technology (CSIST), Lung Tan, Taiwan. He was with the

Department of Electronics Engineering, I-Shou University, Dashu, Taiwan,

during 1995-1999. He is currently a Professor of Department of Computer and

Communication Engineering, National Kaohsiung First University of Science

and Technology, Kaohsiung, Taiwan. His current research interests include

computer vision, mathematics, image compression, VLSI, wavelets, and error

control coding.

International Journal of Computer Theory and Engineering, Vol. 5, No. 6, December 2013

889

http://www.w3.org/DOM/

