

 

Abstract—Vehicle Routing Problem (VRP) is a NP-

Complete and a multi-objective problem. The problem 

involves optimizing a fleet of vehicles that are to serve a 

number of customers from a central depot. Each vehicle has 

limited capacity and each customer has a certain demand. 

Genetic Algorithm (GA) maintains a population of solutions by 

means of a crossover and mutation operators. For crossover 

and mutation best cost route crossover techniques and swap 

mutation procedure is used respectively. In this paper, we 

focus on two objectives of VRP i.e. number of vehicles and 

total cost (distance). The proposed Multi Objective Genetic 

Algorithm (MOGA) finds optimum solutions effectively. 

 
 

Index Terms—Vehicle routing problem, genetic algorithm, 

multi-objective optimization, pareto ranking procedure, best-

cost route crossover (BCRC). 

 

I. INTRODUCTION 

The Vehicle Routing problem (VRP) is a complex 

combinatorial optimization problem which was first 

introduced by Dantzig and Ramser in 1959. Fisher [1] 

describes the problem as the efficient use of a fleet of 

vehicles, which must make a number of stops to pick up and 

deliver passengers or products. The term customer is used to 

denote the stops to pick up and deliver the product. Every 

customer has to be assigned to exactly one vehicle in a 

specific order, which is done with respect to the capacity in 

order to minimize the total cost. The problem can be 

considered as a combination of the two well-know 

optimization problems i.e. The Bin Packing Problem (BPP) 

and the Travelling Salesman Problem (TSP). Relating this 

to the VRP, customers can be assigned to vehicles by 

solving BPP and the order in which they are visited can be 

found by solving TSP. The rest of the paper is organized as 

follows-section II gives a back ground study of the VRP, 

section III gives the multi objective genetic search of VRP, 

section IV describes on experimental results. 

 

II. BACKGROUND 

The VRP is defined on a set V = {v0, v1 . . . vN} of vertices, 

where vertex v0 is a depot which is based on m identical 

vehicles of capacity C, while the remaining N vertices 

represent customers, also called requests or demands.  Each 

customer has a demand di. The VRP consists of designing a 

set of m vehicle routes of the least total cost, each starting 
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and ending at the depot, such that each customer is visited 

exactly once by a vehicle, the total demand of any route 

does not exceed. Each vertex vi has a location in the plane, 

where the travel cost is given by the Euclidean distance d (vi, 

vj) for each edge (vi, vj). The main objective of the problem 

is to minimize the total number of vehicles used to service 

the customers and minimize the distance traveled by the 

vehicles [2]. There are two constraints associated with the 

vehicle routing problem: vehicle capacity constraint and 

each customer should be serviced exactly once.  

 

III. MULTI-OBJECTIVE GENETIC SEARCH FOR THE VRP 
 

 

 

 

Multi-objective optimization, also known as multi-

criteria optimization, is the process of simultaneously 

optimizing two or more conflicting objectives subject to 

certain constraints.  If a multi-objective problem is well 

formed, there should not be a single solution that 

simultaneously minimizes each objective to its fullest. In 

each case we are looking for a solution for which each 

objective has been optimized to the extent that, if we try to 

optimize it any further, then the other objective(s) will 

suffer as a result. Finding such a solution, and quantifying 

how much better this solution (compared to other such 

solutions) is the goal when setting up and solving a multi-

objective optimization problem [3]. 

In genetic algorithm (GA), each chromosome in the 

population pool is transformed into a cluster of routes. The 

chromosomes are then subjected to an iterative evolutionary 

process until a minimum possible number of route clusters 

is attained or the termination condition is met. The 

evolutionary part is carried out as in the GA using selection, 

crossover, and mutation operations on chromosomes as per 

the following algorithm [4]. The time complexity of the 

following algorithm is O (MN
3
).   

Genetic Algorithm 

Start 

Step 1: Read problem instance data 

Step 2: Set GA parameters 

Step 3: Generate randomly an initial population 

Step 4: For Generation =1 to MaximumGeneration 

Step 5: Evaluate fitness of the individuals of population 

Step 6: Apply pareto rank methods and select new 

population 

Step 7: Apply GA operators (crossover (BCRC) and 

mutation (Swap)) 

End 

Tournament selection is used to perform fitness-based 

selection of individuals for reproduction. A crossover 

operator that ensures solutions generated through genetic 
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evolution is proposed which is feasible. Hence, both 

checking of the constraints and repair mechanism can be 

avoided, thus resulting in increased efficiency. 

A. Chromosome Representation and Initial Population 

Creation 

In our approach, a chromosome representing route of 

length N, where N is the number of customers in a particular 

problem instance. In Fig. 1 N is 4. A gene in a given 

chromosome indicates the original node number assigned to 

a customer, while the sequence of genes in the chromosome 

indicates the order of visitation of customers,* indicates a 

node representing a group of clustered customers that have 

already been committed to a given vehicle [5]. Thus, the 

chromosome consists of integers, where new customers are 

directly represented on a chromosome with their 

corresponding index number and each committed customer 

is indirectly represented within one of the groups (shown by 

a * mark) representing a given deployed vehicle [6], [7]. 

 

 
Fig. 1. Chromosome representation. 

 

 
 

In this approach we used dominance-information of the 

individuals of the population (pareto ranking procedure) by 

calculating for each individual, the number of alternatives 

from which this individual is dominated [8], [9]. Individuals 

that are not being dominated by others should receive a 

higher fitness value than individuals that are being 

dominated. In Pareto ranking scheme fitness of 

chromosomes represented by pareto ranks. Solutions 

assigned rank 1 are non-dominated and those of rank i+1 

are dominated by all solutions of rank1 through i. First the 

set of non-dominated vectors in the population are assigned 

rank 1. These solutions are removed, and the remaining 

non–dominated solutions are assigned rank 2. This is 

repeated until the entire population is ranked. In pareto 

ranks we will not get a single solution, we get a set of 

solutions. Every generation in a run have a rank 1 set [2]. In 

order to determine whether an actual solution has been 

found or not we have applied diversity method. 

Diversity Method: In pareto approximation diversity is 

important because all the solutions are different. Density 

information gives us good metric to increase this diversity. 

This means probability to select solution decreases the 

greater density of solutions in its neighborhood. So for 

density information we applied nearest-neighbor Fig. 2 

method in which, distance between a given point and its’ i-

th nearest neighbor is to estimate density in its 

neighborhood. 

C. Cross Over 
 

Initial experiments using standard crossover operators 

such as Partially-Mapped-Crossover (PMX) and uniform 

order crossover (UOC) yielded non-competitive solutions. 

Hence, we utilized a problem-specific crossover operator 

that generates feasible route schedules [10]. An example of 

the procedure utilized by the proposed crossover (Best-Cost 

Route Crossover, BCRC) is given in Fig. 3. According to 

Fig. 3, two parents A and B are selected from the population. 

A route from each parent chromosome is randomly selected 

and the customer orders present in each route are removed 

from the other parent. Since * marks represent existing 

vehicles, their customers are left untouched [2]. This means 

only integers which represent uncommitted customers are 

reinserted into the current chromosome [11], [12]. 
 

 
Fig. 2. Nearest neighbour. 

 

Then the customers that have been removed are 

reinserted at the location which minimizes the overall cost 

of the entire tour. This requires computing the cost of 

inserting each of the remaining customers at each location 

in the chromosome without constraint  violation. If no 

insertion location for a particular customer is found, a new 

route is created. In the above Fig. 3 A and B are two parents. 

In step 1 for parent A there are three routes (r1:2 4 3 6 r2:1 9 

r3:5 7 8). Similarly in B (r1:8 7 9 r2:3 1 6 r3:2 5 4). In step 2 

we selected randomly a route from step 1 of parent A (r2:1, 

9) and  in B (r3:2 5 4). In step 3 the selected route from step 

2 of parent A i.e. (1 9), removed from parent B of the given 

routes in step 1. Similarly the selected route e from step 2 of 

parent B i.e. (2 5 4), removed from parent A of the given 

routes in step 1. In step 4 the deleted routes from parent A 

(2 5 4) and B (1 9) again inserted. From the route (2 5 4) we 

have randomly selected a route (suppose 5) again inserted to 

the route of step 3 by satisfying all the constraints, i.e. 

vehicle capacity and also after inserting there should by 

optimum solution means distance should be minimum and 

also minimum no. of vehicles. The suitable location is 

darkened in figure and there is also an arrow mark in step 6. 

After inserting the new route is created (r1:5 3 6 r2:1 9 r3:7 

8). Similarly we inserted 4 and 2. If any removed node is 

not satisfying constraints then we make a new route. 

Similarly in parent B from 1 and 9 we have randomly 

selected a customer and that we have inserted by satisfying 

all the constraints. If not satisfied make a new route. So 

finally the optimum solution we got from parent A (r1:5 3 6 

r2:1 9 4 2 r3:7 8) and B (r1:8 7 1 r2:3 6 9 r3:2 5 4) [2]. 

4 9 8 7 *   3 2 1      *    56 

A route of 4 customers (4, 9, 8, 7) Route separator 
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B. Fitness Evaluation



 
 

Fig. 3. Bes-cost route cross over. 

 

D. Mutation 

Mutation is done by doing swap mutation in Fig. 4. We 

selected any two customers from any two routes randomly 

and exchange their position after satisfying all the 

constraints. 

 

 

IV. EXPERIMENTAL RESULTS 

This section describes computational experiments carried 

out to investigate the performance of the proposed GA. By 

our given fitness function, it minimizes both number of 

vehicles and travel costs without bias. The algorithm was 

coded in mat lab and run on an Intel Pentium IV 1.6 MHz 

PC with 512 MB memory and it gives optimum result. We 

have applied MOGA to some instances from Solomon’s 

benchmark set, it gives better result. The following figures 

illustrate the progress of the genetic algorithm. Table I 

represents genetic algorithm (GA) parameters, Table II 

represents obtained results. Fig. 5 represents initial 

population, Fig. 6 represents Pareto optimal front. Fig. 7 

result for the instance C101_50 (number of vehicle=5, 

distance=378.27). Figure 8 result for the instance C201_25 

(number of vehicle=3, distance=220.91). 
  

TABLE I: GA PARAMETERS 

Parameter type Values 

Number of runs 20 

Crossover rate 90 

Mutation rate 0.10 

Selection type Tournament 2 

Crossover type  BCRC 

Mutation type  Swap 

 
TABLE II: OBTAINED RESULTS 

Solomon data set Net Value Distance 

C101_25 3 191.98 

C201_25 3 220.91 

R101_25 8 768.34 

R201_25 2 470.36 

RC101_25 4 473.89 

C101_50 5 378.27 

C201_50 2 520.90 

5  3 6  1  9 4 7 8 

4 

5  3 6  1  9 4 2 7 8 

2 

9 

8 7 1 3   6  9 2   5 4  

Step7 

step3 

step1 

step2 

Step  

44 

Step5 

Step6 

Step8 

Step9 

Step10 

Step11 

 

2   5   4 
1     9 

5   3   6  1     9 7    8 8 7 1 3    6   2   5 4  

5 
1 

A 

 3 6  1     9 7 8 8 7  3    6  2  5  4  

1     9 2   5   4 

2 4 3 6 *  1  9  *  5  7  8 8 7 9 * 3 1 6 *  2  5 4   

2  4 3  6 1     9 5   7   8 8   7   9  3   1   6  2   5   4 

B 

 3 6  1     9 7    8 8 7  3    6   2  5 4 
444  

Fig. 4. Mutation. 

Swap 

2 8 3 6 *  1  9  *  5  7  4 After exchanging 

2 4 3 6 *  1  9  *  5  7  8 
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Fig. 5. Initial population. 
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Fig. 6. Pareto optimal front. 

 

 

 

 
Fig. 8. Result for instance C201_25. 

 

 

 

V. CONCLUSION 

In this paper we presented a GA based approach for the 

static VRP. The approach was tested using problem 

instances reported in the literature, derived from publicly 

available Solomon’s benchmark data for VRP. The 

experimental results showed that the GA approach was able 

to find high quality solutions. Future goal is to generate 

larger problem instances, and further evaluate the GA’s 

performance on these problems by considering other 

objectives like time window and speed of the vehicle.  
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