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Abstract—In this paper we describe a fat-tree based 

Network-on-Chip (NOC) system that composed of processing 

nodes and communication switches. The IP node contains 

message generator and buffering. The switch uses wormhole 

technique which improved by virtual channel mechanism. The 

switch includes the following essential units: the router, 

input/output link controller units and arbitration unit. A 

discrete event simulator has been developed in C++ to analyze 

the proposed architecture. The obtained results clearly 

demonstrate both the efficiency and the applicability of fat tree 

structure to NOC design. In addition, VHDL code for the 

proposed algorithms has been prototyped in FPGA technology. 

 
Index Terms—Network-on-chip, routing, switching, fat tree.  

 

I. INTRODUCTION 

One of the important key design issues in the 

multiprocessing system-on-chips (MPSOC) paradigm is the 

interconnect topology. In the last decades point-to-point 

communication links were used because the design model 

was based on almost a single processor with support of small 

number of application specific integrated circuits (ASICs). 

Nowadays, this is not working any more because of the latest 

advances in semiconductor technologies which enable 

integrating many multiprocessing elements (IP cores) in a 

single chip. So instead of connecting the top-level SOC 

modules by routing dedicated wires, they are connected to a 

network that routes packets between them; see Fig. 1. 
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Fig. 1. Generic SOC structure 

 

This approach has the benefits of being modular, 

well-structured, flexible, and has efficient performance. In 

addition, interconnection networks are already used in many 

super-computers and parallel systems in industry and 

academia for many years. Moreover, point-to-point wiring 

between IP cores have the following disadvantages; power 

dissipation, cross talk delays due to routing inside the chip, 

and slow propagation velocity. Whereas, interconnection 
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networks had structured wiring that reduces the mentioned 

above disadvantages. Furthermore, in interconnection 

networks, when one IP block is idle, other IP blocks continue 

to make use of the network resources. Butterfly fat tree (BFT) 

and MESH architectures are typical examples of those 

interconnection networks [1], [2]. Interconnection networks 

can be classified according to different characteristics. Their 

topologies fall into two classes static (or direct) and dynamic 

(or indirect). In the static interconnection networks, point to 

point links interconnect the network nodes in some fixed 

regular topology such as mesh or hypercube. The dynamic 

interconnection networks allow the interconnection pattern 

between the network nodes to be varied dynamically: this is 

accomplished by using some form of switching. Examples of 

dynamic networks include fat trees and multistage networks. 

In such systems, routing algorithms and switching techniques 

are the two main factors that control network latency and 

throughput, and realize the overall network performance [2].  

In this paper, we will describe a simulator for NOC system 

based on fat tree interconnection network architecture. The 

system clearly illustrates the traffic movement on the 

flit-level step-by-step between IP nodes through the 

communication switches. The simulator can be used to 

evaluate the effect of: routing algorithm; virtual channel 

mechanism; buffer management, message latency and system 

performance. The results obtained obviously demonstrate 

that: the fat tree interconnection networks can offer an 

attractive alternative solution for NOC interconnection 

because of its scalable structure and the bandwidth available. 

This paper is organized as follows: definitions and terms 

are given in Section II. Commonly used switching techniques 

are briefly described in Section III. Related work is presented 

in Section IV. Fat tree construction is given in Section V. 

Section VI explains some details of our proposed switch. 

Section VII outlines the simulator structure. Finally, results 

are given in Section VII. 

 

II. DEFINITIONS AND TERMS 

The following terms and definitions are needed to 

understand the paper context [1], [3], [4]: 

Core (node): defined as any reusable design block, i.e. can 

be used as building blocks within chip designs in hardware or 

a sub-component in software programs. We use the term IP 

(Intellectual Property) to refer to copyrights. In this paper we 

are using the following names interchangeably (IP node, IP 

block, IP core, logic core, component, processing element). 

Switch: it is responsible for forwarding (switching and 

routing) packets from sender to the intended destination 

using suitable techniques to guarantee this function with 
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proper flow control and reasonable quality of services.  

Message: is a unit of information from the programmer‟s 

perspective. The size is limited only by the user‟s memory 

space. See Fig. 2. 

Packet: is the smallest unit of communication containing 

routing information (e.g., destination address) and the 

sequencing information in its header. Its size is of order of 

hundreds or thousands of bytes or words. It consists of header 

flit and data flits. 

Flit: the smallest unit of information at link layer and its 

size of one of several words. Flits can be several types and flit 

exchange protocol typically requires several cycles. See Fig. 

2 

Phit: it is the smallest unit of information at physical layer, 

which is transferred across one physical channel in one cycle. 

 

Fig. 2. Message structure (packet, flit, phit) 

 

Routing algorithm: it determines the path selected by a 

packet to reach its destination, it must decide within each 

intermediate router which output channel(s) are to be selected 

to forward incoming packets. 

Switching mechanism: it determines how network 

resources are allocated for data transmission, it is the actual 

mechanism that removes data from input channels and places 

them on the output channels. 

Flow control: it defines the synchronization protocol 

between sender and receiver nodes which determines actions 

to be taken in case of full buffers, busy output channels, faults, 

deadlocks, etc. Flow control has two levels: 

 

where P is the total number of messages reaching their 

destinations and Li is the latency of each message [1]. 

 

III. SWITCHING TECHNIQUES 

In this paragraph we are going to describe commonly used 

switching mechanisms. In circuit switching as in [2] ,[3], the 

process starts with transmitting routing probe into the 

network, which contains destination address and other 

control information to reserve the physical channel between 

source and destination, as it is transmitted through 

intermediate routers the path is setup. And when it reaches its 

destination, the source starts full message transmission at the 

full bandwidth of the reserved path. The disadvantage of this 

technique is the inefficient use of network resources because 

of path reservation between the sender and the receiver. In 

packet switching [1], [2], the message is divided into several 

fixed length packets, every packet consists of several flits, 

starting with the header flit, every channel has input and 

output buffer for one entire packet and each packet is routed 

individually from source to destination. Routing decisions 

are made by each intermediate router only after the whole 

packet was completely buffered in its input buffer. This is 

mechanism is also called store and forward (SAF). The 

disadvantage of this technique is its high storage 

requirements. In virtual cut through [1], [2], (VCT) messages 

are split into packets and routers have buffers for the whole 

packets as in packet switching. However, instead of waiting 

for the whole packet to be buffered, the packet is effectively 

pipelined through successive routers as a loose chain of flits. 

The wormhole switching [1], [2] works as a VCT scheme. 

The main difference is that, every router has a small buffer 

for one or few flits. The sequence of buffers and links 

occupied by flits of a given packet form a wormhole in the 

network. Wormhole routing allows building simple, small, 

cheap, and fast routers. Therefore, it is the most common 

switching technique used nowadays in commercial machines 

[5], [6]. The problem of degradation of throughput in 

wormhole switching is solved by the virtual channel concept 

[1], [2]. A physical channel may support several virtual 

channels multiplexed (time-multiplex) across the physical 

channel. They will all have their own buffers, but they will 

share one single physical channel medium. Each 

unidirectional virtual channel can hold, for example (see Fig. 

3), four flits of the same packet, mixing flits from different 

packets is not allowed. Packets can share the physical 

channel on a flit-by-flit basis; the physical channel protocol 

must be able to distinguish between the virtual channels.  

 
 

Fig. 3. Physical channel divided into four (yellow, green, blue and red) 

virtual channels 

 

However, keeping adding virtual channels to further 

reduce the blocking; will result in increased network 

throughput in flits/second, due to increased physical channel 

utilization. However, increasing channel multiplexing 

reduces the data rate of individual message and increasing 

message latency. Nevertheless, general network throughput 

will be increased, if the number of virtual channels is 

reasonable, as we will see in our experiments graphs. 
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Latency: is defined as the time elapses between the 

injection of header flit of a certain message into the network 

at source node and the arrival of the tale flit of the same 

message at the destination node. Average message latency 

can be calculated by the relation:

Average Latency = 
P

Li
Pi

i




1

 Packet flow control: it performs synchronization between 

sender and receiver at the level of packet, ensuring 

successfully transfer and availability of buffer space at the 

receiver. 

 Physical channel flow control: it implements the 

multi-cycle packet flow control and it breaks packets into flits. 

Here, even the flit may take several cycles to transfer; hence, 

the most elementary unit of information is the phit

(physically).



  

IV. RELATED WORK 

In 1985, Leiserson had proved formally that fat tree is the 

most cost-efficient for VLSI realizations [7]. Since then fat 

tree has got great attention and has been appeared in some 

super-computer architectures [1], [2]. In [3] ,[8] authors have 

been investigated how butterfly fat tree (BFT) as a structured 

network-based design paradigm can be easily meet specific 

clock cycle requirements when used as the overall MP-SOC 

interconnect architecture. The work illustrated that this type 

of interconnection networks can offer an attractive 

alternative solution for SOC interconnection that does not 

suffer from the non-scalability aspect of the buses in regards 

to the clock cycle problems [8]. However, their work in that 

paper is concentrated on wiring and clock constraints of the 

system. Whereas in [3] they described how the use of virtual 

channels can improve the system throughput with an extra 

increase of switches silicon area. Our work differs with the 

one described in [3] in the arbitration method, and routing 

algorithm and in the modular design of our switch. Our 

design also, includes separate set of algorithms for internal 

switch functionality such as input/output link controller and 

virtual channel management procedures. Moreover, our 

design differs also in the way of instantiating fat tree overall 

structure [4]. 

 

V. FAT TREE INTERCONNECTION ARCHITECTURE 

The Fat tree is a type of interconnection network, where 

the processors (processing cores or IP cores) are 

interconnected by a tree structure, in which the IP cores are at 

the leaves of the tree, and the interior nodes are switches. An 

advantage of a tree structure is that communication distances 

are short for local communication patterns. Moreover, the fat 

tree is a tree structure with redundant interconnections on its 

branches; the number of interconnections increases as the 

root is reached. The purpose is to increase the bandwidth at 

higher levels, where it is most needed. Because it is not 

feasible to provide a channel between every pair of nodes, the 

network channels are shared among the IP nodes. Messages 

are used to communicate between sending and receiving 

nodes, which means construction of paths that consisting 

some intermediate switches (for routing purposes) along the 

specified paths from the sources to the destinations. Fig. 4 

shows a butterfly fat tree with 64 IP blocks (cores) 

interconnected by suitable number of switches in 

intermediate levels. The IP nodes are placed at leaves in zero 

level and switches are placed in higher levels. We can 

calculate number of levels by the relation: 

NL 4log , Where N is the number of IP nodes.  

In our network we have 3 levels, and the switches are 

placed in levels ranging from l > 0 and l >= L. Each IP node is 

denoted by pair (i, 0) where i is ranging from (0-63) which 

denotes the index of the IP node in the level zero, each IP 

node has two ports to connect with its parent switches, each 

port has two unidirectional physical links. Each level of the 

network has the number 
42

1
)1(

N
l




 of the switches and the total 

number of switches in the network is the summation of the 

number of switches in each level. Each switch is represented 

 

For example, if we have the switch (15, 1), then from the 

above relations it has the parents: 

P1=6 and p2=7. And each switch has four children 

(switches or nodes).  

 

Fig. 4. Butterfly fat tree structure with 64 IP cores 

 

VI. SWITCH DESIGN 

The switch is the basic component of the fat tree NOC and 

it performs the functions of routing and switching. The 

switch also ensures the storing of packets (the packet consists 

group of flits) to be transferred to other intermediate IP cores 

in the fat tree network. Each switch has two parent switches 

except for the top level switches and four children switches 

except for the lowest level switches. Lowest level switches 

have four children IP nodes. Each switch is bidirectional; 

each port is associated with a pair of opposite unidirectional 

channels, one for inputs and one for outputs. Fig. 5 illustrates 

the main components of the proposed switch. 
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Fig. 5. The top-level of the switch structure 

Each switch is constructed from the following entities: 
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by a pair of coordinates (i, l), where i represents the index of 
the switch in the level and l represents the level of the switch, 
the pair (5,2) represents switch no. 5 in the level no. 2. Each 
IP node at the coordinate (i, 0) has the parent at coordinate (p, 
1) and p=i/4. For example if we have the IP Node (62, 0), it 
has the parent switch (15, 1). Each switch has two parent (p) 
coordinates (p1, l+1) and (p2, l+1) 

)1(

)2(
)1(

212

2mod2
2

1

−

−
+

+=

+×=

l

Il
l

pp

iip



  

A. Arbitration Unit 

The switch includes an arbitration unit that is used to let 

one of the competing input messages grant access to the 

output port. The proposed arbitration unit used round-robin 

strategy with the help of mapping table. The mapping table is 

a data structure that is used to aid the arbitration process, and 

it is composed of an array of integers having the size of 

noOfPhysicalLink × noOfVirtualLink. This array is used for 

switching in crossbar switch i.e. it determines the path from 

an input buffer to the output buffer. At index i of this array a 

value x (>=0) is stored for the path selection. Here x is the 

output physical link identifier and i is the input virtual 

channel identifier. That means the data from input port i is 

switched (transferred) to the output port x. the input and 

output physical and virtual channels are identified as below: 

Input physical channel number = i DIV number of virtual link 

Input virtual channel number = i MOD number of virtual link 

Output physical channel number = x 

After the output port has been granted by the message, the 

message will be switched to that output port by an established 

link of the switch between the input link and the output link. 

When multiple messages simultaneously request the same 

link, the arbitration component must provide arbitration 

between them. If the requested link is busy, the incoming 

message remains in the current link. The arbitration unit is 

invoked whenever the arbitration is needed on a certain link.  

 

 

 

 

B. Input Link Controller Unit 

Link controllers interconnect switches and define the fat 

tree topology, link controllers can be divided into input link 

controllers and output link controllers. Input link controller 

unit is responsible for receiving incoming flits from different 

IP‟s and forwarding them to the associated units, with the 

help of using virtual channel technique. Moreover, it controls 

the input buffer, which composed of a FIFO memory for 

storing one or more flits; that are required for storing 

transferred data until the next channel is available. As we are 

using wormhole switching, virtual channel technique is 

implemented to avoid deadlock, in wormhole switching input 

buffer unit holds as many buffer objects as many virtual 

channels are required. Fig. 6 illustrates the flowchart of the 

procedure that is used in the designed switch to move flits 

inside the switch from the input buffers to the output buffers, 

making them ready to be sent out of the switch. However, the 

input link controller is responsible for:- 

1) Checking the availability of free input virtual channel, if 

exists then it returns free virtual channel number; 

2) Managing the sending out of flit that is available in input 

virtual channel buffer; 

3) Helping do routing function by setting the outgoing 

physical link number that the flit occupying in the virtual 

channel must follow to reach the destination; 

4) Keeping track of the outgoing physical link number that 

is used by flit occupying the virtual channel now; 

5) Setting the path up using the outgoing virtual channel 

number for the flit occupying the virtual channel ; 

6) Sending the flit by passing the front flit in the specified 

input virtual channel on the corresponding input 

physical link, and. 

7) Doing Buffer management. 
start
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Fig. 6. Procedure of moving flit from switch input buffer to switch output 

buffer 

C. Output Link Controller Unit 

This unit is responsible for receiving the incoming flits 

from the input controlling unit (after determining the 

appropriate output link controller number). Then, it forwards 

them to destination or to other switches, with the help of 

using virtual channel technique. Buffers at a specified virtual 

channel are used to help output link in performing its 

functions. 

D. Routing Unit 

It is the basic component of the switch that is responsible 

for applying the designed routing algorithm described below 

on the incoming flits to decide which output port to be used in 

the next step for forwarding (moving) the flit to the next 

switch or to the destination IP block. Least common ancestor 
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The arbitration algorithm
Input: PriorityArray, Physical link number which needs 
arbitration 

NoOfVirtualLinks 
Output: Selected Virtual Channel (vc) 
Procedure: 
Start =Pysical link number×NoOfVirtualLinks 
Min=PriorityArray[Start] 
vc=0 
for i= start+1 To i = start +  

NoOfVirtualLinks; 
I = i+1; 
if PriorityArray[i]<min then 

     min=PriorityArray[i]; 
     vc=i MOD NoOfVirtualLinks; 
endif 

endfor 
return vc 
End procedure

PriorityArray Dimension: NoOfPhysicalLinks × 



  

algorithm is used in our design as a routing algorithm, as seen 

below [1], [4]. In addition, a set of functions and procedures 

have been developed to assign virtual channels to the flits in 

the generated message (packets), and to do flits movement 

internally/externally, in the switch to support the efficiency 

of the routing algorithm. However, Fig. 7 describes the steps 

of the procedure that is used to assign virtual channels to the 

transmitted message's flits list. 

Routing algorithm 

Input: SwitchLevel, SwitchIndex, Destination 

Output: Selected output channel 

Procedure: 

Get switch„s index 

     Get Switch‟s Level 

Calculate low range and high range using the formula 

1)2(

)2(
2

2

2
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

lSwitchLeveRangeLowRangeHigh

lSwitchLeve
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     If destination>=Low Range and Destination <=High 

Range then 1 RangeLowRangeHighNumberofIP  

Childport=NumberIP/NumberChildPorts 

Count=1 

While Destination >=(Low Range + count ×Child Port) 

    Count = Count + 1 

While end 

     Count = Count + 1 

  Return Count 

Else 

  Get Random Parent Port Number 

Endif  

End Procedure 
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Fig. 7. Flowchart of procedure of assigning virtual channels to the flits of the 

generated message list 

VII. BUILDING THE FAT TREE SIMULATOR STRUCTURE  

The network is the main entity in which all nodes and 

switches are connected to perform the functionality of 

generating, transferring, routing, switching and receiving of 

messages in the form of flits, see Fig. 8, which illustrates flit 

types and their structures. Network object contains list of IP 

nodes and a list of communicating switches. The network 

module is performing the task of generating the fat-tree NOC 

architecture, setting adjacent switches, moving flits through 

the network from output buffer to parent switches input 

buffer, moving flits from switches output buffers to nodes 

input buffers.  

A. IP Node Structure 

The IP nodes of the fat tree network are placed at the 

leaves in the level zero and connected with parent switches 

with two unidirectional physical links. In our proposed fat 

tree each IP node generates its own messages that are 

required to be sent to certain destinations. Those messages 

pass through the fat tree to reach the desired destinations. 

Each message has random data and it is generated at different 

random time stamps and has random message lengths. Each 

switch has six physical links, two for parent ports and four for 

children ports, each physical link has four virtual channels 

and each channel can hold of four flits per virtual channel. 

Each flit contains a field denotes the flit type, namely header, 

data or tail. The second field contains the virtual channel 

identifier (VCID). The third field contains packet length 

information, i.e., the number of flits in the corresponding 

packet. The next two fields give source and destination 

addresses. Header flit contents differentiate from data or tale 

flits, header flit contains the control information required to 

establish the path of the message from source to destination. 

 
Header Flit 

 

Data Flit 

 

Tale Flit 

 

Fig. 8. Flit types 

B. Packet Generator 

For simulation purposes we have created a unit in the C++ 

code named as a packet generator in the IP node architecture. 

The packet generator unit is in charge of generating data 

packets in random lengths. The packets are then passed from 

nodes to other nodes through using different switches of the 

fat tree NOC model.  

 

VIII. RESULTS 

A discrete event simulator has been developed in C++ to 

analyze the proposed fat tree NOC architecture. In addition, a 

complete VHDL code for the proposed algorithms has been 
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also written to demonstrate the correctness of the proposed 

system in FPGA chip (partially). Fig. 9 illustrates an example 

of packets (flits) flowing in the simulator when we send a 

message from IP node (3) to IP node (6) in the fat tree NOC 

example of 16 nodes for simplicity only (the system can 

handle even 64 nodes). For every simulation cycle the 

simulator performs the following operations: 

1) Move flits from every node to adjacent switches; 

2) Move flits from input buffer to output buffer of the 

switches; 

3) Move flits from output buffer of the switch to the input 

buffer of the adjacent switches and/or nodes; 

4) Move flits from the input buffer of the resource node to 

the received message list of that node; 

5) At the end of the execution, the simulator calculates the 

network throughput on the level of switch; 

Of course the simulator displays other parameters during 

the simulation such as number of IP nodes of fat tree structure, 

traversed switches, virtual channels/physical channels and 

the status of buffering inside the switches. At the end, the 

system calculates message latency, and network throughput. 

The simulator illustrates also traffic movement on the flit 

level by showing it step by step, for every IP node and switch. 

In traffic movement we can see many details about some flits 

from a particular packet (from a message) such as type of flit, 

current position of the flit i.e. all details of switching and 

routing (switch no., switch level, virtual channel no., physical 

channel no., received flit status, flit movement inside the 

switch from its input to its output ports, etc). Fig. 10 shows 

the relation between the system throughput and the number 

of virtual channels employed in the switch. We have tested 

the performance of the network throughput having a single 

buffer for each physical channel and having several buffers 

per physical channel. The results have shown increasing of 

switch throughput when the switch has two and four buffers 

per physical link and if the number of buffers increased, we 

will see that the switch throughput will not change 

significantly. Fig. 11 plotted the average message latency vs. 

the number of virtual channels. From the graph we can 

conclude that increasing number of virtual channels increases 

the message latency, due to switching between virtual 

channels. 
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Fig. 9. Example: flit (3,6) is routed and switched from input link (5,0) to 

output link (2,0) 
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Fig. 10. Throughput vs. number of virtual channels 
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Fig. 11. Average message latency vs. virtual channels 

 

IX. CONCLUSION 

Eventually, we have successfully proven the correctness of 

all proposed algorithms and procedures of the modular NOC 

system simulator. The performance analysis of the network 

throughput, the virtual channel effect and message latency 

demonstrates the suitability of such system in modeling and 

simulating NOCs systematically. Also, a complete VHDL 

code has been written, simulated, and partially prototyped in 

FPGA technology. Our current work is to develop an 

extension to our work to support Mesh interconnection 

networks. 
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