

Abstract—Real-time disk scheduling (RTDS) plays an

important role in time-critical applications. The main idea in

real time database system is that the correctness of the system

depends not only on the logical results of the computations but

also on the time at which the results are produced. Due to

rigorous timing requirements for error free output, data must

be accessed under real-time constraints. Therefore how to

maximize data throughput under real-time constraints poses a

big challenge in the design of real-time disk scheduling

algorithms. Numbers of algorithms are proposed to schedule

real time transactions in order to increase the overall

performance. Currently Earliest-Deadline-First (EDF) is a

basic algorithm which meets the real time constraints, but it

gives poor disk throughput. Scan-EDF work only for those

transactions which are having same deadline. In 2006 g-EDF

algorithm has been proposed which works after making

groups for transaction having close deadlines. In groups it

apply SJF algorithm. We also propose a new algorithm

“FEASIBLE GROUP-EDF” that works both in under load

and overload conditions as well as show better throughput

than earliest mentioned algorithms. It also makes groups and

applies SSTF algorithm as well as check feasibility of

transaction.

Index Terms—EDF, SCAN-EDF, G-EDF, SJF, SSTF, real-

time, overloaded.

I. INTRODUCTION

Traditionally, real-time system manages their data in

application dependent structures. As real-time systems

evolve, their applications become more complex and

require accessing more data. It thus becomes necessary to

manage the data in more systematic and organized manner.

Database management system provides tools for such

organization, so in recent year there has been interest in

“merging” database and real-time system. The resulting

integrated system which provides the database operations

with real-time constraint is called as real-time database

system (RTDBS) [1], [2].

A Real-Time Database System (RTDBS) is a transaction

processing system that is designed to handle transactions

with the timing constraint. Several previous RTDBS as in

studies had been done to address the issue of scheduling

transactions with the objective of minimizing the number of

miss transaction. A common observation of these studies

has been that, if we assigning priorities to transactions

according to an Earliest.

Deadline policy minimizes the number of miss

 Manuscript received February 14, 2013; revised April 14, 2013.

S. Y. Amdani is with Department of CSE, BNCOE, Pusad, India (e-
mail: salimamdani@yahoo.com).

M. S. Ali is with P. R. M. C. E. & M, Badnera, India (e-mail:

softalis@gmail.com).

transactions in systems operating under low or moderate

levels of workload condition. This is due to earliest

Deadline giving the highest priority to transactions that

have the least remaining time in which to complete.

These studies have also observed that the performance of

Earliest Deadline steeply degrades in an overloaded system.

This is because, under heavy loaded workload condition

transactions gain high priority only when they are close to

their deadlines.

While investigating scheduling algorithms, we have

analyzed a variation of EDF that can improve success ratios,

particularly in overloaded conditions. The algorithm can

also decrease the average response time for tasks that is

group-EDF, or gEDF, where the tasks with “similar”

deadlines are grouped together (i.e., deadlines that are very

close to one another), and the Shortest Job First (SJF)

algorithm is used for scheduling tasks within a group. It

should be noted that our approach is different from adaptive

schemes that switch between different scheduling strategies

based on system load; Fg-EDF is used in overloaded as well

as underloaded conditions.

II. BACKGROUND

A. EDF Algorithm

The idea of EDF was published in 1973, in an article of

Liu and Layland [3]. The Earliest Deadline First (EDF)

algorithm is an analog of FCFS. Requests are ordered

according to deadline and the request with the earliest

deadline is serviced first. Assigning priorities to

transactions an Earliest Deadline policy minimizes the

number of late transactions in systems operating under low

or moderate levels of resource and data contention. This is

due to the highest priority given to the transactions that

have the least remaining time in which to complete.

However, the performance of Earliest Deadline steeply

degrades in an overloaded system. Gaining high priority at

this late stage may not leave sufficient time for transactions

to complete before their deadlines. Under heavy loads, then,

a fundamental weakness of the Earliest Deadline priority

policy is that it assigns the highest priority to transactions

that are close to missing their deadlines, thus delaying other

transactions that might still be able to meet their deadlines.

B. SCAN-EDF Algorithm

It is the combination of two algorithms SCAN and EDF.

When deadlines of two transactions are same then we

applies this algorithm [4]. According to it, transactions with

the same deadline are arranged using scan algorithms.

Those who had shortest distance from disk head will get the

An Improved Group-EDF: A Real-Time Disk Scheduling

Algorithm

S. Y. Amdani and M. S. Ali

International Journal of Computer Theory and Engineering, Vol. 5, No. 6, December 2013

873DOI: 10.7763/IJCTE.2013.V5.814

chance first to process. In scan algorithm, once scan

direction is taken it will go in that direction only until all

jobs are scheduled in that direction. So its limitation is that

it cannot be applied on transactions having different

deadline.

C. SJF Algorithm

It is one of the conventional algorithms. It is

implemented by scheduling shortest job first i.e. transaction

having smallest execution time. Average execution time

depends upon transaction size. The demerits of this

algorithm are that in that timing constraint i.e. deadline has

been given no consideration. So there will be misutilization

of resources.

D. Group-Earliest Deadline First Algorithm (g-EDF)

It is based on dynamic grouping of transactions with

deadlines that are very close to each other and using

SHORTEST JOB FIRST technique to schedule tasks within

the group [5]. It is used in overload as well as under load

conditions. It is particularly useful for real time systems as

well as applications known as “approximate algorithms”

and “anytime algorithms” where applications generate more

account results or rewards with increased execution times.

A transaction ti in a real-time system is defined as ti = (ri, ei,

Di, Pi); where ri is its release time (or its arrival time); ei is

either its predicted worst-case or average execution time; Di

is its deadline and Pi is periodicity of transaction. We

generated a fixed number (N) of jobs with varying arrivals,

execution times and deadlines. We assume that the jobs are

mutually independent.

A group in the gEDF algorithm depends on a group range

parameter Gr. tj belongs to the same group as ti if di < dj <

(di + Gr*(di - t)), where t is the current time, 1 < i, j < N. In

other words, we group jobs with very close deadlines

together. We schedule groups based on EDF (all jobs in a

group with an earlier deadline will be considered for

scheduling before jobs in a group with later deadlines), but

schedule jobs within a group using shortest job first (SJF)

approach as shown in Fig. 1. Since SJF results in more

(albeit shorter) jobs completing, intuitively gEDF should

lead to a higher success rate than pure EDF.

QgEDF is a queue for gEDF scheduling. The current

time is represented by t. |QgEDF| represents the length of

the queue. We define a group in our gEDF algorithm as

g-EDF group={ Tk |Tk € QgEDF,dk-d1≤D1*Gr,1≤k≤m

where m≤|QgEDF|}

D1=deadline of first transaction i.e. smallest one

Gr=group range factor=0.4(assumed)

E. Algorithm

Enqueue (QgEDF , T)

If (Ti’s deadline d>t) then

Insert transaction T into QgEDF by EDF i.e.

di≤di+1≤di+2

where Ti, Ti+1, Ti+2 € QgEDF, 1≤i≤|Qgedf|-2;

End

Dequeue (QgEDF)

Ek=average execution time=1.5*block size

If QgEDF ≠ ø then

Find a transaction Tmin with emin=min{ek|Tk € gEDF

Run it & delete Tmin from QgEDF

End

Enqueue is invoked on job arrivals and Dequeue is called

when the disk becomes idle. The algorithm needs to sort the

jobs in each group, which could incur more overhead during

execution than EDF. However, in most practical systems,

the number of jobs in a group is small and the added

runtime overhead will be negligible.

F. Flow of Algorithm

Fig. 1. Flow of g-EDF.

G. Drawback of Algorithm

Fig. 2. Drawback of g-EDF.

In Fig. 2 we can see that transaction T1 is of larger size

and transaction T2 is of smaller size. Also we can observe

that distance of T2 transaction from current head position is

greater than the distance of T1 transaction from current

head position. When we use g-EDF algorithm here, it is

observed that T2 is scheduled first and T1 follows it. But if

deadline of T2 is smaller than it’s seek time then it is get

missed and when we get to T1 then its deadline is also over

so both transaction are missed. So there is no point going

like this in such manner i.e. why to go for non-feasible

transaction?

So to remove such drawback we had modified this

algorithm and proposed a new algorithm which consider

deadline, seek time as well as feasibility factor all together.

We had discussed in next section.

III. PROPOSED APPROACH

A. Fg-EDF Algorithm

We had seen in g-EDF algorithm that once a group is

made then within that group we apply shortest job first

technique. But what if a transaction is having small size but

International Journal of Computer Theory and Engineering, Vol. 5, No. 6, December 2013

874

it is having longest seek time which is greater than its

deadline. So when we apply g-EDF algorithm we missed it

as it is not feasible as well as also those transaction which

are very close to disk head, but of large transaction size. So

to remove such constraint we propose a new algorithm by

modifying earlier one and named it FEASIBLE GROUP

EDF ALGORITHM. In this algorithm after making groups

using group range Gr we first check the feasibility of each

transaction within the group and if all the transaction is

feasible then we apply shortest seek time first algorithm

within the group and make the schedule.

How To Check Feasibility…?

• Access(n)= Total Transaction Time

• Then check this condition

if ((current time + Access(n))<= deadline)

then feasible

else it is not feasible

1) Algorithm

Enqueue (QgEDF , T)

If (Ti’s deadline d>t) then

Insert job T into QgEDF by EDF i.e. di≤di+1≤di+2

where Ti, Ti+1, Ti+2 € QgEDF, 1≤i≤|Qgedf|-2;

End

Dequeue (QgEDF)

 Select transaction from first group having

minimum seek time(Tmin) from current head

Check

If (Deadline of Tmin >= (Current Time +

Access(Tmin))

Then Tmin is Feasible. Run it &delete Tmin from

QgEDF. Set Current head= End block of Tmin

Else Delete Tmin From QgEDF

 If there are more transactions in first group.

Then select next transaction from that group

having next minimum seek time and goto Check

 Repeat same procedure for all the groups

2) Example

TABLE I: PARAMETER CALCULATIONS

\

T-

Id

R

I

Bloc

k

L

ocat

ion

Block

Size

SI EI AE

T

DI T

T

T0

1 12 3 12 14 4.5 10 1.8

T1

0 10 2 10 11 3 6 1.2

\

T2

0 5 5 5 9 7.5 15 3

T3

4 19 6 19 24 9 23 3.6

T4

4 15 4 15 18 6 17 2.4

T5

5 11 5 11 15 7.5 19 3

T6

6 13 6 13 18 9 24 3.6

T7

6 7 5 7 11 7.5 21 3

Service Table (CURRENT HEAD POSITION =4)

TABLE II: SERVICE TABLE

Cji

0 1 2 3 4 5 6 7

0

- 2.4 5.7 5.1 2.7 3.9 3.9 5.1

1

2.1 - 4.8 6 3.6 3 4.2 4.2

2

2.7 1.5 - 6.6 4.2 3.6 4.8 3.6

3

5.4 5.4 8.7 - 5.1 6.9 6.9 8.1

4

3.6 3.6 6.9 3.9 - 5.1 5.1 6.3

5

2.7 2.7 6 4.8 2.4 - 4.2 5.4

6

3.6 3.6 6.9

3.9 3.3 5.1 - 6.3

7

2.1

1.5 4.5 6 3.6 5 4.2 -

a) EDF Schedule (Fig. 3)

Fig. 3. Timing diagram for EDF.

b) g-EDF Schedule

Enqueue

• Insert the transaction T0, T1, . . ., T7

in a queue in EDF order as (T1, T0, T2, T4, T5, T7,

T3, T6)

• Making Groups

(Group range factor Gr=0.4)

D1* 0.4=6*0.5=3

D0-D1<=3 false

Therefore G1={ T1 }

D0 * 0.4=10*0.4=4

D2-D0<=4 false

Therefore G2={ T0 }

D2*0.4=15*0.4=6

D4-D2<=6 true

D5-D2<=6 true

D7-D2<=6 true

D3-D2<=6 false

International Journal of Computer Theory and Engineering, Vol. 5, No. 6, December 2013

875

Therefore G3={ T2 T4 T5 T7 }

D3*0.4=23*0.4=9.2

D6-D3<=9.2 true

Therefore G4={ T3 T6 }

After applying SJF in each group the Final g-EDF

Schedule is shown in Fig. 4.

Fig. 4. Timing diagram for g-EDF.

B. Fg-EDF Schedule

The groups formed are

G1={ T1 }

G2={ T0 }

G3={ T2 T4 T5 T7 }

G4={ T3 T6 }

1) For group G1 ={ T1 }

Current Head = 4 Current Time = 0

 Seek Time for T1=(4-10)*0.3=1.8

Here seek time of T1 is 1.8 and in group G1 there is only

one transaction. Therefore we check feasibility of T1 using:

(Deadline of T1 >= (Current Time + Access (T1))

 (6>= (0+1.8+1.2)) true

Therefore T1 is feasible.

2) For group G2={ T0 }

(Deadline of T0 >= (Current Time + Access (T0))

 (10>= (3+2.1)) true

Therefore T0 is feasible.

3) For group G3={ T2 T5 T4 T7}

(Deadline of T4 >= (Current Time + Access (T4))

 (17>= (5.1 + 2.7)) true

Therefore T4 is feasible.

 (Deadline of T5 >= (Current Time + Access (T5))

(19>= (7.8 + 5.1)) true

Therefore T5 is feasible.

 (Deadline of T7 >= (Current Time + Access (T7))

(21>= (12.9 + 5.4)) true

Therefore T7 is feasible.

 (Deadline of T2 >= (Current Time + Access (T2))

(15>= (18.3 + 4.8)) false

Therefore T2 is not feasible

4) For group G4={ T3 T6 }

 (Deadline of T6 >= (Current Time + Access (T6))

 (24>= (18.3 + 4.2)) true

Therefore T6 is feasible.

 (Deadline of T3 >= (Current Time + Access (T3))

(23>=(22.5+3.9)) false

Therefore T3 is not feasible

After applying SSTF in each group the Final Fg-EDF

Schedule is

Fig. 5. Timing diagram for Fg-EDF.

IV. PERFORMANCE GRAPH (FIG. 6)

Fig. 6. Results Comparisons.

REFERENCES

[1] B. Kao and Hector Garcia-Molina “An overview of real-time

database systems,” in proc. NATO Advanced Study Institute on Real-

Time Computing, St. Maarten, Netherlands Antilles, Springer-Verlag,
1993.

[2] J. Stankovic, M. Spuri, K. Ramamritham, and G. Buttazzo, Deadline

Scheduling For Real-Time Systems: EDF and Related Algorithms,
Kluwer Academic Publishers, Boston, 1998.

[3] C. L. Liu and J. W. Layland., “Scheduling Algorithms for

Multiprogramming in a hard-real-time environment,” Journal of the
ACM, vol. 20, no. 1, 1973.

[4] A. N. Reddy and J. Wyllie, “Disk scheduling in multimedia I/O

system,” in Proc. ACM Multimedia'93, Anaheim, CA, August 1993,
pp. 225-234.

[5] W. M. Li, “Group-EDF-a new approach and an efficient non-

preemptive algorithm for soft real-time systems,” Doctor of
Philosophy in Computer Science, August 2006.

S. Y. Amdani received his M.E. CSE degree from
SGB Amravati university, Amravati in 2008, and

research scholar from 2009. He is now working as

an associate professor and Head in Deptt. Of CSE
B.N.C.O.E., Pusad (India), and he is a life member

of Indian Society for Technical Education New

Delhi.

M. S. Ali is currently working as a Principal at Prof
Ram Meghe College of Engineering &

Management, Badnera-Amravati. He did his B.E

(Electrical) from Government College of
Engineering, Amravati in 1981, M. Tech. from IIT

Bombay in 1984 and Ph.D. from S.G.B. Amravati

University in 2006 in the faculty of Engineering &
Technology in the area of e-Learning. He is a life

member of ISTE, New Delhi, Fellow of IETE, New Delhi and Fellow of

IE (India). He is the Chairman of IETE Amravati Local Cente.

International Journal of Computer Theory and Engineering, Vol. 5, No. 6, December 2013

876

