



Abstract—In this paper we describe a fat-tree based

Network-on-Chip (NOC) system that composed of processing

nodes and communication switches. The IP node contains

message generator and buffering. The switch uses wormhole

technique which improved by virtual channel mechanism. The

switch includes the following essential units: the router,

input/output link controller units and arbitration unit. A

discrete event simulator has been developed in C++ to analyze

the proposed architecture. The obtained results clearly

demonstrate both the efficiency and the applicability of fat tree

structure to NOC design. In addition, VHDL code for the

proposed algorithms has been prototyped in FPGA technology.

Index Terms—Network-on-chip, routing, switching, fat tree.

I. INTRODUCTION

One of the important key design issues in the

multiprocessing system-on-chips (MPSOC) paradigm is the

interconnect topology. In the last decades point-to-point

communication links were used because the design model

was based on almost a single processor with support of small

number of application specific integrated circuits (ASICs).

Nowadays, this is not working any more because of the latest

advances in semiconductor technologies which enable

integrating many multiprocessing elements (IP cores) in a

single chip. So instead of connecting the top-level SOC

modules by routing dedicated wires, they are connected to a

network that routes packets between them; see Fig. 1.

Core 1

SW

Core 2

HW

Core 3
RAM/

ROM

Interconnection network

Controller

(in HDL) or

Microprocessor

I
N

T
E

R
F

A
C

E

I/O

Core 4

DSP

Core 5

(IP)
MPEG

Fig. 1. Generic SOC structure

This approach has the benefits of being modular,

well-structured, flexible, and has efficient performance. In

addition, interconnection networks are already used in many

super-computers and parallel systems in industry and

academia for many years. Moreover, point-to-point wiring

between IP cores have the following disadvantages; power

dissipation, cross talk delays due to routing inside the chip,

and slow propagation velocity. Whereas, interconnection

Manuscript received October 2, 2012 27, 2013.

The authors are with the Computer Department, Faculty of Science,

Tripoli University, Tripoli, Libya (e-mail: aziz239@yahoo.com,

asma44441@yahoo.com).

networks had structured wiring that reduces the mentioned

above disadvantages. Furthermore, in interconnection

networks, when one IP block is idle, other IP blocks continue

to make use of the network resources. Butterfly fat tree (BFT)

and MESH architectures are typical examples of those

interconnection networks [1], [2]. Interconnection networks

can be classified according to different characteristics. Their

topologies fall into two classes static (or direct) and dynamic

(or indirect). In the static interconnection networks, point to

point links interconnect the network nodes in some fixed

regular topology such as mesh or hypercube. The dynamic

interconnection networks allow the interconnection pattern

between the network nodes to be varied dynamically: this is

accomplished by using some form of switching. Examples of

dynamic networks include fat trees and multistage networks.

In such systems, routing algorithms and switching techniques

are the two main factors that control network latency and

throughput, and realize the overall network performance [2].

In this paper, we will describe a simulator for NOC system

based on fat tree interconnection network architecture. The

system clearly illustrates the traffic movement on the

flit-level step-by-step between IP nodes through the

communication switches. The simulator can be used to

evaluate the effect of: routing algorithm; virtual channel

mechanism; buffer management, message latency and system

performance. The results obtained obviously demonstrate

that: the fat tree interconnection networks can offer an

attractive alternative solution for NOC interconnection

because of its scalable structure and the bandwidth available.

This paper is organized as follows: definitions and terms

are given in Section II. Commonly used switching techniques

are briefly described in Section III. Related work is presented

in Section IV. Fat tree construction is given in Section V.

Section VI explains some details of our proposed switch.

Section VII outlines the simulator structure. Finally, results

are given in Section VII.

II. DEFINITIONS AND TERMS

The following terms and definitions are needed to

understand the paper context [1], [3], [4]:

Core (node): defined as any reusable design block, i.e. can

be used as building blocks within chip designs in hardware or

a sub-component in software programs. We use the term IP

(Intellectual Property) to refer to copyrights. In this paper we

are using the following names interchangeably (IP node, IP

block, IP core, logic core, component, processing element).

Switch: it is responsible for forwarding (switching and

routing) packets from sender to the intended destination

using suitable techniques to guarantee this function with

Modeling and Simulating Network-on-Chip Designs: A

Case Study of Fat Tree Interconnection Architecture

Azeddien M. Sllame and Asma Alasar

International Journal of Computer Theory and Engineering, Vol. 5, No. 5, October 2013

823DOI: 10.7763/IJCTE.2013.V5.805

; revised January

proper flow control and reasonable quality of services.

Message: is a unit of information from the programmer‟s

perspective. The size is limited only by the user‟s memory

space. See Fig. 2.

Packet: is the smallest unit of communication containing

routing information (e.g., destination address) and the

sequencing information in its header. Its size is of order of

hundreds or thousands of bytes or words. It consists of header

flit and data flits.

Flit: the smallest unit of information at link layer and its

size of one of several words. Flits can be several types and flit

exchange protocol typically requires several cycles. See Fig.

2

Phit: it is the smallest unit of information at physical layer,

which is transferred across one physical channel in one cycle.

Fig. 2. Message structure (packet, flit, phit)

Routing algorithm: it determines the path selected by a

packet to reach its destination, it must decide within each

intermediate router which output channel(s) are to be selected

to forward incoming packets.

Switching mechanism: it determines how network

resources are allocated for data transmission, it is the actual

mechanism that removes data from input channels and places

them on the output channels.

Flow control: it defines the synchronization protocol

between sender and receiver nodes which determines actions

to be taken in case of full buffers, busy output channels, faults,

deadlocks, etc. Flow control has two levels:

where P is the total number of messages reaching their

destinations and Li is the latency of each message [1].

III. SWITCHING TECHNIQUES

In this paragraph we are going to describe commonly used

switching mechanisms. In circuit switching as in [2] ,[3], the

process starts with transmitting routing probe into the

network, which contains destination address and other

control information to reserve the physical channel between

source and destination, as it is transmitted through

intermediate routers the path is setup. And when it reaches its

destination, the source starts full message transmission at the

full bandwidth of the reserved path. The disadvantage of this

technique is the inefficient use of network resources because

of path reservation between the sender and the receiver. In

packet switching [1], [2], the message is divided into several

fixed length packets, every packet consists of several flits,

starting with the header flit, every channel has input and

output buffer for one entire packet and each packet is routed

individually from source to destination. Routing decisions

are made by each intermediate router only after the whole

packet was completely buffered in its input buffer. This is

mechanism is also called store and forward (SAF). The

disadvantage of this technique is its high storage

requirements. In virtual cut through [1], [2], (VCT) messages

are split into packets and routers have buffers for the whole

packets as in packet switching. However, instead of waiting

for the whole packet to be buffered, the packet is effectively

pipelined through successive routers as a loose chain of flits.

The wormhole switching [1], [2] works as a VCT scheme.

The main difference is that, every router has a small buffer

for one or few flits. The sequence of buffers and links

occupied by flits of a given packet form a wormhole in the

network. Wormhole routing allows building simple, small,

cheap, and fast routers. Therefore, it is the most common

switching technique used nowadays in commercial machines

[5], [6]. The problem of degradation of throughput in

wormhole switching is solved by the virtual channel concept

[1], [2]. A physical channel may support several virtual

channels multiplexed (time-multiplex) across the physical

channel. They will all have their own buffers, but they will

share one single physical channel medium. Each

unidirectional virtual channel can hold, for example (see Fig.

3), four flits of the same packet, mixing flits from different

packets is not allowed. Packets can share the physical

channel on a flit-by-flit basis; the physical channel protocol

must be able to distinguish between the virtual channels.

Fig. 3. Physical channel divided into four (yellow, green, blue and red)

virtual channels

However, keeping adding virtual channels to further

reduce the blocking; will result in increased network

throughput in flits/second, due to increased physical channel

utilization. However, increasing channel multiplexing

reduces the data rate of individual message and increasing

message latency. Nevertheless, general network throughput

will be increased, if the number of virtual channels is

reasonable, as we will see in our experiments graphs.

Figu Fig. (1)

Generic SOC

structure

re (2.21)

Communication

Units

International Journal of Computer Theory and Engineering, Vol. 5, No. 5, October 2013

824

Latency: is defined as the time elapses between the

injection of header flit of a certain message into the network

at source node and the arrival of the tale flit of the same

message at the destination node. Average message latency

can be calculated by the relation:

Average Latency =
P

Li
Pi

i




1

 Packet flow control: it performs synchronization between

sender and receiver at the level of packet, ensuring

successfully transfer and availability of buffer space at the

receiver.

 Physical channel flow control: it implements the

multi-cycle packet flow control and it breaks packets into flits.

Here, even the flit may take several cycles to transfer; hence,

the most elementary unit of information is the phit

(physically).

IV. RELATED WORK

In 1985, Leiserson had proved formally that fat tree is the

most cost-efficient for VLSI realizations [7]. Since then fat

tree has got great attention and has been appeared in some

super-computer architectures [1], [2]. In [3] ,[8] authors have

been investigated how butterfly fat tree (BFT) as a structured

network-based design paradigm can be easily meet specific

clock cycle requirements when used as the overall MP-SOC

interconnect architecture. The work illustrated that this type

of interconnection networks can offer an attractive

alternative solution for SOC interconnection that does not

suffer from the non-scalability aspect of the buses in regards

to the clock cycle problems [8]. However, their work in that

paper is concentrated on wiring and clock constraints of the

system. Whereas in [3] they described how the use of virtual

channels can improve the system throughput with an extra

increase of switches silicon area. Our work differs with the

one described in [3] in the arbitration method, and routing

algorithm and in the modular design of our switch. Our

design also, includes separate set of algorithms for internal

switch functionality such as input/output link controller and

virtual channel management procedures. Moreover, our

design differs also in the way of instantiating fat tree overall

structure [4].

V. FAT TREE INTERCONNECTION ARCHITECTURE

The Fat tree is a type of interconnection network, where

the processors (processing cores or IP cores) are

interconnected by a tree structure, in which the IP cores are at

the leaves of the tree, and the interior nodes are switches. An

advantage of a tree structure is that communication distances

are short for local communication patterns. Moreover, the fat

tree is a tree structure with redundant interconnections on its

branches; the number of interconnections increases as the

root is reached. The purpose is to increase the bandwidth at

higher levels, where it is most needed. Because it is not

feasible to provide a channel between every pair of nodes, the

network channels are shared among the IP nodes. Messages

are used to communicate between sending and receiving

nodes, which means construction of paths that consisting

some intermediate switches (for routing purposes) along the

specified paths from the sources to the destinations. Fig. 4

shows a butterfly fat tree with 64 IP blocks (cores)

interconnected by suitable number of switches in

intermediate levels. The IP nodes are placed at leaves in zero

level and switches are placed in higher levels. We can

calculate number of levels by the relation:

NL 4log , Where N is the number of IP nodes.

In our network we have 3 levels, and the switches are

placed in levels ranging from l > 0 and l >= L. Each IP node is

denoted by pair (i, 0) where i is ranging from (0-63) which

denotes the index of the IP node in the level zero, each IP

node has two ports to connect with its parent switches, each

port has two unidirectional physical links. Each level of the

network has the number
42

1
)1(

N
l




 of the switches and the total

number of switches in the network is the summation of the

number of switches in each level. Each switch is represented

For example, if we have the switch (15, 1), then from the

above relations it has the parents:

P1=6 and p2=7. And each switch has four children

(switches or nodes).

Fig. 4. Butterfly fat tree structure with 64 IP cores

VI. SWITCH DESIGN

The switch is the basic component of the fat tree NOC and

it performs the functions of routing and switching. The

switch also ensures the storing of packets (the packet consists

group of flits) to be transferred to other intermediate IP cores

in the fat tree network. Each switch has two parent switches

except for the top level switches and four children switches

except for the lowest level switches. Lowest level switches

have four children IP nodes. Each switch is bidirectional;

each port is associated with a pair of opposite unidirectional

channels, one for inputs and one for outputs. Fig. 5 illustrates

the main components of the proposed switch.

Input/Output Link

Controller

Input/Output Link

Controller

Switch

Routing &

Arbitration Unit

VC#1

VC#4

VC#3

VC#2

VC#1

VC#4

VC#3

VC#2

VC#1

VC#4

VC#3

VC#2

VC#1

VC#4

VC#3

VC#2

In
/o

u
t
p

h
y
s
ic

a
l
lin

k

In
/o

u
t
p

h
y
s
ic

a
l
lin

k

In
/o

u
t
p

h
y
s
ic

a
l
lin

k

In
/o

u
t
p

h
y
s
ic

a
l
lin

k

Fig. 5. The top-level of the switch structure

Each switch is constructed from the following entities:

International Journal of Computer Theory and Engineering, Vol. 5, No. 5, October 2013

825

by a pair of coordinates (i, l), where i represents the index of
the switch in the level and l represents the level of the switch,
the pair (5,2) represents switch no. 5 in the level no. 2. Each
IP node at the coordinate (i, 0) has the parent at coordinate (p,
1) and p=i/4. For example if we have the IP Node (62, 0), it
has the parent switch (15, 1). Each switch has two parent (p)
coordinates (p1, l+1) and (p2, l+1)

)1(

)2(
)1(

212

2mod2
2

1

−

−
+

+=

+×=

l

Il
l

pp

iip

A. Arbitration Unit

The switch includes an arbitration unit that is used to let

one of the competing input messages grant access to the

output port. The proposed arbitration unit used round-robin

strategy with the help of mapping table. The mapping table is

a data structure that is used to aid the arbitration process, and

it is composed of an array of integers having the size of

noOfPhysicalLink × noOfVirtualLink. This array is used for

switching in crossbar switch i.e. it determines the path from

an input buffer to the output buffer. At index i of this array a

value x (>=0) is stored for the path selection. Here x is the

output physical link identifier and i is the input virtual

channel identifier. That means the data from input port i is

switched (transferred) to the output port x. the input and

output physical and virtual channels are identified as below:

Input physical channel number = i DIV number of virtual link

Input virtual channel number = i MOD number of virtual link

Output physical channel number = x

After the output port has been granted by the message, the

message will be switched to that output port by an established

link of the switch between the input link and the output link.

When multiple messages simultaneously request the same

link, the arbitration component must provide arbitration

between them. If the requested link is busy, the incoming

message remains in the current link. The arbitration unit is

invoked whenever the arbitration is needed on a certain link.

B. Input Link Controller Unit

Link controllers interconnect switches and define the fat

tree topology, link controllers can be divided into input link

controllers and output link controllers. Input link controller

unit is responsible for receiving incoming flits from different

IP‟s and forwarding them to the associated units, with the

help of using virtual channel technique. Moreover, it controls

the input buffer, which composed of a FIFO memory for

storing one or more flits; that are required for storing

transferred data until the next channel is available. As we are

using wormhole switching, virtual channel technique is

implemented to avoid deadlock, in wormhole switching input

buffer unit holds as many buffer objects as many virtual

channels are required. Fig. 6 illustrates the flowchart of the

procedure that is used in the designed switch to move flits

inside the switch from the input buffers to the output buffers,

making them ready to be sent out of the switch. However, the

input link controller is responsible for:-

1) Checking the availability of free input virtual channel, if

exists then it returns free virtual channel number;

2) Managing the sending out of flit that is available in input

virtual channel buffer;

3) Helping do routing function by setting the outgoing

physical link number that the flit occupying in the virtual

channel must follow to reach the destination;

4) Keeping track of the outgoing physical link number that

is used by flit occupying the virtual channel now;

5) Setting the path up using the outgoing virtual channel

number for the flit occupying the virtual channel ;

6) Sending the flit by passing the front flit in the specified

input virtual channel on the corresponding input

physical link, and.

7) Doing Buffer management.
start

Select VC by arbiter

Get free output VC of the

output port from the mapping

Has flit to

send (VC)?

Header or

Data flit

END

Mapping exist

Got free

output VC

Update path info array

Add flit to output buffer

Delete flit from input buffer

END

Getting mapping INFO from

mapping table related to VC

Get VC no. from path INFO

If VC has free

slot

Block flit in input VC

END

No

No

No

YES

Get

route
No

No

Fig. 6. Procedure of moving flit from switch input buffer to switch output

buffer

C. Output Link Controller Unit

This unit is responsible for receiving the incoming flits

from the input controlling unit (after determining the

appropriate output link controller number). Then, it forwards

them to destination or to other switches, with the help of

using virtual channel technique. Buffers at a specified virtual

channel are used to help output link in performing its

functions.

D. Routing Unit

It is the basic component of the switch that is responsible

for applying the designed routing algorithm described below

on the incoming flits to decide which output port to be used in

the next step for forwarding (moving) the flit to the next

switch or to the destination IP block. Least common ancestor

International Journal of Computer Theory and Engineering, Vol. 5, No. 5, October 2013

826

The arbitration algorithm
Input: PriorityArray, Physical link number which needs
arbitration

NoOfVirtualLinks
Output: Selected Virtual Channel (vc)
Procedure:
Start =Pysical link number×NoOfVirtualLinks
Min=PriorityArray[Start]
vc=0
for i= start+1 To i = start +

NoOfVirtualLinks;
I = i+1;
if PriorityArray[i]<min then

 min=PriorityArray[i];
 vc=i MOD NoOfVirtualLinks;
endif

endfor
return vc
End procedure

PriorityArray Dimension: NoOfPhysicalLinks ×

algorithm is used in our design as a routing algorithm, as seen

below [1], [4]. In addition, a set of functions and procedures

have been developed to assign virtual channels to the flits in

the generated message (packets), and to do flits movement

internally/externally, in the switch to support the efficiency

of the routing algorithm. However, Fig. 7 describes the steps

of the procedure that is used to assign virtual channels to the

transmitted message's flits list.

Routing algorithm

Input: SwitchLevel, SwitchIndex, Destination

Output: Selected output channel

Procedure:

Get switch„s index

 Get Switch‟s Level

Calculate low range and high range using the formula

1)2(

)2(
2

2

2

)1(






lSwitchLeveRangeLowRangeHigh

lSwitchLeve
xSwitchInde

RangeLow
lSwitchLeve

 If destination>=Low Range and Destination <=High

Range then 1 RangeLowRangeHighNumberofIP

Childport=NumberIP/NumberChildPorts

Count=1

While Destination >=(Low Range + count ×Child Port)

 Count = Count + 1

While end

 Count = Count + 1

 Return Count

Else

 Get Random Parent Port Number

Endif

End Procedure

start

i=0

If I < sizeof

(GenMsgList)
END

Header or

Data flit

Got free

output VC

J=I+1

Set VC no. to Flit in

GenMsgList (j)

Get flit from GenMsgList(i)

Set VC no. to flit in GenMsgList(i)

If (J <

GenMsgList size

&& not Tale Flit

YES

No

No

J=J+1

It is

Tale flit

Set VC no. to Flit in

GenMsgList (j)

I=I+1

YES

No

Fig. 7. Flowchart of procedure of assigning virtual channels to the flits of the

generated message list

VII. BUILDING THE FAT TREE SIMULATOR STRUCTURE

The network is the main entity in which all nodes and

switches are connected to perform the functionality of

generating, transferring, routing, switching and receiving of

messages in the form of flits, see Fig. 8, which illustrates flit

types and their structures. Network object contains list of IP

nodes and a list of communicating switches. The network

module is performing the task of generating the fat-tree NOC

architecture, setting adjacent switches, moving flits through

the network from output buffer to parent switches input

buffer, moving flits from switches output buffers to nodes

input buffers.

A. IP Node Structure

The IP nodes of the fat tree network are placed at the

leaves in the level zero and connected with parent switches

with two unidirectional physical links. In our proposed fat

tree each IP node generates its own messages that are

required to be sent to certain destinations. Those messages

pass through the fat tree to reach the desired destinations.

Each message has random data and it is generated at different

random time stamps and has random message lengths. Each

switch has six physical links, two for parent ports and four for

children ports, each physical link has four virtual channels

and each channel can hold of four flits per virtual channel.

Each flit contains a field denotes the flit type, namely header,

data or tail. The second field contains the virtual channel

identifier (VCID). The third field contains packet length

information, i.e., the number of flits in the corresponding

packet. The next two fields give source and destination

addresses. Header flit contents differentiate from data or tale

flits, header flit contains the control information required to

establish the path of the message from source to destination.

Header Flit

Data Flit

Tale Flit

Fig. 8. Flit types

B. Packet Generator

For simulation purposes we have created a unit in the C++

code named as a packet generator in the IP node architecture.

The packet generator unit is in charge of generating data

packets in random lengths. The packets are then passed from

nodes to other nodes through using different switches of the

fat tree NOC model.

VIII. RESULTS

A discrete event simulator has been developed in C++ to

analyze the proposed fat tree NOC architecture. In addition, a

complete VHDL code for the proposed algorithms has been

T VCID

D VCID Data

H

VCID SRC

DEST

No. of flits

International Journal of Computer Theory and Engineering, Vol. 5, No. 5, October 2013

827

also written to demonstrate the correctness of the proposed

system in FPGA chip (partially). Fig. 9 illustrates an example

of packets (flits) flowing in the simulator when we send a

message from IP node (3) to IP node (6) in the fat tree NOC

example of 16 nodes for simplicity only (the system can

handle even 64 nodes). For every simulation cycle the

simulator performs the following operations:

1) Move flits from every node to adjacent switches;

2) Move flits from input buffer to output buffer of the

switches;

3) Move flits from output buffer of the switch to the input

buffer of the adjacent switches and/or nodes;

4) Move flits from the input buffer of the resource node to

the received message list of that node;

5) At the end of the execution, the simulator calculates the

network throughput on the level of switch;

Of course the simulator displays other parameters during

the simulation such as number of IP nodes of fat tree structure,

traversed switches, virtual channels/physical channels and

the status of buffering inside the switches. At the end, the

system calculates message latency, and network throughput.

The simulator illustrates also traffic movement on the flit

level by showing it step by step, for every IP node and switch.

In traffic movement we can see many details about some flits

from a particular packet (from a message) such as type of flit,

current position of the flit i.e. all details of switching and

routing (switch no., switch level, virtual channel no., physical

channel no., received flit status, flit movement inside the

switch from its input to its output ports, etc). Fig. 10 shows

the relation between the system throughput and the number

of virtual channels employed in the switch. We have tested

the performance of the network throughput having a single

buffer for each physical channel and having several buffers

per physical channel. The results have shown increasing of

switch throughput when the switch has two and four buffers

per physical link and if the number of buffers increased, we

will see that the switch throughput will not change

significantly. Fig. 11 plotted the average message latency vs.

the number of virtual channels. From the graph we can

conclude that increasing number of virtual channels increases

the message latency, due to switching between virtual

channels.

(1,2)(0,2)

(0,1)

157 8 9 10 12 13 146 115431 20

10101032 2 3 32 2 3

Level 0

Level 2

Level 1

4

5
4

5
4 5

4
5

0 1

0

1

3

21

0

2

3

(1,1) (3,1)(2,1)

Fig. 9. Example: flit (3,6) is routed and switched from input link (5,0) to

output link (2,0)

Network throughput vs. no. of virtual channels

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6 7 8

number of virtual channels

N
e
tw

o
rk

 t
h

ro
u

g
h

p
u

t

Fig. 10. Throughput vs. number of virtual channels

Average message latency vs. virtual channel no.

0

500

1000

1500

2000

1 2 3 4 5 6 7 8

Number of virtual channels
M

e
s
s
a
g
e
 la

te
n
c
y

Fig. 11. Average message latency vs. virtual channels

IX. CONCLUSION

Eventually, we have successfully proven the correctness of

all proposed algorithms and procedures of the modular NOC

system simulator. The performance analysis of the network

throughput, the virtual channel effect and message latency

demonstrates the suitability of such system in modeling and

simulating NOCs systematically. Also, a complete VHDL

code has been written, simulated, and partially prototyped in

FPGA technology. Our current work is to develop an

extension to our work to support Mesh interconnection

networks.

REFERENCES

International Journal of Computer Theory and Engineering, Vol. 5, No. 5, October 2013

828

[1] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks – An
Engineering Approach, Morgan Kaufmann, 2002.

[2] W. J. Dally and B. Towles, Principles and Practices of Interconnection
Networks, Morgan Kaufmann Publishers, San Francisco, 2004.

[3] P. P. Pande, C. Grecu, A. Ivanov, and R. Saleh, “Design of a Switch for
network on chip applications,” in Proceedings of ISCAS, Bangkok,
May 2003 Vol. V, pp. 217-220.

[4] A. Alasar, “Evaluation of system-on-chip interconnect architectures: a
case study of fat-tree interconnection networks,” MSc thesis, Computer
Department, Faculty of Science, Tripoli University, Libya, 2010.

[5] J. Duato, O. Lysne, R. Pang, and T. M. Pinkston, “Part I: A theory for
deadlock-free dynamic reconfiguration of interconnection networks,”
IEEE Trans. on Parallel and Distributed Systems, vol. 16, no. 5, pp.
412-427, May 2005.

[6] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet
switched interconnections,” in Proceedings of Design, Automation and
Test in Europe Conference and Exhibition 2000, pp. 250-256.

[7] C. Leiserson, “Fat-trees: universal networks for hardware - efficient
supercomputing,” IEEE Transactions on Computers, vol. C-34, no. 10,
pp. 892-901, October 1985.

[8] C. Grecu, P. P. Pande, A. Ivanov, and R. Saleh, “A scalable
communication-centric SoC interconnect architecture,” in Proc. IEEE
International Symposium on Quality Electronic Design, ISQED 2004
San Jose, California, USA, 22-24 March, 2004.

Asma Alasar got her MSc in Computer Science

from Faculty of Science, Tripoli University, Libya in

2010. Her research interests include simulation and

modeling of SOC designs.

International Journal of Computer Theory and Engineering, Vol. 5, No. 5, October 2013

829

Azeddien M. Sllame earned his B.Sc in Computer
Engineering in 1990 from Engineering Academy,
Tajoura, Libya. He got his M.Sc in Computer Science
and Technology from Brno Technical University,
Czech Republic in 1997. In 2003 he granted his PhD
in Information Technology from Brno University of
Technology. He published more than 20 scientific
papers in many international conferences in the area
of designing of high-performance digital systems,

system-on-chip design techniques and evolvable hardware systems.

